CHAPTER 4: APPLICATIONS OF DERIVATIVES

SECTION 4.1: EXTREMA

- 1) a) A.Max Value: 23, A.Max Point: (2, 23); A.Min Value: 5; A.Min Point: (-1, 5).
 - b) A.Max Value: 10, A.Max Point: (0, 10);

A.Min Value: $-\frac{34}{3}$; A.Min Point: $\left(2, -\frac{34}{3}\right)$.

c) A.Max Value: 20, A.Max Point: (-4, 20);

A.Min Value: 12; A.Min Point: (-2, 12).

- 2) a) Dom $(f) = (-\infty, \infty)$; CNs: $-2, \frac{3}{16}$, and 2. Hint: Try Factoring by Grouping.
 - b) Dom $(g) = (-\infty, -6] \cup [6, \infty)$; CNs: -6 and 6.
 - c) $\operatorname{Dom}(h) = \left[\frac{1}{4}, \infty\right]$; CN: $\frac{1}{4}$.
 - d) Dom $(p) = (-\infty, \infty);$

CNs: $\left\{\theta \in \mathbb{R} \middle| \theta = \frac{\pi}{2} + \pi n, \text{ or } \theta = \frac{\pi}{6} + 2\pi n, \text{ or } \theta = \frac{5\pi}{6} + 2\pi n \quad \left(n \in \mathbb{Z}\right)\right\};$

Alternatively: $\left\{\theta \in \mathbb{R} \middle| \theta = \frac{\pi}{2} + 2\pi n, \text{ or } \theta = \frac{\pi}{6} + \frac{2\pi n}{3} \quad (n \in \mathbb{Z})\right\}.$

Hint: After differentiating, use a Double-Angle ID.

e) $\operatorname{Dom}(q) = \{ x \in \mathbb{R} \mid x \neq \pi n \mid (n \in \mathbb{Z}) \}$; CNs: NONE.

SECTION 4.2: MEAN VALUE THEOREM (MVT) FOR DERIVATIVES

- 1) a) f satisfies the hypotheses on [1, 5]; c = 3.
 - b) f does not satisfy the hypotheses on [3, 7], because $f(3) \neq f(7)$.
 - c) f satisfies the hypotheses on [-6, -1]; c = -5, or $c = -\frac{7}{2} = -3.5$, or c = -2.
 - d) f does not satisfy the hypotheses on [-4, 4], because f is not differentiable at 0, and $0 \in (-4, 4)$; therefore, f is not differentiable on (-4, 4).

(Answers to Exercises for Chapter 4: Applications of Derivatives) A.4.2

2) a) f satisfies the hypotheses on [1, 4]; c = 2.

Note 1: $-2 \notin (1, 4)$. Note 2: Rolle's Theorem also applies!

b)
$$f$$
 satisfies the hypotheses on $\left[-2, 3\right]$; $c = \frac{-5 + \sqrt{139}}{6} = \frac{\sqrt{139} - 5}{6} \approx 1.1316$.
Note: $\frac{-5 - \sqrt{139}}{6} = -\frac{5 + \sqrt{139}}{6} \approx -2.7983$, so $\frac{-5 - \sqrt{139}}{6} \notin (-2, 3)$.

- c) f does not satisfy the hypotheses on [-8, 8], because f is not differentiable at 0, and $0 \in (-8, 8)$; therefore, f is not differentiable on (-8, 8).
- d) f satisfies the hypotheses on [0, 2]; all real values in (0, 2) satisfy the theorem. (Can you see graphically why this is true?)

SECTION 4.3: FIRST DERIVATIVE TEST

1) a) $\text{Dom}(f) = (-\infty, \infty)$. f is odd, so its graph is symmetric about the origin.

y-intercept: 0, or
$$(0,0)$$
. x-intercepts: $(0,0)$, $(\sqrt{3},0)$, $(-\sqrt{3},0)$.

Holes: None. VAs: None. HAs: None. SAs: None.

