CHAPTER 4: APPLICATIONS OF DERIVATIVES

 SECTION 4.1: EXTREMA

 SECTION 4.1: EXTREMA}

1) a) A.Max Value: 23 , A.Max Point: $(2,23)$; A.Min Value: 5; A.Min Point: $(-1,5)$.
b) A.Max Value: 10, A.Max Point: $(0,10)$;
A.Min Value: $-\frac{34}{3}$; A.Min Point: $\left(2,-\frac{34}{3}\right)$.
c) A.Max Value: 20, A.Max Point: $(-4,20)$;
A.Min Value: 12; A.Min Point: $(-2,12)$.
2) a) $\operatorname{Dom}(f)=(-\infty, \infty)$; CNs: $-2, \frac{3}{16}$, and 2 . Hint: Try Factoring by Grouping.
b) $\operatorname{Dom}(g)=(-\infty,-6] \cup[6, \infty)$; CNs: -6 and 6 .
c) $\operatorname{Dom}(h)=\left[\frac{1}{4}, \infty\right) ; \mathrm{CN}: \frac{1}{4}$.
d) $\operatorname{Dom}(p)=(-\infty, \infty)$;
$\mathrm{CNs}:\left\{\theta \in \mathbb{R} \left\lvert\, \theta=\frac{\pi}{2}+\pi n\right.\right.$, or $\theta=\frac{\pi}{6}+2 \pi n$, or $\left.\theta=\frac{5 \pi}{6}+2 \pi n \quad(n \in \mathbb{Z})\right\} ;$
Alternatively: $\left\{\theta \in \mathbb{R} \left\lvert\, \theta=\frac{\pi}{2}+2 \pi n\right.\right.$, or $\left.\theta=\frac{\pi}{6}+\frac{2 \pi n}{3} \quad(n \in \mathbb{Z})\right\}$.
Hint: After differentiating, use a Double-Angle ID.
e) $\operatorname{Dom}(q)=\{x \in \mathbb{R} \mid x \neq \pi n \quad(n \in \mathbb{Z})\} ;$ CNs: NONE.

SECTION 4.2: MEAN VALUE THEOREM (MVT) FOR DERIVATIVES

1) a) f satisfies the hypotheses on $[1,5] ; c=3$.
b) f does not satisfy the hypotheses on $[3,7]$, because $f(3) \neq f(7)$.
c) f satisfies the hypotheses on $[-6,-1] ; c=-5$, or $c=-\frac{7}{2}=-3.5$, or $c=-2$.
d) f does not satisfy the hypotheses on $[-4,4]$, because f is not differentiable at 0 , and $0 \in(-4,4)$; therefore, f is not differentiable on $(-4,4)$.
2) a) f satisfies the hypotheses on $[1,4] ; c=2$.

Note 1: $-2 \notin(1,4)$. Note 2: Rolle's Theorem also applies!
b) f satisfies the hypotheses on $[-2,3] ; c=\frac{-5+\sqrt{139}}{6}=\frac{\sqrt{139}-5}{6} \approx 1.1316$.

Note: $\frac{-5-\sqrt{139}}{6}=-\frac{5+\sqrt{139}}{6} \approx-2.7983$, so $\frac{-5-\sqrt{139}}{6} \notin(-2,3)$.
c) f does not satisfy the hypotheses on $[-8,8]$, because f is not differentiable at 0 , and $0 \in(-8,8)$; therefore, f is not differentiable on $(-8,8)$.
d) f satisfies the hypotheses on $[0,2]$; all real values in $(0,2)$ satisfy the theorem.
(Can you see graphically why this is true?)

