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SECTION 2.2: 

PROPERTIES OF LIMITS and ALGEBRAIC FUNCTIONS 
 

 

LEARNING OBJECTIVES 
 

     • Know properties of limits, and use them to evaluate limits of functions,  

     particularly algebraic functions. 

     • Understand how the properties of limits justify the limit theorems in Section 2.1. 

     • Be able to use informal Limit Form notation to analyze limits. 

     • Learn to exercise caution when handling Limit Form 0even( ) . 

 

 

PART A: PROPERTIES OF LIMITS / THE ALGEBRA OF LIMITS; 

LIMIT FORMS 
 

Assume that: lim
x a

f x( ) = L
1
, and lim

x a
g x( ) = L

2
, where a, L

1
, L

2
. 

 

1) The limit of a sum equals the sum of the limits. 
 

lim
x a

f x( ) + g x( ) = lim
x a

f x( ) + lim
x a

g x( )

= L
1
+ L

2

 

 

• We may refer to this as the Sum Rule of Limits. 

 

For example, as x a , if f x( ) 2  and g x( ) 3 , then f x( ) + g x( ) 5 . 

We can represent this informally using a Limit Form: Limit Form 2 + 3( ) 5 . 

 

WARNING 1: Limit Forms. There is no standard notation for Limit Forms, 

and they represent footnotes to the rigorous evaluation of limits. Different 

instructors may have different rules on when Limit Forms need to be written. 

 

 

2) The limit of a difference equals the difference of the limits. 
 

lim
x a

f x( ) g x( ) = lim
x a

f x( ) lim
x a

g x( )

= L
1

L
2

 

 

For example, Limit Form 5 3( ) 2 .  
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3) The limit of a product equals the product of the limits. 

  

lim
x a

f x( )g x( ) , or lim
x a

f x( )g x( ) = lim
x a

f x( ) lim
x a

g x( )

= L
1
L

2

 

For example, Limit Form 2 3( ) 6 . 

4) The limit of a quotient equals the quotient of the limits, 

if the limit of the divisor (or denominator) is not zero. 

lim
x a

f x( )
g x( )

, or lim
x a

f x( )
g x( )

=

lim
x a

f x( )

lim
x a

g x( )

=
L

1

L
2

, if L
2

0

 

 

For example, Limit Form 
6

2
3. 

 

5) The limit of a (positive integer) power equals the power of the limit. 

If n is a positive integer 
 
n +( ) , then: 

 

  

lim
x a

f x( )
n

= lim
x a

f x( )
n

= L
1

( )
n

 

 

• This is a direct consequence of Property 3. For instance, 

  
lim
x a

x2
= lim

x a
xx = lim

x a
x( ) lim

x a
x( ) = lim

x a
x( )

2

. 

 

For example, Limit Form 2
constant 3( )( ) 8 . 

 

• The seemingly simpler statement Limit Form 23( ) 8  is also true, but it 

actually says something more powerful. It says that “something approaching 2” 

raised to an “exponent approaching 3” will approach 8. However, this idea 

falls apart when the base f x( )  approaches a negative number. It is true that 

Limit Form 2( )
constant 3( )( ) 8 , for example, but it is not true that 

Limit Form 2( )
3( ) 8 . Think about why 2( )

3.5
, or 2( )

7/2
 , is not a real 

number; we will address this issue in Part B. 
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6) The limit of a constant multiple equals the constant multiple of the limit. 

(“Constant Factors Pop Out.”) 

If  c , then:  

  

lim
x a

c f x( ) , or lim
x a

cf x( ) = c lim
x a

f x( )

= cL
1

 

 

For example, twice “something that approaches 3” will approach 6. 

 

• In multivariable calculus, if y is independent of x, then we can pop out y. 

Note: Properties 5, 6, and 7 (upcoming) are generalized in Section 2.8, Footnote 6. 

 

 

 

Limit Operators are Linear 

 

Properties 1), 2), and 6) imply that limit operators are linear operators. 

