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ASSUMPTIONS and NOTATION 
 

Unless otherwise specified, we assume that: 

 

•   f   and g denote functions.  
 

•• g sometimes denotes Earth’s gravitational constant.  
 

•• h may denote a function, or it may denote the “run” in some difference 

quotients in Chapter 3. 

 

• a, b, c, k, and n denote real constants (or simply real numbers).  
 

•• c sometimes denotes the speed of light in a vacuum. 
 

•• d may denote a constant or a distance function. 
 

•• e denotes a mathematical constant defined in Chapter 7. e 2.718 . 
 

•• n might be restricted to be an integer 
 
n( ) . 

 

• The domain of a function, which we will denote by Dom f( )  for a function   f   

(though this is nonstandard), is its implied (or mathematical) domain. 
 

•• This might not be the case in applied “word problems.” 
 

•• In single variable calculus (in which a function is of only one variable), 

we assume that the domain and the range of a function only consist of real 

numbers, as opposed to imaginary numbers. That is, 
 
Dom f( ) , and 

Range f( ) . (  means “is a subset of.”) 

 

• Graphs extend beyond the scope of a figure in an expected manner, unless 

endpoints are clearly shown. Arrowheads may help to make this clearer. 

 

• In single variable calculus, “real constants” are “real constant scalars,” as 

opposed to vectors.  
 

•• This will change in multivariable calculus and linear algebra. 
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MORE NOTATION 

Sets of Numbers 

Notation Meaning Comments 

+
, Z+

 the set of positive integers 

This is the set (collection) 1, 2, 3, ...{ } . 
 

“Zahlen” is a related German word. 
 

  is in blackboard bold typeface; it is more 

commonly used than Z. 

, Z  the set of integers 
This set consists of the positive integers, the 

negative integers ( 1, 2, 3,…), and 0. 

 
, Q the set of rational numbers 

This set includes the integers and numbers 

such as 
1

3
, 

9

4
, 7.13, and 14.3587 . 

 

 comes from “Quotient.” 

 , R the set of real numbers 

This set includes the rational numbers and 

irrational numbers such as 2 , , e, and 

0.1010010001…. 

 , C the set of complex numbers 
This set includes the real numbers and 

imaginary numbers such as i and 2 + 3i . 

The Venn diagram below indicates the (proper) subset relations: 

 
. For example, every integer is a rational number, so 

 
. (  permits equality.) Each disk is contained within each larger disk. 
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Set Notation 

Notation Meaning Comments 

 in, is in 
This denotes set membership. 
 

Example:  7 . 

 not in, is not in Example:  1.7 . 

 such that  

| or : 
such that 

(in set-builder form) 

Example: 
 
x x > 3{ } , or 

 
x : x > 3{ } , is the set of all real 

numbers greater than 3. 

 for all, for any This is called the universal quantifier. 

 there is, there exists This is called the existential quantifier. 

!  
there exists a unique, 

there is one and only one 

This is called the unique quantifier. 
 

Example: 
 
!x x = 3, which states that 

there exists a unique real number equal to 3. 

x  
for every real number 

(denoted by x) 

More precisely: for any arbitrary element of 

the set of real numbers; this element will be 

denoted by x. 
 

Example: 
 
x , x < x +1 ; that is, every 

real number is less than one added to itself. 

 
x, y  

for every pair of real 

numbers 

(denoted by x and y) 

More precise notation: x, y( ) 2
. 

 or {} empty set (or null set) 

This is the set consisting of no elements. 
 

Example: The solution set of the equation 

x = x +1  is . 
 

The symbol  is not to be confused with 

the Greek letter phi ( ). 

 set union 

Example: If f x( ) = csc x , then 

Dom f( ) = , 1( ] 1,[ ) . 
 

 is used to indicate that one or more 

number(s) is/are being skipped over. 

 set intersection 
Example: 4, 6[ ] 5, 7[ ] = 5, 6[ ] . 
 

Think: “overlap.” 

\ or  
set difference, 

set complement 

Example: If f x( ) =
1

x
, then 

 
Dom f( ) = \ 0{ } , or 

 
0{ } . 
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Logical Operators 
 

Notation Meaning Comments 

 or, disjunction 
Example: If f x( ) = csc x , then 

 
Dom f( ) = x x 1 x 1{ } . 

 and, conjunction 
Example: If f x( ) =

x 3

x 4
, then 

 
Dom f( ) = x x 3 x 4{ } . 

  or ¬  not, negation 
Example: The statement 

 
x = 3( )  is 

equivalent to the statement x 3 . 

 implies Example: x = 2 x2 = 4 . 

 if and only if (iff) Example: x +1= 3 x = 2 . 

 

Greek Letters 
 

The lowercase Greek letters below (especially ) often denote angle measures. 
 

Notation Name Comments 

 alpha This is the first letter of the Greek alphabet. 

 beta 
This is the second letter of the Greek 

alphabet. 
 gamma This is the third letter of the Greek alphabet. 

 theta 
This is frequently used to denote angle 

measures. 

 or  phi 

This is not to be confused with , which 

denotes the empty set (or null set). 
 

 also denotes the golden ratio, 
1+ 5

2
, 

which is about 1.618. Tau ( )  is also used. 
 

The lowercase Greek letters below often denote (perhaps infinitesimally) small positive 

quantities in calculus, particularly when defining limits. 
 

Notation Name Comments 

 delta 
This is the fourth letter of the Greek 

alphabet. 

 epsilon 

This is the fifth letter of the Greek alphabet. 
 

This is not be confused with , which 

denotes set membership. 
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Some other Greek letters of interest: 
 

Notation Name Comments 

  (uppercase) delta 

This denotes “change in” or increment. 
 

Example: slope is often written as 
y

x
. 

 

It also denotes the discriminant, b2 4ac , 

from the Quadratic Formula. 

 (lowercase) kappa This denotes the curvature of a curve. 

 (lowercase) lambda 

This denotes an eigenvalue (in linear 

algebra), a Lagrange multiplier (in 

multivariable optimization), and a 

wavelength (in physics). 

 (lowercase) pi 

This is a famous mathematical constant. 
 

It is the ratio of a circle’s circumference to 

its diameter. 
 

3.14159 . It is irrational. 

 (uppercase) pi This is the product operator. 

 (lowercase) rho 

This denotes mass density and also the 

distance between a point in 3-space and the 

origin (  is a spherical coordinate).  

 (uppercase) sigma This is the summation operator. 

 (lowercase) tau 
This denotes the golden ratio, though phi 

( )  is more commonly used. 

 (lowercase) omega 
This is the last letter of the Greek alphabet. 
 

It denotes angular velocity. 

 (uppercase) omega 
This denotes ohm, a unit of electrical 

resistance. 

 

More lowercase Greek letters: 
 

zeta ( ) , eta ( ) , iota ( ) , mu μ( ) , nu ( ) , xi ( ) , omicron ( ) , sigma ( ) , 

upsilon ( ) , chi ( ) , psi ( )  
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Geometry 

Notation Meaning Comments 

 angle  
 is parallel to  

 

is perpendicular to, 

is orthogonal to, 

is normal to 

 

 

Vector Operators 

Notation Meaning Comments 

•  
dot product, 

Euclidean inner product 
See Precalculus notes, Section 6.4. 

 
cross product, 

vector product 
See Precalculus notes, Section 8.4. 