SECTION 4.3: FIRST DERIVATIVE TEST

1) a) $\operatorname{Dom}(f)=(-\infty, \infty) . f$ is odd, so its graph is symmetric about the origin. y-intercept: 0 , or $(0,0) . x$-intercepts: $(0,0),(\sqrt{3}, 0),(-\sqrt{3}, 0)$.
Holes: None. VAs: None. HAs: None. SAs: None.
Points at critical numbers:
$(-1,-2)$, a local minimum point; $(1,2)$, a local maximum point; f is increasing on $[-1,1] . f$ is decreasing on $(-\infty,-1],[1, \infty)$.

b) $\operatorname{Dom}(f)=(-\infty, \infty) . f$ is neither even nor odd. y-intercept: -5 , or $(0,-5)$. Holes: None. VAs: None. HAs: None. SAs: None. Points at critical numbers: $(-5,-105)$, a local minimum point;

$$
\left(-\frac{7}{2},-\frac{1599}{16}\right), \text { or }(-3.5,-99.9375), \text { a local maximum point; }
$$

$(-2,-105)$, a local minimum point.
(Answers to Exercises for Chapter 4: Applications of Derivatives) A.4.3
f is increasing on $\left[-5,-\frac{7}{2}\right],[-2, \infty)$; or $[-5,-3.5],[-2, \infty)$.
f is decreasing on $(-\infty,-5],\left[-\frac{7}{2},-2\right]$, or $(-\infty,-5],[-3.5,-2]$.
Looking back at Section 4.2: (Axes are scaled differently.)

c) $\operatorname{Dom}(f)=(-\infty, 4) \cup(4, \infty) . f$ is neither even nor odd.
y-intercept: $-\frac{1}{4}$, or $\left(0,-\frac{1}{4}\right)$. Holes: None.
VA: $x=4$, because $\lim _{x \rightarrow 4^{+}} f(x)=\infty$ (or because $\lim _{x \rightarrow 4^{-}} f(x)=-\infty$).
HA: only $y=0$, because $\lim _{x \rightarrow \infty} f(x)=0$, and $\lim _{x \rightarrow-\infty} f(x)=0$.
SAs: None.
Points at critical numbers: None.
f is decreasing on $(-\infty, 4),(4, \infty)$.

d) $\operatorname{Dom}(f)=(-2 \pi, 2 \pi) . f$ is odd, so its graph is symmetric about the origin. Hints: The derivative of an odd function is even. Try graphing $y=f^{\prime}(x)$. y-intercept: 0 , or $(0,0)$.
Holes: None, not counting the excluded endpoints of the graph.
VAs: None. HAs: None. SAs: None.
Points at critical numbers:

$$
\begin{aligned}
& A\left(-\frac{5 \pi}{3}, \frac{5 \pi+3 \sqrt{3}}{6}\right), \text { a local maximum point; } \\
& B\left(-\frac{\pi}{3}, \frac{\pi-3 \sqrt{3}}{6}\right), \text { a local minimum point; } \\
& C\left(\frac{\pi}{3}, \frac{3 \sqrt{3}-\pi}{6}\right), \text { a local maximum point (can use } B ; f \text { is odd); } \\
& D\left(\frac{5 \pi}{3},-\frac{5 \pi+3 \sqrt{3}}{6}\right), \text { a local minimum point (can use } A ; f \text { is odd). }
\end{aligned}
$$

f is increasing on $\left(-2 \pi,-\frac{5 \pi}{3}\right],\left[-\frac{\pi}{3}, \frac{\pi}{3}\right],\left[\frac{5 \pi}{3}, 2 \pi\right)$.
f is decreasing on $\left[-\frac{5 \pi}{3},-\frac{\pi}{3}\right],\left[\frac{\pi}{3}, \frac{5 \pi}{3}\right]$.

2) A local maximum point

SECTION 4.4: SECOND DERIVATIVES

1) a) PIN: 0 . Concave up on $(-\infty, 0]$. Concave down on $[0, \infty)$.

PIN corresponds to IP: $(0,0)$.
b) PINs: Both of $\frac{-7 \pm \sqrt{3}}{2}$; these are about -2.634 and -4.366 .

Concave up on $\left(-\infty, \frac{-7-\sqrt{3}}{2}\right],\left[\frac{-7+\sqrt{3}}{2}, \infty\right)$, about

$$
(-\infty,-4.366],[-2.364, \infty)
$$

Concave down on $\left[\frac{-7-\sqrt{3}}{2}, \frac{-7+\sqrt{3}}{2}\right]$, about $[-4.366,-2.364]$.
Both PINs correspond to IPs.
c) PINs: None; observe that 4 is not in $\operatorname{Dom}(f)$.