Points at critical numbers:

(-1, -2), a local minimum point; (1, 2), a local maximum point;

f is increasing on [-1, 1]. f is decreasing on $(-\infty, -1], [1, \infty)$.

b) $\text{Dom}(f) = (-\infty, \infty)$. f is neither even nor odd.

y-intercept: -5, or (0, -5). Holes: None. VAs: None. HAs: None. SAs: None.

Points at critical numbers: (-5, -105), a local minimum point;

$$\left(-\frac{7}{2}, -\frac{1599}{16}\right)$$
, or $\left(-3.5, -99.9375\right)$, a local maximum point;

(-2, -105), a local minimum point.

f is increasing on $\left[-5, -\frac{7}{2}\right], \left[-2, \infty\right)$; or $\left[-5, -3.5\right], \left[-2, \infty\right)$.

f is decreasing on $\left(-\infty, -5\right]$, $\left[-\frac{7}{2}, -2\right]$, or $\left(-\infty, -5\right]$, $\left[-3.5, -2\right]$.

Looking back at Section 4.2: (Axes are scaled differently.)

c) $\text{Dom}(f) = (-\infty, 4) \cup (4, \infty)$. f is neither even nor odd.

y-intercept: $-\frac{1}{4}$, or $\left(0, -\frac{1}{4}\right)$. Holes: None.

VA: x = 4, because $\lim_{x \to 4^+} f(x) = \infty$ (or because $\lim_{x \to 4^-} f(x) = -\infty$).

HA: only y = 0, because $\lim_{x \to \infty} f(x) = 0$, and $\lim_{x \to -\infty} f(x) = 0$.

SAs: None.

Points at critical numbers: None.

f is decreasing on $(-\infty, 4), (4, \infty)$.

(Answers to Exercises for Chapter 4: Applications of Derivatives) A.4.4

d) Dom $(f) = (-2\pi, 2\pi)$. f is odd, so its graph is symmetric about the origin.

Hints: The derivative of an odd function is even. Try graphing y = f'(x). y-intercept: 0, or (0,0).

Holes: None, not counting the excluded endpoints of the graph.

VAs: None. HAs: None. SAs: None.

Points at critical numbers:

$$A\left(-\frac{5\pi}{3}, \frac{5\pi + 3\sqrt{3}}{6}\right)$$
, a local maximum point;

$$B\left(-\frac{\pi}{3}, \frac{\pi - 3\sqrt{3}}{6}\right)$$
, a local minimum point;

$$C\left(\frac{\pi}{3}, \frac{3\sqrt{3}-\pi}{6}\right)$$
, a local maximum point (can use $B; f$ is odd);

$$D\left(\frac{5\pi}{3}, -\frac{5\pi + 3\sqrt{3}}{6}\right)$$
, a local minimum point (can use A; f is odd).

f is increasing on
$$\left(-2\pi, -\frac{5\pi}{3}\right], \left[-\frac{\pi}{3}, \frac{\pi}{3}\right], \left[\frac{5\pi}{3}, 2\pi\right)$$
.

f is decreasing on
$$\left[-\frac{5\pi}{3}, -\frac{\pi}{3}\right], \left[\frac{\pi}{3}, \frac{5\pi}{3}\right].$$

2) A local maximum point

SECTION 4.4: SECOND DERIVATIVES

- 1) a) PIN: 0. Concave up on $(-\infty, 0]$. Concave down on $[0, \infty)$. PIN corresponds to IP: (0, 0).
 - b) PINs: Both of $\frac{-7 \pm \sqrt{3}}{2}$; these are about -2.634 and -4.366.

Concave up on
$$\left(-\infty, \frac{-7 - \sqrt{3}}{2}\right], \left[\frac{-7 + \sqrt{3}}{2}, \infty\right)$$
, about $\left(-\infty, -4.366\right], \left[-2.364, \infty\right)$.

Concave down on
$$\left[\frac{-7-\sqrt{3}}{2}, \frac{-7+\sqrt{3}}{2}\right]$$
, about $\left[-4.366, -2.364\right]$.

Both PINs correspond to IPs.