 

Other Notations 

Notation Meaning Comments 

 therefore 
This is placed before a concluding 

statement. 

Q.E.D., or 

  
end of proof 

Q.E.D. stands for “quod erat 

demonstrandum,” which is Latin for  

“which was to be demonstrated / proven / 

shown.” 

,  is approximately  

 or 
 

 floor, greatest integer 
Think: “round down.” 
 

Examples: 2.9 = 2 , 2.9 = 3  

 infinity  

min minimum The least of … 

max maximum The greatest of … 

Dom f( )  domain of a function   f The set of legal (real) input values for   f 

deg f x( )( )  
degree of a polynomial 

f x( )  
 

 composition of functions Example: 
 
f g( ) x( ) = f g x( )( ) . 
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CHAPTER 1: 
 

Review 
(See also the Precalculus notes at http://www.kkuniyuk.com) 

 

 

TOPIC 1: FUNCTIONS 
 

 

PART A: AN EXAMPLE OF A FUNCTION 
 

Consider a function   f   whose rule is given by f x( ) = x2 ; f u( ) = u2  also works. 
 

WARNING 1: 
 
f x( )  is read as “ f   of x” or “ f   at x.”  It does not mean  

“ f   times x.” 
 

x is the input (or argument) for   f , and   x
2
 is the output or function value. 

 

  
x f x2  

 

This function squares its input, and the result is its output. 

For example, f 3( ) = 3( )
2

= 9 . 
 

3 f 9  
 

Think of a function as a calculator button. In fact, your calculator should have a 

“squaring” button labeled   x
2
. 

 

 f   is a function, because no “legal” input yields more than one output. 

 

A function button on a calculator never outputs two or more values at the 

same time. We never get: “I don’t know. The answer could be 3 or  10 .” 
 

 
 

• A function is a special type of relation. Relations that are not functions 

permit multiple outputs for a legal input. 
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PART B: POLYNOMIAL FUNCTIONS 
 

A polynomial in x can be written in the form: 
 

anx
n
+ an 1x

n 1
+ ... + a1x + a0 , 

 

where n is a nonnegative integer called the degree of the polynomial,  

the ak  coefficients are typically real numbers, and the leading coefficient 
  
a

n
0 . 

 

A polynomial function has a rule that can be written as: f x( ) = polynomial in x . 

 

For example: 
 

4x3
5

2
x2 +1 is a 3

rd
-degree polynomial in x with leading coefficient 4. 

The rule f x( ) = 4x3 5

2
x2

+1 corresponds to a polynomial function   f . 

 

PART C: RATIONAL FUNCTIONS 
 

A rational expression in x can be written in the form: 
polynomial in x

nonzero polynomial in x
. 

 

Examples include: 
1

x
,  

5x3 1

x2 + 7x 2
, and x7

+ x which equals 
x7

+ x

1
. 

 

• Observe in the second example that irrational numbers such as 2  are 

permissible. 
 

• The last example correctly suggests that all polynomials are rational 

expressions. 
 

A rational function has a rule that can be written as: 

f x( ) = rational expression in x . 

 

PART D: ALGEBRAIC FUNCTIONS 
 

An algebraic expression in x resembles a rational expression, except that radicals 

and exponents that are noninteger rational numbers 

 

such as 
5

7
 are also 

permitted, even when x appears in a radicand or in a base (but not in an exponent). 
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Examples include: x  and 
x3 + 7x5/7

x x + 53
+ 4

. 

 

All rational expressions are algebraic. Although sources such as MathWorld 

allow only algebraic numbers (such as rational numbers and 2 ) to be coefficients 

in an algebraic expression, we will typically allow all real numbers (including , 

for instance) in this work. 

An algebraic function has a rule that can be written as: 

  
f x( ) = algebraic expression in x . 

A Venn diagram for expressions in x corresponding to functions is below. 

Each disk represents a subset of every larger disk; for example, every polynomial 

is a rational expression and an algebraic expression (based on the definition in this 

work). 
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PART E: DOMAIN and RANGE 

 

The domain of a function   f , which we will denote by Dom f( )  (though this is  

not standard), is the set of all “legal” inputs. 
 

The range of   f , which we will denote by Range f( ) , is then the set of all  

resulting outputs. 
 

Unless otherwise specified (or in the context of a “word problem”), we typically 

assume that the domain of a function is the set of all real input values that yield an 

output that is a real number. This set is the implied (or natural) domain. 
 

The implied domain of an algebraic function consists of all real numbers except 

those that lead to (the equivalent of):  
 

1) a zero denominator 

 

Think: 
0

, or 

 

2) an even root of a negative-valued radicand 
 
Think: 

even( ) . 

 

As we study more types of functions, the list of restrictions will grow. 

We will also exclude real numbers that lead to: 
 

3) logarithms of nonpositive values 
  
Think: log

b
0( )( ) , or 

 

4) arguments of trigonometric functions that correspond to vertical 

asymptotes. 
 

“Word problems” may imply other restrictions: nonnegativity, integer values, etc. 

 

Example 1 (Domain and Range of the Squaring Function) 
 

Let f x( ) = x2 . Find the domain and the range of   f . 
 

§ Solution 
 

The implied domain of a polynomial function (such as this   f  ) is  , the set 

of all real numbers. In interval form,   is 
 

,( ) . Its graph is the entire 

real number line: 
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WARNING 2: We use parentheses in the interval form, because  

(“infinity”) and  (“negative infinity”) are not real numbers and are 

therefore excluded from the set of numbers. We will discuss infinity further 

in Chapter 2. If x approaches , it (generally) increases without bound.  

If x approaches , it (generally) decreases without bound. 

Note: It is debatable whether an expression like 
  

x2
+ x

x
 is a polynomial. It 

simplifies to x +1, but its domain excludes 0. 

The resulting range of   f   is the set of all nonnegative real numbers (all real 

numbers that are greater than or equal to 0), because every such number is 

the square of some real number, and only those numbers are. 
 

WARNING 3: Squares of real numbers are never negative. 

The graph of the range is: 

 

The filled-in circle indicates that 0 is included in the range. We could 

also use a left bracket (“[”) at 0; the bracket opens towards the 

shading. The graph helps us figure out the interval form. 

In interval form, the range is 0, ) . The bracket next to the 0 indicates that 

0 is included in the range.  

In set-builder form, the range is: 
   

y y 0{ } , or 
   

y : y 0{ } , which 

is read “the set of all real numbers y such that   y 0 .” Using y instead of x is 

more consistent with our graphing conventions in the xy-plane (since we 

typically associate function values in the range with y-coordinates), and it 

helps us avoid confusion with the domain.  denotes set membership. § 
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Example 2 (Domain of a Function) 

Let 
  
f x( ) = x 3 , find 

  
Dom f( ) , the domain of   f . 

§ Solution 

 
f x( )  is real  x 3 0   x 3. 

 

WARNING 4: We solve the weak inequality   x 3 0 , not the  

strict inequality   x 3> 0 . Observe that 0 = 0 , a real number. 