Concave up on $(4, \infty)$. Concave down on $(-\infty, 4)$. IPs: None.
d) PINs: $-\pi, 0$, and π.

Concave up on $[-\pi, 0],[\pi, 2 \pi)$. Concave down on $(-2 \pi,-\pi],[0, \pi]$.
All PINs correspond to IPs: $\left(-\pi, \frac{\pi}{2}\right),(0,0)$, and $\left(\pi,-\frac{\pi}{2}\right)$; see red points.

2) Hints: Verify that $f^{\prime}(-5)=0$, and show that $f^{\prime \prime}(-5)>0$.
3) Hints: A Power-Reducing trig ID will prove very helpful here. $g(\theta)=2+2 \cos (6 \theta) \cdot g^{\prime}(\theta)=-12 \sin (6 \theta) \cdot g^{\prime \prime}(\theta)=-72 \cos (6 \theta)$.
a) It is a local maximum point, because $g^{\prime}\left(\frac{\pi}{3}\right)=0$, and $g^{\prime \prime}\left(\frac{\pi}{3}\right)<0$.
b) Nothing, because $g^{\prime}\left(\frac{\pi}{4}\right) \neq 0$.
4) Nothing, because $h^{\prime \prime}(0)=0$.
5) Employment was decreasing but at a slower and slower rate.

SECTION 4.5: GRAPHING

1) a) $\operatorname{Dom}(f)=(-\infty, \infty)$.
f is neither even nor odd.
y-intercept: -500 , or $(0,-500)$. x-intercepts: We will discuss in Section 4.8.
Holes: None. VAs: None. HAs: None. SAs: None.
$f^{\prime}(x)=-4 x^{3}+12 x^{2}+96 x+112$.
CNs: -2 and 7. Points at critical numbers:
$(-2,-580)$, neither a local maximum nor a local minimum point;
$(7,1607)$, a local maximum point.
f is increasing on $(-\infty, 7]$.
f is decreasing on $[7, \infty)$.

$$
f^{\prime \prime}(x)=-12 x^{2}+24 x+96
$$

PINs: -2 and 4.
Concave up on $[-2,4]$.
Concave down on $(-\infty,-2],[4, \infty)$.
Both PINs correspond to IPs: $(-2,-580)$ and $(4,716)$.

b) $\operatorname{Dom}(f)=(-\infty,-4) \cup(-4, \infty)$.
f is neither even nor odd.
y-intercept: 0 , or $(0,0) . x$-intercept: 0 , or $(0,0)$.
Holes: None.
VA: $x=-4$, because $\lim _{x \rightarrow-4^{+}} f(x)=\infty$ (or because $\lim _{x \rightarrow-4^{-}} f(x)=\infty$).
HA: only $y=\frac{1}{3}$, because $\lim _{x \rightarrow \infty} f(x)=\frac{1}{3}$, and $\lim _{x \rightarrow-\infty} f(x)=\frac{1}{3}$.
SAs: None.

$$
f^{\prime}(x)=\frac{8 x}{3(x+4)^{3}} .
$$

$\mathrm{CN}: 0$. Points at critical numbers:
$(0,0)$, a local minimum point.
f is increasing on $(-\infty,-4),[0, \infty)$.
f is decreasing on $(-4,0]$.

$$
f^{\prime \prime}(x)=\frac{16(2-x)}{3(x+4)^{4}} .
$$

PIN: 2.
Concave up on $(-\infty,-4),(-4,2]$.
Concave down on $[2, \infty)$.
The PIN does correspond to an IP: $\left(2, \frac{1}{27}\right)$.

c) $\operatorname{Dom}(f)=(-\infty, \infty)$.
f is neither even nor odd.
y-intercept: 1 , or $(0,1) . x$-intercept: 1 , or $(1,0)$.
Holes: None. VAs: None.
HA: only $y=1$, because $\lim _{x \rightarrow \infty} f(x)=1$, and $\lim _{x \rightarrow-\infty} f(x)=1$.
SAs: None.