- c) PINs: None; observe that 4 is not in Dom(f). Concave up on $(4, \infty)$. Concave down on $(-\infty, 4)$. IPs: None.
- d) PINs: $-\pi$, 0, and π . Concave up on $\left[-\pi,0\right]$, $\left[\pi,2\pi\right)$. Concave down on $\left(-2\pi,-\pi\right]$, $\left[0,\pi\right]$. All PINs correspond to IPs: $\left(-\pi,\frac{\pi}{2}\right)$, $\left(0,0\right)$, and $\left(\pi,-\frac{\pi}{2}\right)$; see red points.

- 2) Hints: Verify that f'(-5) = 0, and show that f''(-5) > 0.
- 3) Hints: A Power-Reducing trig ID will prove very helpful here. $g(\theta) = 2 + 2\cos(6\theta)$. $g'(\theta) = -12\sin(6\theta)$. $g''(\theta) = -72\cos(6\theta)$.
 - a) It is a local maximum point, because $g'\left(\frac{\pi}{3}\right) = 0$, and $g''\left(\frac{\pi}{3}\right) < 0$.
 - b) Nothing, because $g'\left(\frac{\pi}{4}\right) \neq 0$.
- 4) Nothing, because h''(0) = 0.
- 5) Employment was decreasing but at a slower and slower rate.

SECTION 4.5: GRAPHING

1) a)
$$Dom(f) = (-\infty, \infty)$$
.

f is neither even nor odd.

y-intercept: -500, or (0, -500). x-intercepts: We will discuss in Section 4.8.

Holes: None. VAs: None. HAs: None. SAs: None.

$$f'(x) = -4x^3 + 12x^2 + 96x + 112$$
.

CNs: -2 and 7. Points at critical numbers:

(-2, -580), neither a local maximum nor a local minimum point;

(7,1607), a local maximum point.

f is increasing on $(-\infty, 7]$.

f is decreasing on $[7, \infty)$.

$$f''(x) = -12x^2 + 24x + 96.$$

PINs: -2 and 4.

Concave up on [-2, 4].

Concave down on $(-\infty, -2]$, $[4, \infty)$.

Both PINs correspond to IPs: (-2, -580) and (4, 716).

(Axes are scaled differently.)

b) Dom
$$(f) = (-\infty, -4) \cup (-4, \infty)$$
.

f is neither even nor odd.

y-intercept: 0, or (0,0). x-intercept: 0, or (0,0).

Holes: None.

VA: x = -4, because $\lim_{x \to -4^+} f(x) = \infty$ (or because $\lim_{x \to -4^-} f(x) = \infty$).

HA: only $y = \frac{1}{3}$, because $\lim_{x \to \infty} f(x) = \frac{1}{3}$, and $\lim_{x \to -\infty} f(x) = \frac{1}{3}$.

SAs: None.

$$f'(x) = \frac{8x}{3(x+4)^3}.$$

CN: 0. Points at critical numbers:

(0,0), a local minimum point.

f is increasing on $(-\infty, -4)$, $[0, \infty)$.

f is decreasing on $\left(-4,0\right]$.

$$f''(x) = \frac{16(2-x)}{3(x+4)^4}.$$

PIN: 2.

Concave up on $(-\infty, -4), (-4, 2]$.

Concave down on $\lceil 2, \infty \rangle$.

The PIN does correspond to an IP: $\left(2, \frac{1}{27}\right)$.

(Axes are scaled differently.)

c) Dom
$$(f) = (-\infty, \infty)$$
.

f is neither even nor odd.

y-intercept: 1, or (0,1). x-intercept: 1, or (1,0).

Holes: None. VAs: None.

HA: only y = 1, because $\lim_{x \to \infty} f(x) = 1$, and $\lim_{x \to -\infty} f(x) = 1$.

SAs: None.

$$f'(x) = \frac{2(x^2 - 1)}{(x^2 + 1)^2}$$
.

CNs: -1 and 1. Points at critical numbers:

(-1, 2), a local maximum point.