The domain of   f  … 

… in set-builder form is: x x 3{ } , or x : x 3{ }  

… in graphical form is: 

 

 
 

… in interval form is: 
 

3, )  

 

Note: 
  
Range f( ) = 0, ) . Consider the graph of y = f x( ) . § 

 

Example 3 (Domain of a Function) 
 

Let 
  
f x( ) = 3 x

4
. Find Dom f( ) . 

 

§ Solution 
 

Solve the weak inequality: 3 x 0 . 
 

Method 1 
 

  3 x 0   Now subtract 3 from both sides. 

     x 3  Now multiply or divide both sides by  1. 
 

WARNING 5: We must then reverse the direction of the 

inequality symbol.  
            x 3 

 

Method 2 
 

  3 x 0   Now add x to both sides. 

             3 x   Now switch the left side and the right side. 
 

WARNING 6: We must then reverse the direction of the 

inequality symbol. 
          x 3 
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The domain of   f  … 
 

… in set-builder form is: x x 3{ } , or 
   

x : x 3{ }  

… in graphical form is: 

 

 
 

… in interval form is: 
 

, 3(  

§ 

Example 4 (Domain of a Function) 
 

Let 

  

f x( ) =
1

x 3
. Find 

  
Dom f( ) . 

 

§ Solution 
 

This is similar to Example 2, but we must avoid a zero denominator. 

We solve the strict inequality x 3> 0 , which gives us x > 3. 

The domain of   f  … 

… in set-builder form is: x x > 3{ } , or 
   

x : x > 3{ }  

… in graphical form is: 

 

 
 

… in interval form is: 
 
3,( )  

 

The hollow circle on the graph indicates that 3 is excluded from the 

domain. We could also use a left parenthesis (“(”) here; the parenthesis 

opens towards the shading. Likewise, we have a parenthesis next to the 3 in 

the interval form, because 3 is excluded from the domain. § 

Types of Intervals 
 

 
5, 7( )  and 

 
3,( )  are examples of open intervals, because they exclude their 

endpoints. 5, 7( )  is a bounded interval, because it is trapped between two 

real numbers. 
 

 
3,( )  is an unbounded interval. 

 

5, 7  is a closed interval, because it includes its endpoints, and it is 

bounded. 
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Example 5 (Domain of a Function) 
 

Let 
  
f x( ) = x 3

3
. Find 

  
Dom f( ) . 

 

§ Solution 
 

   
Dom f( ) = , because: 

 

• The radicand, x 3, is a polynomial, and 
 

• WARNING 7: The taking of odd roots (such as cube roots) does 

not impose any new restrictions on the domain. Remember that the 

cube root of a negative real number is a negative real number. § 

Example 6 (Domain of a Function) 
 

Let g t( ) =
t + 3

t 10
. Find Dom g( ) . 

§ Solution 
 

The square root operation requires:   t + 3 0 t 3. 
 

We forbid zero denominators, so we also require:   t 10 0 t 10 . 
 

The domain of g … 
 

… in set-builder form is: 
t t 3 and t 10{ } , or 

   
t : t 3 and t 10{ }  

… in graphical form is: 

 

 
 

… in interval form is: 3,10) 10,( )  
 

 

• We include  3 but exclude 10. (Some instructors believe that 0 should 

also be indicated on the number line.) 
 

• The union symbol ( )  is used to separate intervals in the event that a 

number or numbers need to be skipped. § 
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PART F: GRAPHS OF FUNCTIONS 

 

The graph of y = f x( ) , or the graph of   f , in the standard xy-plane consists of  

all points [representing ordered pairs] of the form x, f x( )( ) , where x is in the 

domain of   f . 
 

In a sense, the graph of 

  
f = x, f x( )( ) x Dom f( ){ } . 

 

We typically assume … 
 

x is the independent variable, because it is the input variable. 
 

y is the dependent variable, because it is the output variable.  

Its value (the function value) typically “depends” on the value of the input x. 
 

• Then, it is customary to say that y is a function of x, even though y is a variable 

here. The form 
 
y = f x( )  implies this. 

 

A “brute force” graphing method follows. 

 

Point-Plotting Method for Graphing a Function   f   in the xy-Plane 
 

• Choose several x values in 
  
Dom f( ) . 

 

• For each chosen x value, find f x( ) , its corresponding function value. 
 

• Plot the corresponding points 
  

x, f x( )( )  in the xy-plane.  
 

• Try to interpolate (connect the points, though often not with line 

segments) and extrapolate (go beyond the scope of the points)  

as necessary, ideally based on some apparent pattern. 
 

•• Ensure that the set of x-coordinates of the points on the graph is,  

in fact, Dom f( ) . 
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Example 7 (Graph of the Squaring Function) 
 

Let f x( ) = x . Graph y = f x( ) . 

§ Solution 
 

TIP 1: As usual, we associate y-coordinates with function values. 
 

When point-plotting, observe that: 
  
Dom f( ) = 0, ) . 

 

• For instance, if we choose   x = 9 , we find that f 9( ) = 9 = 3,  

which means that the point 
  
9, f 9( )( ) , or 

 
9, 3( ) , lies on the graph. 

 

• On the other hand, 
  
f 9( )  is undefined (as a real number), because 

  
9 Dom f( ) . Therefore, there is no corresponding point on the graph 

with x = 9 . 

A (partial) table can help: 

 
x  

 
f x( )  Point 

0 0 
 
0, 0( )  

1 1 
 
1,1( )  

4 2 
 
4, 2( )  

9 3 
 
9, 3( )  

Below, we sketch the graph of   f , or y = f x( ) . 
 

WARNING 8: Clearly indicate any endpoints on a graph, such as  

the origin here. 

The lack of a clearly indicated right endpoint on our sketch implies that the 

graph extends beyond the edge of our figure. We want to draw graphs in 

such a way that these extensions are “as one would expect.” 
 

WARNING 9: Sketches of graphs produced by graphing utilities might not 

extend as expected. The user must still understand the math involved.  

Point-plotting may be insufficient. § 
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PART G: THE VERTICAL LINE TEST (VLT) 

 

The Vertical Line Test (VLT) 
 

A curve in a coordinate plane passes the Vertical Line Test (VLT)   

there is no vertical line that intersects the curve more than once. 
 

An equation in x and y describes y as a function of x   

its graph in the xy-plane passes the VLT. 
 

• Then, there is no input x that yields more than one output y.  
 

• Then, we can write 
 
y = f x( ) , where   f   is a function.  

 

Example 8 (Square Root Function and the VLT; Revisiting Example 7) 
 

The equation  y = x  explicitly describes y as a function of x, since it is of 

the form 
 
y = f x( ) , where   f   is the square root function from Example 7. 

 

Observe that the graph of y = x  passes the VLT.  

Each vertical line in the xy-plane either … 
 

• … misses the graph entirely, meaning that the corresponding x value is 

not in Dom f( ) , or 

 

• … intersects the graph in exactly one point, meaning that the 

corresponding x value yields exactly one y value as its output. 
 

     § 
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Example 9 (An Equation that Does Not Describe a Function) 
 

Show that the equation   x
2
+ y2

= 9  does not describe y as a function of x. 
 