This means that we can take limits term-by-term, and then  

constant factors “pop out,” assuming the limits exist. (See Footnote 1.) 

 

• This is a key property that is shared by differentiation and integration 

operators in later chapters. 

 

 

Properties 1-6, building on the elementary rules 
  
lim
x a

c = c  and 
  
lim
x a

x = a  

 
a, c( ) , justify the Basic Limit Theorem for Rational Functions in  

Section 2.1. A demonstration follows. 
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Example 1 (Demonstrating How the Properties of Limits Justify the Basic Limit 

Theorem for Rational Functions) 
 

Evaluate lim
x 4

3x2
1

x + 5
 using the properties of limits in this section. 

 

§ Solution 
 

lim
x 4

3x2
1

x + 5
=

lim
x 4

3x2
1( )

lim
x 4

x + 5( )
by Property 4 on quotients( )

=

lim
x 4

3x2
lim
x 4

1

lim
x 4

x + lim
x 4

5
by Properties 1, 2 on sums, differences( )

=

lim
x 4

3x2
1

4 + 5
by elementary rules( )

=

3 lim
x 4

x2( ) 1

4 + 5
by Property 6 on constant multiples( )

=

3 lim
x 4

x( )
2

1

4 + 5

by Property 5 on powers, or

by Property 3 on products: x2
= xx

=
3 4( )

2

1

4 + 5
by elementary rules; see Note 1 below( )

=
47

9

 

Note 1: Observe that the limit can be evaluated by simply substituting x = 4  

into 

  

3x2
1

x + 5
, as the Basic Limit Theorem for Rational Functions suggests. 

 

Note 2: Observe that all indicated limits exist and there are no zero 

denominator issues, so we could apply Properties 1-6. Our use of the “= ” 

sign is appropriate here, though we often use it informally even when the 

limit turns out not to exist. § 
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Properties of One-Sided Limits 

 

Properties 1-6 extend naturally to one-sided limits. For example,  
 

  
lim

x a
f x( ) + g x( ) = lim

x a
f x( ) + lim

x a
g x( ) , and 

  
lim

x a+
f x( ) + g x( ) = lim

x a+
f x( ) + lim

x a+
g x( ) ,  

 

provided the indicated limits exist. 

 

 

PART B: PROPERTIES OF LIMITS OF ROOTS 
 

We now motivate Property 7, a much more complicated property on roots. 

 

Example 2 (Evaluating the Limit of a Square Root) 
 

Evaluate 
  
lim
x 1

x , 
  
lim

x 1
x , 

  
lim

x 0
+

x , 

  
lim

x 0

x , and 
  
lim
x 0

x . 

 

§ Solution 
 

The graph of y = x  is below. We emphasize the interesting cases where 

a = 0 . 
 

     
 

  
lim
x 1

x = 1 = 1, evidently. 

 

  
lim

x 1
x  does not exist (DNE). 

 

• Actually, this is not because 1  is imaginary. It is because there is 

no punctured neighborhood of x = 1 on which x  is real. There is 

no way to approach x = 1 through the domain of   f , where   f   is the 

(principal) square root function. 
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Review Section 2.1, Example 6. Dom f( ) = 0, )  here, as well. 

 

lim
x 0

+
x = 0 = 0 . 

 

  
lim

x 0

x  does not exist (DNE). 

 

Therefore, 
  
lim
x 0

x  does not exist (DNE). § 

 

 

Example 3 (Evaluating the Limit of a Cube Root) 
 

Evaluate 
  
lim

x 1
x

3
 and 

  
lim
x 0

x
3

. 

 

§ Solution 
 

The graph of y = x3  is below.  
 

 
 

The domain of the cube root function is  . The (principal) cube roots of 

negative real numbers are (negative) real numbers; this is a key difference 

from square roots. It turns out that substituting x = a  works here for both 

limits. 
 

lim
x 1

x
3

= 13
= 1. 