(1,0), a local minimum point.

f is increasing on $(-\infty, -1], [1, \infty)$.

f is decreasing on [-1, 1].

$$f''(x) = \frac{4x(3-x^2)}{(x^2+1)^3}.$$

PINs: $-\sqrt{3}$, 0, and $\sqrt{3}$.

Concave up on $\left(-\infty, -\sqrt{3}\right], \left[0, \sqrt{3}\right]$.

Concave down on $\left[-\sqrt{3}, 0\right], \left[\sqrt{3}, \infty\right)$.

The PINs correspond to IPs: $\left(-\sqrt{3}, \text{ about } 1.87\right)$, $\left(0, 1\right)$, and $\left(\sqrt{3}, \text{ about } 0.13\right)$.

d) Dom $(f) = (-\infty, \infty)$.

f is neither even nor odd.

y-intercept: 0, or (0,0). x-intercepts: 0 and $\frac{27}{8} = 3.375$, or (0,0) and (3.375,0).

Holes: None. VAs: None. HAs: None. SAs: None.

$$f'(x) = 2x^{-1/3} - 2$$
, or $\frac{2(1-\sqrt[3]{x})}{\sqrt[3]{x}}$.

CNs: 0 and 1. Points at critical numbers:

(0,0), a local minimum point.

(1,1), a local maximum point.

f is increasing on [0,1].

f is decreasing on $(-\infty, 0], [1, \infty)$.

$$f''(x) = -\frac{2}{3x^{4/3}}.$$

PIN: 0.

Concave down on $(-\infty, 0], [0, \infty)$.

The PIN does not correspond to an IP: no IPs.

2) Make sure to indicate the hole at (4,8) and the local minimum (and corner) point at (-4,0).

3) The following is one of infinitely many possible graphs:

SECTION 4.6: OPTIMIZATION

- 1) We want a cube of side length $2(\sqrt[3]{4})$ m = $2(2^{2/3})$ m = $2^{5/3}$ m ≈ 3.175 m. It requires $48(\sqrt[3]{2})$ m² = $48(2^{1/3})$ m² ≈ 60.48 m² of cardboard. Hints: If x is the side length of the square top (or bottom) and y is the height of the box, then surface area $S = 2x^2 + 4xy = 2x^2 + \frac{128}{x}$, which is continuous on $(0, \infty)$. S' < 0 on $(0, 2(\sqrt[3]{4}))$, and S' > 0 on $(2(\sqrt[3]{4}), \infty)$; this verifies that S has an absolute minimum at $x = 2(\sqrt[3]{4})$ m.
- 2) Optimal dimensions: $4 \text{ m} \times 4 \text{ m} \times 2 \text{ m}$. The box requires 48 m^2 of cardboard. The absence of a top side favors a larger bottom side and allows for a smaller total surface area. (Compare to the pigpen problems in the notes.)

Hint: Using the notation from Exercise 1, $S = x^2 + 4xy = x^2 + \frac{128}{x}$.

3) Base radius
$$r = \sqrt[3]{\frac{2}{\pi}} \text{ m} \approx 0.8603 \text{ m}$$
, and height $h = \sqrt[3]{\frac{2}{\pi}} \text{ m} \approx 0.8603 \text{ m}$.

Hint: Surface area $S = \pi r^2 + 2\pi rh = \pi r^2 + \frac{4}{r}$.

The aquarium requires $3(\sqrt[3]{4\pi}) \, \text{m}^2 = 3(2^{2/3})(\pi^{1/3}) \, \text{m}^2 \approx 6.975 \, \text{m}^2$ of glass.

(It's easier to use $S = \pi r^2 + 2\pi rh$ instead of $S = \pi r^2 + \frac{4}{r}$ to find this.)

The diameter would be twice the height, so the aquarium would be "squat."

4) $x = \frac{50}{9}$ ft (by) $y = \frac{25}{4}$ ft, or $5\frac{5}{9}$ ft by $6\frac{1}{4}$ ft, where *R* has dimensions 3x by 2y. The total area (enclosed by *R*) is $\frac{625}{3}$ ft² = $208\frac{1}{3}$ ft².