§ Solution (Method 1: VLT) 
 

The circular graph of x2
+ y2

= 9  below fails the VLT, because there exists 

a vertical line that intersects the graph more than once. For example, we 

can take the red line (  x = 2) below: 

 

Therefore,   x
2
+ y2

= 9  does not describe y as a function of x. § 
 

 

§ Solution (Method 2: Solve for y) 
 

This is also evident if we solve   x
2
+ y2

= 9  for y: 
 

  

x2
+ y2

= 9

y2
= 9 x2

y = ± 9 x2

 

 

• Any input value for x in the interval 
 

3, 3( )  yields two different y outputs. 
 

• For example,   x = 2  yields the outputs   y = 5  and   y = 5 . § 
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PART H: ESTIMATING DOMAIN, RANGE, and FUNCTION VALUES 

FROM A GRAPH 
 

 

The domain of   f   is the set of all x-coordinates of points on the graph of  

y = f x( ) . (Think of projecting the graph onto the x-axis.) 

 

The range of   f   is the set of all y-coordinates of points on the graph of  

y = f x( ) . (Think of projecting the graph onto the y-axis.) 

 

  

Domain

Think: x
f

Range

Think: y
 

 

Example 10 (Estimating Domain, Range, and Function Values from a Graph) 
 

Let 
  
f x( ) = x2

+1. Estimate the domain and the range of   f   based on the 

graph of y = f x( )  below. Also, estimate f 1( ) . 
 

    
 

§ Solution 
 

Apparently, 
   
Dom f( ) = , or 

 
,( ) , and 

  
Range f( ) =

 
1, ) . 

 

• We will learn more about determining ranges from the graphing 

techniques in Chapter 4. 
 

It also appears that the point 1, 2( )  lies on the graph, and thus f 1( ) = 2 . 
 

WARNING 10: Graph analyses can be imprecise. The point 
 
1, 2.001( ) ,  

for example, may be hard to identify on a graph. Not all coordinates are 

integers. § 
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PART I: FUNCTIONS THAT ARE EVEN / ODD / NEITHER; SYMMETRY 

 

    

A function f  is even f x( ) = f x( ) , x Dom f( )

The graph of  y = f x( )  is 

symmetric about the y -axis.

 

 

 means “for all” or “for every.” 
 

Example 11 (Proving that a Function is Even) 
 

Let 
  
f x( ) = x2 . Prove that   f   is an even function. 

 

§ Solution 
 

   
Dom f( ) = . x , 

f x( ) = x( )
2

= x2

= f x( )
 

 

Q.E.D. (Latin: Quod Erat Demonstrandum) 
 

 • This signifies the end of a proof. It means “which was to 

be demonstrated / proven / shown.” 
 

TIP 2: Think: If we replace x with 
 

x( )  as the input, we obtain equivalent 

(y) outputs. The point x, y( )  lies on the graph if and only if x, y( )  does. 
 

Observe that the graph of y = f x( )  below is symmetric about the y-axis, 

meaning that the parts of the graph to the right and to the left of the y-axis 

are mirror images (or reflections) of each other.  
 

 § 
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The term “even function” may have come from the following fact: 
 

If 
 
f x( ) = xn , where n is an even integer, then   f   is an even function. 

 

• These are the functions for: 
   …, x 4 , x 2 , x0 , x2 , x4 , …. 

 

• The graph of y = x2  is called a parabola. The graphs of   y = x4 ,   y = x6 , etc. 

are similarly bowl-shaped but are not parabolas.  
 

   

A function f  is odd f x( ) = f x( ) , x Dom f( )

The graph of  y = f x( )  is 

symmetric about the origin.

 

 

• In other words, if the graph is rotated 180  about the origin,  

we obtain the same graph.  

 
 

Example 12 (Proving that a Function is Odd) 

Let 
  
f x( ) = x3 . Prove that   f   is an odd function. 

 

§ Solution 
 

Dom f( ) = . x , 

  

f x( ) = x( )
3

= x3

= x3( )
= f x( )

 

 

Q.E.D. 

TIP 3: Think: If we replace x with x( )  as the input, we obtain opposite (y) 

outputs. The point x, y( )  lies on the graph if and only if x, y( )  does.  § 
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The term “odd function” may have come from the following fact: 
 

If f x( ) = xn , where n is an odd integer, then   f   is an odd function. 
 

• The graphs of   y = x5 ,   y = x7 , etc. resemble the graph of   y = x3  below.  
 

 
 

WARNING 11: Zero functions are functions that only output 0 (Think: 
  
f x( ) = 0). 

Zero functions on domains that are symmetric about 0 on the real number line are 

the only functions that are both even and odd. (Can you show this?) 
 

WARNING 12: Many functions are neither even nor odd. 
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PART J: ARITHMETIC COMBINATIONS OF FUNCTIONS 
 

 

Let   f   and g be functions.  
 

If their domains overlap, then the overlap (intersection) Dom f( ) Dom g( )  

is the domain of the following functions with the specified rules, with one  

possible exception (*): 
 

 f + g , where 
 

f + g( ) x( ) = f x( ) + g x( )  

 f g , where 
 

f g( ) x( ) = f x( ) g x( )  

fg , where fg( ) x( ) = f x( )g x( )  

 

f

g
, where 

f

g
x( ) =

f x( )
g x( )

 

       (*) WARNING 13: 

    

Dom
f

g
= x Dom f( ) Dom g( ) g x( ) 0{ } . 

 

 

Example 13 (Subtracting Functions) 
 

Let 
  
f x( ) = 4x  and 

  
g x( ) = x +

1

x
. Find 

 
f g( ) x( )  and 

  
Dom f g( ) . 

 

§ Solution 
 

f g( ) x( ) = f x( ) g x( )

= 4x( ) x +
1

x

 

 

WARNING 14: Use grouping symbols when expanding 
 
g x( )  

here, since we are subtracting an expression with more than 

one term. 
 

         

= 4x x
1

x

= 3x
1

x

 

 

   
Dom f( ) = . We omit only 0 from 

  
Dom g( )  and also 

  
Dom f g( ) . 

   
Dom f g( ) = \ 0{ } = x x 0{ } = , 0( ) 0,( ) . § 
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PART K: COMPOSITIONS OF FUNCTIONS 
 

We compose functions when we apply them in sequence. 
 

 

Let   f   and g be functions. The composite function f g  is defined by: 
 

  
f g( ) x( ) = f g x( )( )  

 

Its domain is 
    

x x Dom g( )  and  g x( ) Dom f( ){ } . 
 

• The domain consists of the “legal” inputs to g that yield outputs  

that are “legal” inputs to   f . 
 

  

x g g x( ) f

f g

f g x( )( )  

 

Think of 
  f g  as a “merged” function. 

 

WARNING 15: The function f g  applies g first and then   f . Think of pressing a 

g button on a calculator followed by an   f   button. 
 

WARNING 16: 
  f g  may or may not represent the same function as 

  g f   

(in which   f   is applied first). Composition of functions is not commutative the 

way that, say, addition is. Think About It: Try to think of examples where f g  

and 
  g f  represent the same function. 

 

Example 14 (Composition of Functions) 
 

Let f u( ) =
1

u
 and 

  
g x( ) = x 1 . Find f g( ) x( )  and Dom f g( ) . 

