CHAPTER 8: INVERSE TRIGONOMETRIC and HYPERBOLIC FUNCTIONS

SECTION 8.1: INVERSE TRIGONOMETRIC FUNCTIONS

- 1) Evaluate the following. If an expression is not defined as a real number, write "undefined."
 - a) $\sin^{-1}\left(\frac{1}{2}\right)$, also known as $\arcsin\left(\frac{1}{2}\right)$
 - b) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$, also known as $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$
 - c) $\sin^{-1}\left(\frac{\pi}{2}\right)$, also known as $\arcsin\left(\frac{\pi}{2}\right)$
 - d) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$, also known as $\arccos\left(-\frac{\sqrt{2}}{2}\right)$
 - e) $tan^{-1}(-1)$, also known as arctan(-1)
 - f) $\sin^{-1} \left[\sin \left(\frac{\pi}{5} \right) \right]$, also known as $\arcsin \left[\sin \left(\frac{\pi}{5} \right) \right]$
 - g) $\cos^{-1} \left[\cos \left(\frac{7\pi}{6} \right) \right]$, also known as $\arccos \left[\cos \left(\frac{7\pi}{6} \right) \right]$
- 2) Rewrite the following as algebraic expressions in x. Assume x > 0.
 - a) $\tan \left[\sin^{-1} \left(\frac{x}{5} \right) \right]$, also known as $\tan \left[\arcsin \left(\frac{x}{5} \right) \right]$
 - b) $\cos \left[\tan^{-1} x \right]$, also known as $\cos \left[\arctan x \right]$

KNOW THE GRAPHS, DOMAINS, AND RANGES OF THE THREE KEY INVERSE TRIGONOMETRIC FUNCTIONS!

SECTION 8.2: CALCULUS and INVERSE TRIGONOMETRIC FUNCTIONS

- 1) Find the following derivatives. Simplify where appropriate. You do not have to simplify radicals or rationalize denominators.
 - a) Let $f(x) = \arctan(\sqrt{x})$, also written as $\tan^{-1}(\sqrt{x})$. Find f'(x).
 - b) Find $\frac{d}{dx} \left[x^2 \arcsin(3x) \right]$, also written as $\frac{d}{dx} \left[x^2 \sin^{-1}(3x) \right]$.
 - c) Find $D_x \left[\arccos(\ln x) \right]$, also written as $D_x \left[\cos^{-1}(\ln x) \right]$.
 - d) Let $g(t) = [e^t + \operatorname{arcsec}(t^4)]^5$, also written as $g(t) = [e^t + \operatorname{sec}^{-1}(t^4)]^5$. Find g'(t). Assume that the range of the arcsec function is given by $\left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$, as we do in the notes. Bear in mind that the range is defined differently in other sources.
 - e) Let $y = \arcsin(\arctan x)$, also written as $\sin^{-1}(\tan^{-1} x)$. Find $\frac{dy}{dx}$.
- 2) We will find $D_x \left[\arcsin \left(\sin x \right) \right]$, also written as $D_x \left[\sin^{-1} \left(\sin x \right) \right]$, in two different ways. Assume $-\frac{\pi}{2} < x < \frac{\pi}{2}$; the importance of this assumption is part of the point of this problem.
 - a) Simplify first before finding the derivative.
 - b) Do not simplify first before finding the derivative.
- 3) Yes or No: Is $D_x \lceil (\sin x)^{-1} \rceil$ equivalent to $D_x (\sin^{-1} x)$?

- 4) Evaluate the following indefinite integrals. You may use C, D, etc. as representing arbitrary constants.
 - Assume that the range of the inverse secant (arcsecant) function is given by $\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right]$, as we do in the notes. Bear in mind that the range is defined differently in other sources.

a)
$$\int \frac{5}{\sqrt{1-t^2}} dt$$

b)
$$\int \frac{1}{\sqrt{16-x^2}} dx$$

c)
$$\int \frac{x}{\sqrt{16-x^2}} \, dx$$

$$d) \int \frac{dx}{25 + x^2}$$

e)
$$\int \frac{1}{x\sqrt{x^2 - 4}} \, dx$$

f)
$$\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$$

g)
$$\int \frac{3x}{100 + x^4} \, dx$$

h)
$$\int \frac{\arctan x}{1+x^2} \, dx$$

- i) $\int \frac{1}{x\sqrt{x^8-9}} dx$. Hint: After deciding on a *u*-sub, multiply the numerator and the denominator by the same expression.
- 5) Evaluate the definite integral $\int_0^3 \frac{1}{x^2 + 9} dx$. Observe that we can find the **exact** value of this integral; in Chapter 5, we would have numerically approximated it using Riemann sums, the Trapezoidal Rule, or Simpson's Rule.

SECTION 8.3: HYPERBOLIC FUNCTIONS

1) Evaluate sinh(1), cosh(1), and tanh(1). Round off to four significant digits.

2) Prove that
$$D_x(\sinh x) = \cosh x$$
.

- 3) Prove that $\cosh^2 x \sinh^2 x = 1$.
- 4) Find the following derivatives. Simplify where appropriate.

a)
$$D_x \left[\sinh(3x) \right]$$

b)
$$D_x \left[\cosh(3x) \right]$$

c)
$$D_x \left[4 \tanh \left(e^x \right) - 1 \right]$$

d)
$$D_x \left[x \ln(\operatorname{sech} x) \right]$$

e)
$$D_x \left[3x^2 + 2^{\operatorname{csch} x} \right]$$

f)
$$\frac{d}{dt} \left(\left[\coth(\sec t) \right]^4 \right)$$

g)
$$D_x \left(\frac{\cosh x}{\arctan x} \right)$$

5) Evaluate the following indefinite integrals.

a)
$$\int \cosh(3x) dx$$
. Try using Guess-and-Check here.

b)
$$\int \sinh(3x) dx$$
. Try using Guess-and-Check here.

$$c) \int \frac{7x}{\cosh^2(4x^2 - 1)} dx$$

d)
$$\int \frac{\operatorname{sech}(\sqrt{x}) \tanh(\sqrt{x})}{\sqrt{x}} dx$$

e)
$$\int e^t \coth(e^t) \operatorname{csch}^2(e^t) dt$$