 

  
lim
x 0

x
3

= 0
3

= 0 . 

§ 

 

Property 7 now extends our observations from Examples 2 and 3 to more  

general radicands, not just x, and also to general types of roots. 

 

WARNING 2: In theory, even roots tend to require more thought than odd roots. 
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As before, assume 
  
lim
x a

f x( ) = L
1
. 

 

7) The limit of a root equals the root of the limit … sometimes. 

If n is a positive integer 
 
n +( ) , and either 

 

• (n is odd), or  
 

• (n is even, and 
  
L

1
> 0 ), then: 

  

lim
x a

f x( )n = lim
x a

f x( )n

= L
1

n

 

 

For example, Limit Form 4( ) 2 , and Limit Form 83( ) 2 . 

(The index of a radical, such as the “3” in 83 , is assumed to be a constant.) 

 

WARNING 3: The Limit Form 0even
, corresponding to L1 = 0 , could either yield 

a limit value of 0 or a limit that does not exist (DNE). Informally, 

Limit Form 0even( ) 0 or “DNE,” but further analysis is required to determine 

which is the case.  

 

Limit Forms such as 1  and 54  imply that the limits do not exist (DNE). 
 

Property 7* below elaborates on limits of even roots. 
 

7*) Properties of Limits of Even Roots 
 

Let n be a positive even integer.  
 

• If 
  
L

1
> 0 , then lim

x a
f x( )n = L

1

n  by Property 7. 

 

• If 
  
L

1
< 0 , then 

  
lim
x a

f x( )n  does not exist (DNE). The one-sided limits 

  
lim

x a+
f x( )n  and 

  
lim

x a
f x( )n  also do not exist (DNE). 

 

• If 
  
L

1
= 0 , then 

  
lim
x a

f x( )n =  0 or “DNE.” In particular, 

 

•• 
  
lim
x a

f x( )n = 0 f x( ) 0  on some punctured neighborhood of a; 

change this to a right-neighborhood for a right-hand limit and a  

left-neighborhood for a left-hand limit.  
 

•• Otherwise, the limit does not exist (DNE). 
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PART C: LIMITS OF ALGEBRAIC FUNCTIONS 
 

Our understanding of Property 7 will now allow us to extend our Basic Limit 

Theorem for Rational Functions to more general algebraic functions. 
 

Remember that: 

• all constant functions are also polynomial functions,  

• all polynomial functions are also rational functions, and 

• all rational functions are also algebraic functions. 
 

 

Basic Limit Theorem for Algebraic Functions 
 

If   f   is an algebraic function, 
  
a Dom f( ) , and  

no radicand of any even root approaches 0 in the limit 

(informally, the Limit Form 0even
 does not appear), 

 

then 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate the limit, substitute (“plug in”)  x = a , and evaluate 
 
f a( ) . 

 

If the Limit Form 0even
 does appear, this substitution method might still 

work, but further analysis is required. How is the radicand approaching 0? 
 

 

Example 4 (Evaluating the Limit of an Algebraic Function) 
 

Let 

  

f x( ) =
x 4

3

3x 9( )
2
+ x + 3 . Evaluate lim

x 2
f x( ) . 

 

§ Solution 
 

f   is an algebraic function. Observe that: 

f x( )  is real  x + 3 0  and  3x 9( )
2

0 . As a result, 

   
Dom f( ) = x x 3 and x 3{ } = 3, ) \ 3{ } = 3, 3) 3,( ) . 
We observe that 

  
2 Dom f( ) , and the Limit Form 0even

 will not appear, so 

we substitute (“plug in”)   x = 2  and evaluate 
  
f 2( ) . 

 

TIP 1: As a practical matter, when we evaluate the limit of an algebraic 

function, we often substitute immediately and see what happens.  

(We might not have time to find the domain.) If we end up with a  

real number, and if any 0even
 Limit Forms encountered only yield 0  

(not “DNE”), then that number will be the limit value. 