 

§ Solution 
 

   

f g( ) x( ) = f g x( )( ) = f x 1( ) = 1

x 1
. In fact, Dom f g( )  … 

 
 

… in set-builder form is: 
   

x x > 1{ } , or 
   

x : x > 1{ }  

… in graphical form is: 

 

 
 

… in interval form is: 1,( )  

§ 
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Example 15 (Decomposing a Composite Function) 
 

Find component functions   f   and g such that 
   

f g( ) x( ) = 3x +1 . 

We want to “decompose” f g . 
 

• Neither   f   nor g may be an identity function. 
 

For example, do not use: g x( ) = x  and f u( ) = 3u +1 . 

This would not truly be a decomposition.   f   does all the work! 

 

   x
g :

g x( ) = x
x, our u

g x( )

f :

f u( ) = 3u +1

f g

3x +1

f g x( )

 

 

§ Solution 
 

• We need: f g x( )( ) = 3x +1. 

 

• We can think of   f   and g as buttons we are designing on a calculator.  

We need to set up   f   and g so that, if x is an initial input to 
   
Dom f g( ) , 

and if the g button and then the   f   button are pressed, then the output is 

3x +1 . 

   

x
g :

g x( ) = ?
u = ?

f :

f u( ) = ??

f g

3x +1

f g x( )

 

 

• A common strategy is to let g x( ) , or u, be an “inside” expression  

(for example, a radicand, an exponent, a base of a power, a denominator, an 

argument, or something being repeated) whose replacement simplifies the 

overall expression. 
 

• Here, we will let 
  
g x( ) = 3x +1. 
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• We then need   f   to apply the square root operation. We will let 
 
f u( ) = u .  

 

The use of u is more helpful in calculus, but 
 
f x( ) = x  is also 

acceptable. However, 
 
f u( ) = x  is not acceptable. 

 

Possible Answer: Let g x( ) = 3x +1 and 
 
f u( ) = u . 

     

   

x
g :

g x( ) = 3x +1
3x +1, our u

g x( )

f :

f u( ) = u

f g

3x +1

f g x( )

 

There are infinitely many possible answers. 

For example, we could let g x( ) = 3x  and f u( ) = u +1 . 

 

 

   

x
g :

g x( ) = 3x
3x, our u

g x( )

f :

f u( ) = u +1

f g

3x +1

f g x( )

 

 

   § 

These ideas will be critical to the Chain Rule of Differentiation in Section 3.6 and 

the u-substitution technique of integration in Section 5.2. 
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TOPIC 2: TRIGONOMETRY I 
 

 

PART A: ANGLE MEASURES 
 

Radian measure is more “mathematically natural” than degree measure, and it is 

typically assumed in calculus. In fact, radian measure is assumed if there are no 

units present. 
 

There are  2  radians in a full (counterclockwise) revolution, because the entire 

unit circle (which has circumference  2 ) is intercepted exactly once by such an 

angle. 

 

 
 

There are 360  (360 degrees) in a full (counterclockwise) revolution. 

(This is something of a cultural artifact; ancient Babylonians operated on a base-60 

number system.) 
 

 2  radians is equivalent to 360 . Therefore,  radians is equivalent to 180 . 

Either relationship may be used to construct conversion factors. 
 

In any unit conversion, we effectively multiply by 1 in such a way that the old unit 

is canceled out. 
 

For example, to convert 45  into radians: 
 

45 = 45( )
radians

180

= 1( )

= 45( )
1( )

radians

180

4( )

=
4

radians . 
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PART B: QUADRANTS AND QUADRANTAL ANGLES 
 

The x- and y-axes divide the xy-plane into 4 quadrants. 

Quadrant I is the upper right quadrant; the others are numbered in 

counterclockwise order. 
 

A standard angle in standard position has the positive [really, nonnegative] x-axis 

as its initial side and the origin as its vertex. We say that the angle lies in the 

quadrant that its terminal side shoots through. For example, in the figure below, the 

positive standard angle with the red terminal side is a Quadrant I angle: 

 

 
 

A standard angle whose terminal side lies on the x- or y-axis is called a quadrantal 

angle. Quadrantal angles correspond to “integer multiples” of 90  or 
2

 radians. 

 

The quadrants and some quadrantal angles are below. 

(For convenience, we may label a standard angle by labeling its terminal side.) 
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PART C: COTERMINAL ANGLES 
 

Standard angles that share the same terminal side are called coterminal angles. 

They differ by an integer number of full revolutions counterclockwise or 

clockwise. 
 

If the angle  is measured in radians, then its coterminal angles are of the  

form:   + 2 n , where n is any integer 
 
n( ) . 

 

If the angle  is measured in degrees, then its coterminal angles are of the  

form: + 360n , where n is any integer 
 
n( ) . 

 

Note: Since n could be negative, the “+” sign is sufficient in the above forms, as 

opposed to “± .” 

 

 

PART D: TRIGONOMETRIC FUNCTIONS: 

THE RIGHT TRIANGLE APPROACH 
 

The Setup 
 

The acute angles of a right triangle are complementary. Consider such an 

angle, . Relative to , we may label the sides as follows: 

 

 
 

The hypotenuse always faces the right angle, and it is always the longest 

side. 

 

The other two sides are the legs. The opposite side (relative to ) faces the 

 angle. The other leg is the adjacent side (relative to ). 
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Defining the Six Basic Trig Functions (where  is acute) 

 

 
 

 

“SOH-CAH-TOA” 
 

   

Sine = sin =
Opp.

Hyp.

Cosine = cos =
Adj.

Hyp.

Tangent = tan =
Opp.

Adj.

 

 

Reciprocal Identities 
 

Cosecant = csc =
1

sin
=

Hyp.

Opp.

Secant = sec =
1

cos
=

Hyp.

Adj.

Cotangent = cot =
1

tan
=

Adj.

Opp.

 

 

WARNING 1: Remember that the reciprocal of  sin  is  csc , not  sec . 
 

TIP 1: We informally treat “0” and “undefined” as reciprocals when we are 

dealing with basic trigonometric functions. Your algebra teacher will not 

want to hear this, though! 
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PART E: TRIGONOMETRIC FUNCTIONS: 

THE UNIT CIRCLE APPROACH 
 

The Setup 
 

Consider a standard angle  measured in radians (or, equivalently, let  

represent a real number). 
 

The point P cos , sin( )  is the intersection point between the terminal 

side of the angle and the unit circle centered at the origin. The slope of  

the terminal side is, in fact,  tan . 
 

 
 

Note: The intercepted arc along the circle (in red) has arc length . 
 

The figure below demonstrates how this is consistent with the  

SOH-CAH-TOA (or Right Triangle) approach. Observe:  
 

 
tan =

sin

cos
=

rise

run
= slope of terminal side  
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“THE Table” 
 

We will use our knowledge of the 30 -60 -90  and 45 -45 -90  special 

triangles to construct “THE Table” below. The unit circle approach is used 

to find the trigonometric values for quadrantal angles such as 0  and 90 . 