$$
f^{\prime}(x)=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}
$$

CNs: -1 and 1 . Points at critical numbers:
$(-1,2)$, a local maximum point.
$(1,0)$, a local minimum point.
f is increasing on $(-\infty,-1],[1, \infty)$.
f is decreasing on $[-1,1]$.
$f^{\prime \prime}(x)=\frac{4 x\left(3-x^{2}\right)}{\left(x^{2}+1\right)^{3}}$.
PINs: $-\sqrt{3}, 0$, and $\sqrt{3}$.
Concave up on $(-\infty,-\sqrt{3}],[0, \sqrt{3}]$.
Concave down on $[-\sqrt{3}, 0],[\sqrt{3}, \infty)$.
The PINs correspond to IPs: $(-\sqrt{3}$, about 1.87$),(0,1)$, and $(\sqrt{3}$, about 0.13$)$.

d) $\operatorname{Dom}(f)=(-\infty, \infty)$.
f is neither even nor odd.
y-intercept: 0 , or $(0,0) . x$-intercepts: 0 and $\frac{27}{8}=3.375$, or $(0,0)$ and $(3.375,0)$.
Holes: None. VAs: None. HAs: None. SAs: None.

$$
f^{\prime}(x)=2 x^{-1 / 3}-2, \text { or } \frac{2(1-\sqrt[3]{x})}{\sqrt[3]{x}}
$$

CNs: 0 and 1 . Points at critical numbers:
$(0,0)$, a local minimum point.
$(1,1)$, a local maximum point.
f is increasing on $[0,1]$.
f is decreasing on $(-\infty, 0],[1, \infty)$.
$f^{\prime \prime}(x)=-\frac{2}{3 x^{4 / 3}}$.
PIN: 0.
Concave down on $(-\infty, 0],[0, \infty)$.
The PIN does not correspond to an IP: no IPs.

2) Make sure to indicate the hole at $(4,8)$ and the local minimum (and corner) point at $(-4,0)$.

3) The following is one of infinitely many possible graphs:

SECTION 4.6: OPTIMIZATION

1) We want a cube of side length $2(\sqrt[3]{4}) \mathrm{m}=2\left(2^{2 / 3}\right) \mathrm{m}=2^{5 / 3} \mathrm{~m} \approx 3.175 \mathrm{~m}$.

It requires $48(\sqrt[3]{2}) \mathrm{m}^{2}=48\left(2^{1 / 3}\right) \mathrm{m}^{2} \approx 60.48 \mathrm{~m}^{2}$ of cardboard.
Hints: If x is the side length of the square top (or bottom) and y is the height of the box, then surface area $S=2 x^{2}+4 x y=2 x^{2}+\frac{128}{x}$, which is continuous on $(0, \infty)$. $S^{\prime}<0$ on $(0,2(\sqrt[3]{4}))$, and $S^{\prime}>0$ on $(2(\sqrt[3]{4}), \infty)$; this verifies that S has an absolute minimum at $x=2(\sqrt[3]{4}) \mathrm{m}$.
2) Optimal dimensions: $4 \mathrm{~m} \times 4 \mathrm{~m} \times 2 \mathrm{~m}$. The box requires $48 \mathrm{~m}^{2}$ of cardboard. The absence of a top side favors a larger bottom side and allows for a smaller total surface area. (Compare to the pigpen problems in the notes.)
Hint: Using the notation from Exercise $1, S=x^{2}+4 x y=x^{2}+\frac{128}{x}$.
3) Base radius $r=\sqrt[3]{\frac{2}{\pi}} \mathrm{~m} \approx 0.8603 \mathrm{~m}$, and height $h=\sqrt[3]{\frac{2}{\pi}} \mathrm{~m} \approx 0.8603 \mathrm{~m}$.

Hint: Surface area $S=\pi r^{2}+2 \pi r h=\pi r^{2}+\frac{4}{r}$.
The aquarium requires $3(\sqrt[3]{4 \pi}) \mathrm{m}^{2}=3\left(2^{2 / 3}\right)\left(\pi^{1 / 3}\right) \mathrm{m}^{2} \approx 6.975 \mathrm{~m}^{2}$ of glass.
(It's easier to use $S=\pi r^{2}+2 \pi r h$ instead of $S=\pi r^{2}+\frac{4}{r}$ to find this.) The diameter would be twice the height, so the aquarium would be "squat."
4) $x=\frac{50}{9} \mathrm{ft}$ (by) $y=\frac{25}{4} \mathrm{ft}$, or $5 \frac{5}{9} \mathrm{ft}$ by $6 \frac{1}{4} \mathrm{ft}$, where R has dimensions $3 x$ by $2 y$.