Hint: If R has dimensions 3x by 2y, then total area $A = 6xy = 75x - \frac{27}{4}x^2$.

- 5) $\frac{15}{13} \sec = 1\frac{2}{13} \sec \approx 1.154 \sec$. The corresponding minimum distance is $\sqrt{\frac{45,000}{13}}$ ft = $\frac{150\sqrt{26}}{13}$ ft ≈ 58.83 ft, which is just a bit less than the initial 60 ft. Hint: Squared distance of interest = $104t^2 240t + 3600$.
- 6) About 57.24 feet (floor width *w*) by 114.47 feet (length *l*) by 76.31 feet (height). The corresponding cost is about \$157,244.

Hint: Cost $C = 3lw + 4(2lh) + 4(2wh) + 5lw = 16w^2 + \frac{6,000,000}{w}$.

7) Point: (2,5). The corresponding minimum distance is $\sqrt{17}$ m ≈ 4.123 m.

Hint 1: Minimize d^2 , the squared distance between points of the form $(x, x^2 + 1)$ and the point (6,4). $d^2 = x^4 - 5x^2 - 12x + 45$.

Hint 2: Remember the Rational Zero Test and Synthetic Division. See Sections 2.3 and 2.5 in the Precalculus notes.

Note: We also get integers for the coordinates of the closest point on the parabola if the UFO is at (3,1), (-3,1), or (10,3), among others.

8) Hint: Set up a generic rectangle with dimensions l and w. Show that l = w for the largest rectangle.

SECTION 4.7: MORE APPLICATIONS OF DERIVATIVES

1) a)
$$v(t) = 12t^2 + 30t - 18$$

b)
$$\left(-\infty, -3\right), \left(\frac{1}{2}, \infty\right)$$

c)
$$\left(-3, \frac{1}{2}\right)$$

d)

$$t=\frac{1}{2} \underbrace{\begin{array}{c} t=3 \\ t=-6 \end{array}}_{t=-6}$$

$$-215 \qquad -\frac{15}{4} 82 \quad 190$$

e)
$$a(t) = 24t + 30$$

f)
$$v(-4) = 54$$
, $a(-4) = -66$, moving to the right, slowing down

g)
$$v(-2) = -30$$
, $a(-2) = -18$, moving to the left, speeding up

h)
$$v(0) = -18$$
, $a(0) = 30$, moving to the left, slowing down

i)
$$v(1) = 24$$
, $a(1) = 54$, moving to the right, speeding up

2) a)
$$P(x) = -3x^2 + 200x - 500$$

b)
$$P'(30) = 20 \frac{\$}{\text{device unit}}$$
, increase production.

c) 33 devices. The CN is $\frac{100}{3} = 33\frac{1}{3}$ devices, and the absolute maximum of *P* is there if the domain is taken to be $[0, \infty)$. However, an integer number of devices such as 33 or 34 devices would be a more appropriate answer to this problem. P(33) = \$2833, and P(34) = \$2832, so P(33) > P(34), and 33 devices is a better production level than 34 devices.

SECTION 4.8: NEWTON'S METHOD

1)
$$x_2 \approx 1.91667$$
, $x_3 \approx 1.91294$, $x_4 \approx 1.91293$. $\sqrt[3]{7} \approx 1.9129$.

2)
$$x_2 \approx 9.664$$
, $x_3 \approx 9.632$, $x_4 \approx 9.631$. Answer: about 9.63.

- 3) $x_2 \approx 0.73911$, $x_3 \approx 0.73909$. Answer: about 0.7391. Hint 1: Make sure your calculator is in radian mode! Hint 2: Isolate 0 on one side of the given equation.
- 4) $x_2 = -2$, $x_3 = 4$. (Note: In fact, the iterates will move further away from 0.) The tangent lines are getting flatter and flatter; that is, the derivatives at our iterates are getting closer to 0. (Note: In the computational field of numerical analysis, derivatives that are close to zero can lead to unstable results.)