(Section 2.2: Properties of Limits and Algebraic Functions)  2.2.9 

  

lim
x 2

f x( ) = lim
x 2

x 4
3

3x 9( )
2
+ x + 3

=
2( ) 43

3 2( ) 9
2
+ 2( ) + 3

=
23

9
+ 5

=
2

3

9
+ 5,  or  5

2
3

9
,  or  

9 5 2
3

9

 

§ 

We confront the Limit Form 0even
 in the following Examples. 

Example 5  (Resolving the Limit  Form 0even )  

Evaluate 

  
lim

r 1
+

3r 2
3 . 

 

§ Solution 
 

• The radicand   3r 2
3 is rational. By the Extended Limit Theorem for 

Rational Functions in Section 2.1, we find that 

  
lim

r 1
+

3r 2
3( ) = 0 , so we 

are facing the Limit Form 0even
.  

 

• We use Property 7*. We will show that   3r 2
3 0  on a right-

neighborhood of r = 1, and then 

  
lim

r 1
+

3r 2
3 = 0 . Otherwise, the limit 

would not exist (DNE). 

 

• The graph of 
  y = 3r 2

3 follows. It is an upward-opening parabola in the 

ry-plane. The zeros of   3r 2
3, 1 and 1, correspond to the r-intercepts.  

The domain of   3r 2
3  consists of the r-values that make 

  y = 3r 2
3 0 . 

It corresponds to the parts of the parabola that lie above or on the r-axis. 

This is important, because we are only allowed to approach r = 1 through 

this domain (in purple). In fact, here, we can approach r = 1 from the right. 
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Therefore, 

  
lim

r 1
+

3r 2
3 = 0 . 

 

 

(For more, see Section 2.7: 

Nonlinear Inequalities in the 

Precalculus notes.) 

 

Here’s a non-graphical approach. As   r 1
+

, r > 1. Now, 
 

r > 1

r 2
> 1

3r 2
> 3

3r 2
3> 0

 

 

 

Therefore, 

  
lim

r 1
+

3r 2
3 = 0 . 

 

The graph of 
  y = 3r 2

3  is below. Observe that the graph disappears 

where   3r 2
3< 0 ; this is where we fall outside the domain (in purple).  

 

§ 
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Example 6 (Evaluating a Limit Using Example 5 and Properties of Limits) 
 

Evaluate 

  
lim

r 1
+

7 3r 2
3 + 5( ) . 

 

§ Solution 
 

   

   

lim
r 1

+
7 3r 2

3 + 5( ) = lim
r 1

+
7 3r 2

3 + lim
r 1

+
5 by Prop.1 on sums( )

= 7 lim
r 1

+
3r 2

3 + 5
by Prop. 6 on constant

multiples,  elem. rules

= 7 0( ) + 5 by Example 5( )
= 5

 

§ 

 

Example 7  (Resolving the Limit  Form 0even )  
 

Evaluate lim
x 7

x + 7( )
2

. 

 

§ Solution 1 
 

As x 7 , 
  

x + 7( )
2

0 . 

x + 7( )
2

0  for all real x 

 
x( ) . Therefore,  

 

  
lim

x 7
x + 7( )

2

= 0 . § 

 

 

 

 

 
 

 

 

§ Solution 2 
 

 

lim
x 7

x + 7( )
2

= lim
x 7

x + 7

= 7 + 7

= 0

 

 

Below is the graph of 

  
y = x + 7( )

2

, or 
  
y = x + 7 . 

 

 §

FOOTNOTES 
 

1. Limits of linear combinations. The fact that limit operators are linear implies that the limit 

of a linear combination of f x( )  and g x( )  equals the linear combination of the limits: 

lim
x a

c f x( ) + d g x( ) = c lim
x a

f x( ) + d lim
x a

g x( )

= cL
1
+ dL

2
c, d( )

 