The total area (enclosed by R) is $\frac{625}{3} \mathrm{ft}^{2}=208 \frac{1}{3} \mathrm{ft}^{2}$.
Hint: If R has dimensions $3 x$ by $2 y$, then total area $A=6 x y=75 x-\frac{27}{4} x^{2}$.
5) $\frac{15}{13} \sec =1 \frac{2}{13} \mathrm{sec} \approx 1.154 \mathrm{sec}$. The corresponding minimum distance is
$\sqrt{\frac{45,000}{13}} \mathrm{ft}=\frac{150 \sqrt{26}}{13} \mathrm{ft} \approx 58.83 \mathrm{ft}$, which is just a bit less than the initial 60 ft.
Hint: Squared distance of interest $=104 t^{2}-240 t+3600$.
6) About 57.24 feet (floor width w) by 114.47 feet (length l) by 76.31 feet (height). The corresponding cost is about $\$ 157,244$.
Hint: Cost $C=3 l w+4(2 l h)+4(2 w h)+5 l w=16 w^{2}+\frac{6,000,000}{w}$.
7) Point: $(2,5)$. The corresponding minimum distance is $\sqrt{17} \mathrm{~m} \approx 4.123 \mathrm{~m}$.

Hint 1: Minimize d^{2}, the squared distance between points of the form

$$
\left(x, x^{2}+1\right) \text { and the point }(6,4) \cdot d^{2}=x^{4}-5 x^{2}-12 x+45 .
$$

Hint 2: Remember the Rational Zero Test and Synthetic Division.
See Sections 2.3 and 2.5 in the Precalculus notes.
Note: We also get integers for the coordinates of the closest point on the parabola if the UFO is at $(3,1),(-3,1)$, or $(10,3)$, among others.
8) Hint: Set up a generic rectangle with dimensions l and w. Show that $l=w$ for the largest rectangle.

SECTION 4.7: MORE APPLICATIONS OF DERIVATIVES

1) a) $v(t)=12 t^{2}+30 t-18$
b) $(-\infty,-3),\left(\frac{1}{2}, \infty\right)$
c) $\left(-3, \frac{1}{2}\right)$
d)

e) $a(t)=24 t+30$
f) $v(-4)=54, a(-4)=-66$, moving to the right, slowing down
g) $v(-2)=-30, a(-2)=-18$, moving to the left, speeding up
h) $v(0)=-18, a(0)=30$, moving to the left, slowing down
i) $v(1)=24, a(1)=54$, moving to the right, speeding up
2) a) $P(x)=-3 x^{2}+200 x-500$
b) $P^{\prime}(30)=20 \frac{\$}{\text { device unit }}$, increase production.
c) 33 devices. The CN is $\frac{100}{3}=33 \frac{1}{3}$ devices, and the absolute maximum of P is there if the domain is taken to be $[0, \infty)$. However, an integer number of devices such as 33 or 34 devices would be a more appropriate answer to this problem. $P(33)=\$ 2833$, and $P(34)=\$ 2832$, so $P(33)>P(34)$, and 33 devices is a better production level than 34 devices.

SECTION 4.8: NEWTON'S METHOD

1) $x_{2} \approx 1.91667, x_{3} \approx 1.91294, x_{4} \approx 1.91293 \cdot \sqrt[3]{7} \approx 1.9129$.
2) $x_{2} \approx 9.664, x_{3} \approx 9.632, x_{4} \approx 9.631$. Answer: about 9.63.
3) $x_{2} \approx 0.73911, x_{3} \approx 0.73909$. Answer: about 0.7391 . Hint 1 : Make sure your calculator is in radian mode! Hint 2: Isolate 0 on one side of the given equation.
4) $x_{2}=-2, x_{3}=4$. (Note: In fact, the iterates will move further away from 0 .) The tangent lines are getting flatter and flatter; that is, the derivatives at our iterates are getting closer to 0 . (Note: In the computational field of numerical analysis, derivatives that are close to zero can lead to unstable results.)