 

Key Angles : 

Degrees, 

(Radians) 
 sin   cos  tan =

sin

cos
 

Intersection 

Point 

  
P cos , sin( )  

0 , (0) 
  

0

2
= 0  1 

  

0

1
= 0  

 
1, 0( )  

30 , 

 
6

 

  

1

2
=

1

2
 

 

3

2
 

  

1 / 2

3 / 2
=

1

3
=

3

3
 

 

3

2
,

1

2
 

45 , 

 
4

 

  

2

2
=

2

2
 

 

2

2
 

  

2 / 2

2 / 2
= 1  

 

2

2
,

2

2
 

60 , 

 
3

 3

2
=

3

2
 

 

1

2
 

  

3 / 2

1 / 2
= 3  

 

1

2
,

3

2
 

90 , 

 
2

 

  

4

2
= 1  0 

 

1

0
 is undefined 

 
0,1( )  

 

WARNING 2: 
 5

 is not a “special” angle. 

 

WARNING 3: Always make sure what mode your calculator is in 

(DEG vs. RAD) whenever you evaluate trigonometric functions. 
 

The values for the reciprocals,  csc ,  sec , and  cot , are then 

readily found. Remember that it is sometimes better to take a 

trigonometric value where the denominator is not rationalized before 

taking its reciprocal. For example, because 

  

tan30 =
1

3
, we know 

immediately that   cot 30 = 3 . 
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Observe: 
 

• The pattern in the sin  column 
 

Technical Note: An explanation for this pattern appears in the 

Sept. 2004 issue of the College Mathematics Journal (p.302). 
 

• The fact that the sin  column is reversed to form the cos  column. 

This is due to the Cofunction Identities (or the Pythagorean 

Identities). 
 

• As  increases from 0  to 90  (i.e., from 0 to 
 2

 radians),  

 

••  sin  (the y-coordinate of P) increases from 0 to 1. 
 

Note: This is more obvious using the Unit Circle 

approach instead of the Right Triangle approach. 
 

••  cos  (the x-coordinate of P) decreases from 1 to 0. 
 

••  tan  (the slope of the terminal side) starts at 0, increases, 

and approaches . 
 

• Here is the “Big Picture.” Remember that each intersection point is 

of the form P cos , sin( ) . 

 

 



(Chapter 1: Review)  1.28 

 

PART F: EXTENDING FROM QUADRANT I TO OTHER QUADRANTS 
 

Reference angles 

 

The reference angle for a non-quadrantal standard angle is the acute 

angle that its terminal side makes with the x-axis. 
 

We will informally call angles that have the same reference angle 

“coreference angles,” which is not a standard term. 
 

• We may informally think of “coreference angles” as “brothers” and 

coterminal angles as “twins” (although an angle has infinitely many of 

them). 
 

For example, the “coreference angles” below share the same reference angle, 

namely 30 , or 
6

 radians. 

 

 
 

Coterminal angles are also “coreference angles.” For example, 
  30  (or 

6
 radians) is a coterminal “twin” for the   330  (or 

11

6
 radian) angle. 
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We will extend the following patterns for “coreference angles” of 
 6

 to 

other “families” of radian measures: 
 

Quadrant II: 
 

5

6
; observe that 5 is 1 less than 6. 

Quadrant III: 
7

6
; observe that 7 is 1 more than 6. 

Quadrant IV: 
 

11

6
; observe that 11 is 1 less than twice 6. 

Key “coreference angles” of 
6

, 
4

, and 
3

 are below. 

 

We’ve already seen some for 
6

: 

(The boxes correspond to Quadrants.) 
 

5

6
 

6
 

7

6
 

11

6
 

 

Now, 
 4

: 

 

3

4
 

 4
 

5

4
 

7

4
 

 

Now, 
 3

: 

2

3
 

3
 

 

4

3
 

 

5

3
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Why are “Coreference Angles” Useful? 

 

Coterminal angles have the same basic trigonometric values, including  

the signs. 

“Coreference angles” have the same basic trigonometric values up to  

(except maybe for) the signs. 

 

Signs of Basic Trigonometric Values in Quadrants 
 

Remember that reciprocal values have the same sign (or one is 0 and the 

other is undefined). 

 
“ASTC” Rule for Signs 
 

Think: “All Students Take Calculus” 
 

Start in Quadrant I and progress counterclockwise through the 

Quadrants: 

 

S A 

T C 

 

All six basic trigonometric functions are positive in Quadrant I. 

(They are all positive for acute angles.) 
 

Sine and its reciprocal, Cosecant, are positive in Quadrant II. 

(The other four functions are negative.) 
 

Tangent and its reciprocal, Cotangent, are positive in Quadrant III. 
 

Cosine and its reciprocal, Secant, are positive in Quadrant IV. 
 

For example, sin
7

6
=

1

2
, because sin

6
=

1

2
, and 

 

7

6
 is in  

Quadrant III. 
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TOPIC 3: TRIGONOMETRY II 
 

PART A: FUNDAMENTAL TRIGONOMETRIC IDENTITIES 
 

Memorize these in both “directions” (i.e., left-to-right and right-to-left). 

 

Reciprocal Identities 
 

csc x =
1

sin x

sec x =
1

cos x

cot x =
1

tan x

  

sin x =
1

csc x

cos x =
1

sec x

tan x =
1

cot x

 

 

WARNING 1: Remember that the reciprocal of   sin x  is csc x , not sec x . 
 

TIP 1: We informally treat “0” and “undefined” as reciprocals when we are 

dealing with basic trigonometric functions. Your algebra teacher will not 

want to hear this, though! 

 

Quotient Identities 
 

  
tan x =

sin x

cos x
      and  

  
cot x =

cos x

sin x
 

 

 

Pythagorean Identities 
 

  

sin2 x + cos2 x = 1

1 + cot2 x = csc2 x

tan2 x + 1 = sec2 x

 

 

TIP 2: The second and third Pythagorean Identities can be obtained from the 

first by dividing both of its sides by   sin
2 x  and   cos2 x , respectively. 

 

TIP 3: The squares of   csc x  and   sec x , which have “Up-U, Down-U” 

graphs, are all alone on the right sides of the last two identities. They can 

never be 0 in value. (Why is that? Look at the left sides.) 
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Cofunction Identities 
 

If x is measured in radians, then: 
 

  

sin x = cos
2

x

cos x = sin
2

x

 

We have analogous relationships for tangent and cotangent, and for  

secant and cosecant; remember that they are sometimes undefined. 

Think: Cofunctions of complementary angles are equal. 

 

Even / Odd (or Negative Angle) Identities 
 

Among the six basic trigonometric functions, only cosine (and its  

reciprocal, secant) are even: 
 

cos x( ) = cos x

sec x( ) = sec x
 

 

However, the other four are odd: 
 

  

sin x( ) = sin x

csc x( ) = csc x

tan x( ) = tan x

cot x( ) = cot x

 

• If   f   is an even function, then the graph of y = f x( )  is symmetric about the 

y-axis. 

• If   f   is an odd function, then the graph of 
 
y = f x( )  is symmetric about the 

origin. 
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PART B: DOMAINS AND RANGES OF  THE SIX BASIC TRIGONOMETRIC 

FUNCTIONS 
 

 

 
f x( )  Domain Range 

  sin x  

 

 
,( )  

 
 

1,1  

  cos x  

 

 
,( )  

 
 

1,1  

  tan x  

Set-builder form: 

   

x x
2
+ n n( )   

,( )  

  csc x  
Set-builder form: 

  
x x n n( ){ }   

, 1( 1, )  

  sec x  

Set-builder form: 

   

x x
2
+ n n( )   

, 1( 1, )  

  cot x  
Set-builder form: 

x x n n( ){ }   
,( )  

 
 

• The unit circle approach explains the domain and range for sine and cosine, as 

well as the range for tangent (since any real number can be a slope). 
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• Domain for tangent: The “X”s on the unit circle below correspond to an 

undefined slope. Therefore, the corresponding real numbers (the corresponding 

angle measures in radians) are excluded from the domain. 
 

 
 

• Domain for tangent and secant: The “X”s on the unit circle above also correspond 

to a cosine value of 0. By the Quotient Identity for tangent 

 

tan =
sin

cos
 and the 

Reciprocal Identity for secant 

 

sec =
1

cos
, we exclude the corresponding 

radian measures from the domains of both functions. 

 

 

• Domain for cotangent and cosecant: The “X”s on the unit circle below 

correspond to a sine value of 0. By the Quotient Identity for cotangent 

 

cot =
cos

sin
 and the Reciprocal Identity for cosecant 

 

csc =
1

sin
, we 

exclude the corresponding radian measures from the domains of both functions. 
 

 
 

• Range for cosecant and secant: We turn “inside out” the range for both sine and 

cosine, which is 1,1 . 

 

• Range for cotangent: This is explained by the fact that the range for tangent is 

 
,( )  and the Reciprocal Identity for cotangent: 

 

cot =
1

tan
. cot  is 0 in 

value  tan  is undefined. 
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PART C: GRAPHS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS 
 

• The six basic trigonometric functions are periodic, so their graphs can be 

decomposed into cycles that repeat like wallpaper patterns. The period for tangent 

and cotangent is ; it is  2  for the others. 
 

• A vertical asymptote (“VA”) is a vertical line that a graph approaches in an 

“explosive” sense. (This idea will be made more precise in Section 2.4.) VAs on 

the graph of a basic trigonometric function correspond to exclusions from the 

domain. They are graphed as dashed lines. 
 

• Remember that the domain of a function   f   corresponds to the x-coordinates 

picked up by the graph of y = f x( ) , and the range corresponds to the  

y-coordinates. 
 

• Remember that cosine and secant are the only even functions among the six, so 

their graphs are symmetric about the y-axis. The other four are odd, so their 

graphs are symmetric about the origin. 
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• We use the graphs of   y = sin x  and   y = cos x  (in black in the figures below) as 

guide graphs to help us graph   y = csc x  and   y = sec x . 

 

  
 

Relationships between the graphs of y = csc x  and   y = sin x  

(and between the graphs of y = sec x  and y = cos x ): 
 

•• The VAs on the graph of   y = csc x  are drawn through the  

x-intercepts of the graph of   y = sin x . This is because   csc x  is 

undefined    sin x = 0 . 
 

•• The reciprocals of 1 and  1 are themselves, so   csc x  and   sin x  take 

on each of those values simultaneously. This explains how their 

graphs intersect. 
 

•• Because sine and cosecant are reciprocal functions, we know that, 

between the VAs in the graph of   y = csc x , they share the same sign, 

and one increases  the other decreases.  
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PART D: SOLVING TRIGONOMETRIC EQUATIONS 
 

Example 1 (Solving a Trigonometric Equation) 
 

Solve: 
  
2sin 4x( ) = 3  

 

§ Solution 
 

  
2sin 4x( ) = 3   Isolate the sine expression. 

 

   

   

sin 4x( )
=

=
3

2
  Substitution: Let = 4x . 

 

       
 
sin =

3

2
  We will now solve this equation for . 

 

Observe that sin
3
=

3

2
, so 

3
 will be the reference angle for our solutions 

for . Since 
3

2
 is a negative sine value, we want “coreference angles” 

of 
 3

 in Quadrants III and IV. 

 
 

Our solutions for  are: 
 

=
4

3
+ 2 n, or =

5

3
+ 2 n n( )  

 

From this point on, it is a matter of algebra. 
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To find our solutions for x, replace  with   4x , and solve for x. 
 

  

4x =
4

3
+ 2 n, or 4x =

5

3
+ 2 n n( )

x =
1

4

4

3
+

2

4
n, or x =

1

4

5

3
+

2

4
n n( )

x =
3
+

2
n, or x =

5

12
+

2
n n( )

 

 

Solution set: 

   

x x =
3
+

2
n, or x =

5

12
+

2
n n( ) . § 

 

 

PART E: ADVANCED TRIGONOMETRIC IDENTITIES 
 

These identities may be derived according to the flowchart below. 

 

    

for cosine 
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    GROUP 1: SUM IDENTITIES 

 

Memorize: 

 

sin u + v( ) = sinu cosv + cosu sinv   

 

Think: “Sum of the mixed-up products” 

(Multiplication and addition are commutative, but start with the  

sinu cosv  term in anticipation of the Difference Identities.) 

 

cos u + v( ) = cosu cosv sin u sinv  

 

Think: “Cosines [product] – Sines [product]” 

 

tan u + v( ) =
tanu + tanv
1 tanu tanv

 

 

Think: "
Sum

1 Product
"  

 

 

    GROUP 2: DIFFERENCE IDENTITIES 

 

Memorize: 

 

Simply take the Sum Identities above and change every sign in sight! 

 
sin u v( ) = sin u cosv cosu sinv

(Make sure that the right side of your identity 

for sin u + v( )  started with the sinu cosv term!)

  

 

cos u v( ) = cos u cosv + sin u sinv   

 

tan u v( ) =
tanu tanv
1 + tanu tanv

   

 

Obtaining the Difference Identities from the Sum Identities: 

 

Replace v with (–v) and use the fact that sin and tan are odd, while cos is even. 

 

For example, 

 

sin u v( ) = sin u + v( )[ ]
= sin u cos v( ) + cos u sin v( )

= sin u cosv cosu sinv
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    GROUP 3a: DOUBLE-ANGLE (Think: Angle-Reducing, if u > 0) IDENTITIES 

 

Memorize: 

 

(Also be prepared to recognize and know these “right-to-left.”) 

 

 

sin 2u( ) = 2 sinu cosu   

 

Think: “Twice the product” 

 

Reading “right-to-left,” we have:  

 

2 sinu cos u = sin 2u( )  

 

(This is helpful when simplifying.) 

 

 

cos 2u( ) = cos2 u sin2 u    

 

Think: “Cosines – Sines” (again) 

 

Reading “right-to-left,” we have:  

 

cos2 u sin2 u = cos 2u( )  
 

Contrast this with the Pythagorean Identity:  

 

cos2 u + sin2 u =1  

 

 

tan 2u( ) =
2 tan u
1 tan2 u

 

 

(Hard to memorize; we’ll show how to obtain it.) 

 

 

Notice that these identities are “angle-reducing” (if u > 0) in that they allow you to go 

from trigonometric functions of (2u) to trigonometric functions of simply u. 
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Obtaining the Double-Angle Identities from the Sum Identities: 

Take the Sum Identities, replace v with u, and simplify. 

sin 2u( ) = sin u + u( )

= sin u cos u + cosu sinu (From Sum Identity)

= sin u cos u + sin u cosu (Like terms!!)

= 2 sinu cosu

 

 

 
cos 2u( ) = cos u + u( )

= cosu cosu sin u sin u (From Sum Identity)

= cos2 u sin2 u

 

 

 
tan 2u( ) = tan u + u( )

=
tanu + tanu

1 tanu tanu
(From Sum Identity)

=
2 tan u

1 tan2 u

 

 

 

This is a “last resort” if you forget the Double-Angle Identities, but you will need to 

recall the Double-Angle Identities quickly! 

 

One possible exception: Since the tan 2u( )  identity is harder to remember, you may prefer 

to remember the Sum Identity for tan u + v( )  and then derive the tan 2u( )  identity this 

way. 

If you’re quick with algebra, you may prefer to go in reverse: memorize the 

Double-Angle Identities, and then guess the Sum Identities. 
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    GROUP 3b: DOUBLE-ANGLE IDENTITIES FOR cos 

 

Memorize These Three Versions of the Double-Angle Identity for cos 2u( ) : 

 

 

Let’s begin with the version we’ve already seen: 

 

Version 1: cos 2u( ) = cos2 u sin2 u  

 

 

Also know these two, from “left-to-right,” and from “right-to-left”: 

 

Version 2: cos 2u( ) =1 2 sin2 u  

 

Version 3: cos 2u( ) = 2 cos2u 1  

 

 

Obtaining Versions 2 and 3 from Version 1 

 

 

It’s tricky to remember Versions 2 and 3, but you can obtain them from Version 1 by 

using the Pythagorean Identity sin2 u + cos2 u =1  written in different ways. 

 

 

To obtain Version 2, which contains sin2 u , we replace cos2 u  with 1 sin2 u( ) . 

 

   

cos 2u( ) = cos2 u sin2 u (Version 1)

= 1 sin2 u( )
from Pythagorean
Identity

sin2 u

= 1 sin2 u sin2 u

= 1 2 sin2 u ( Version 2)

 

 

 

To obtain Version 3, which contains cos2 u , we replace sin2 u  with 1 cos2 u( ) . 

 

cos 2u( ) = cos2 u sin2 u (Version 1)

= cos2 u 1 cos2 u( )
from Pythagorean
Identity

= cos2 u 1+ cos2 u

= 2 cos2 u 1 ( Version 3)
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    GROUP 4: POWER-REDUCING IDENTITIES (“PRIs”) 

 

(These are called the “Half-Angle Formulas” in some books.) 

 

Memorize:      Then, 

 

 

sin2 u =
1 cos 2u( )

2
or

1
2

1
2
cos 2u( )       tan2 u =

sin2 u
cos2 u

=
1 cos 2u( )

1 + cos 2u( )
 

 

cos2 u =
1 + cos 2u( )

2
or

1
2
+
1
2
cos 2u( )  

 

 

Actually, you just need to memorize one of the sin2 u  or cos2 u  identities and then  

switch the visible sign to get the other. Think: “sin” is “bad” or “negative”; this is a 

reminder that the minus sign belongs in the sin2 u  formula. 

 

 

Obtaining the Power-Reducing Identities from the Double-Angle Identities for cos 2u( )  

 

 

To obtain the identity for sin2 u , start with Version 2 of the cos 2u( )  identity: 

 

cos 2u( ) =1 2 sin2 u

Now, solve for sin2 u.

2 sin2 u =1 cos 2u( )

sin2 u =
1 cos 2u( )

2

 

 

 

To obtain the identity for cos2 u , start with Version 3 of the cos 2u( )  identity: 

 
cos 2u( ) = 2 cos2 u 1

Now, switch sides and solve for cos2 u.

2 cos2 u 1 = cos 2u( )

2 cos2 u =1 + cos 2u( )

cos2 u =
1 + cos 2u( )

2
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    GROUP 5: HALF-ANGLE IDENTITIES 

 

Instead of memorizing these outright, it may be easier to derive them from the Power-Reducing 

Identities (PRIs). We use the substitution   = 2u . (See Obtaining … below.) 

 

The Identities: 

 

sin
2

= ±
1 cos

2

cos
2

= ±
1+ cos

2

tan
2

= ±
1 cos

1+ cos
=

1 cos

sin
=

sin

1+ cos

 

 

For a given , the choices among the ±  signs depend on the Quadrant that 
 2

 lies in. 

Here, the ±  symbols indicate incomplete knowledge; unlike when we handle the Quadratic 

Formula, we do not take both signs for any of the above formulas for a given . There are no ±  

symbols in the last two tan
2

 formulas; there is no problem there of incomplete knowledge 

regarding signs. 

 

One way to remember the last two tan
2

 formulas: Keep either the numerator or the 

denominator of the radicand of the first formula, place sin  in the other part of the fraction, and 

remove the radical sign and the ±  symbol. 
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Obtaining the Half-Angle Identities from the Power-Reducing Identities (PRIs): 

 

For the sin
2

 identity, we begin with the PRI: 

     
  
sin2 u =

1 cos 2u( )
2

 

Let u =
2

, or = 2u . 

 

sin2
2

=
1 cos

2

sin
2

= ±
1 cos

2
by the Square Root Method( )

 

 

Again, the choice among the ±  signs depends on the Quadrant that 
 2

 lies in. 

 

The story is similar for the cos
2

 and the tan
2

 identities. 

What about the last two formulas for tan
2

? The key trick is multiplication by 

trigonometric conjugates. For example: 

 

  

tan
2

= ±
1 cos

1+ cos

= ±
1 cos( )
1+ cos( )

1 cos( )
1 cos( )

= ±
1 cos( )

2

1 cos2

= ±
1 cos( )

2

sin2

= ±
1 cos

sin

2

= ±
1 cos

sin
because a2

= a( )
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Now,  1 cos 0  for all real , and tan
2

 has the same 

sign as  sin  (can you see why?), so … 

 

  =
 

1 cos

sin
 

 

To get the third formula, use the numerator’s (instead of the 

denominator’s) trigonometric conjugate,  1+ cos , when multiplying into 

the numerator and the denominator of the radicand in the first few steps. 

 

 

    GROUP 6: PRODUCT-TO-SUM IDENTITIES 

 
These can be verified from right-to-left using the Sum and Difference Identities. 

 

The Identities: 

 

  

sinusinv =
1

2
cos u v( ) cos u + v( )

cosucosv =
1

2
cos u v( ) + cos u + v( )

sinucosv =
1

2
sin u + v( ) + sin u v( )

cosusinv =
1

2
sin u + v( ) sin u v( )

 

 

 

    GROUP 7: SUM-TO-PRODUCT IDENTITIES 

 

These can be verified from right-to-left using the Product-To-Sum Identities. 

 

The Identities: 

 

  

sin x + sin y = 2sin
x + y

2
cos

x y

2

sin x sin y = 2cos
x + y

2
sin

x y

2

cos x + cos y = 2cos
x + y

2
cos

x y

2

cos x cos y = 2sin
x + y

2
sin

x y

2
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