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SECTION 2.7: PRECISE DEFINITIONS OF LIMITS

LEARNING OBJECTIVES

* Know rigorous definitions of limits, and use them to rigorously prove limit
statements.

PART A: THE “STATIC” APPROACH TO LIMITS

: : 1 : : :
We will use the example XI[)n4 (7 — Exj =5 in our quest to rigorously define what

a limit at a point is. We consider lim f (x)z L, where f (x) =7 —Ex, a=4,
X—a 2
and L=5. The graph of y= f(x) is the line below.
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The “dynamic” view of limits states that, as x “approaches” or “gets closer to” 4,
f (x) “approaches” or “gets closer to” 5. (See Section 2.1, Footnote 2.)

The precise approach takes on a more “static” view. The idea is that, if x is close
to 4, then f(x) is close to 5.

The Lottery Analogy

Imagine a lottery in which every x € Dom( f) represents a player. However,

we disqualify x =a (here, x =4), because that person manages the lottery.
(See Section 2.1, Part C.)

Each player is assigned a lottery number by the rule f (x)=7- %x.

The “exact” winning lottery number (the “target”) turns outto be L=5.
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Player's Number

When Does Player x Win?

In this lottery, more than one player can win, and it is sufficient for a
player to be “close enough™ to the “target” in order to win. In particular,

Player x wins (x # a) <> the player’s lottery number, f(x), is

strictly within & units of L, where £ > 0. The Greek letter £ (“epsilon”)
often represents a small positive quantity. Here, € is a tolerance level that
measures how liberal the lottery is in determining winners.

Symbolically:
Player x wins (x#a) & L—g< f(x)<L+e
Subtract L from all three parts.
& —€e< f(x)— L<e

-1<r<l |r|<l.
Similarly:

= ‘f(x)—L‘<e

‘ f (x)— L‘ Is the distance (along the y-axis) between Player x’s lottery

number, f(x), and the “target” L.

Player x wins (x # a) «> this distance is less than .
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Where Do We Look for Winners?

We only care about players that are “close” to x =a (here, x =4), excluding
a itself. These players x are strictly between 0 and 6 units of a, where 6 > 0.
Like €, the Greek letter 6 (*“delta”) often represents a small positive
guantity. ¢ is the half-width of a punctured 6 -neighborhood of a.

Symbolically:
Player x is "close"toa < a-d<x<a+§ (x=#a)
That is, xe(a—5, a+5)\{a}.
Subtract a from all three parts.
& —d0<x—a<o (x#a)

& 0<|x—a|<5

| X — a| is the distance between Player x and a.
Player x is “close” to a < this distance is strictly between O and 6.
* If the distance is 0, we have x = a, which is disqualified.

In the figure on the left, the value for ¢ is giving us a punctured
0 -neighborhood of a in which everyone wins.

« In this sense, if x is close to a, then f (x) is close to L.

Observe that any smaller positive value for ¢ could also have been chosen.
(See the figure on the right. The dashed lines are not asymptotes; they
indicate the boundaries of the open intervals and the puncture at x=a.)

Winning
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How Does the ““Static’” Approach to Limits Relate to the “Dynamic’ Approach?

Why is XIim4 [7 — %xj =57 Because, regardless of how small we make the
_)

tolerance level £ and how tight we make the lottery for the players, there is
a value for & for which the corresponding punctured & -neighborhood of
a =4 is made up entirely of winners. That is, the corresponding “punctured
box” (see the shaded boxes in the figures) traps the graph of y= f(x) on

the punctured 6 -neighborhood.

As £ — 0", we can choose values for § in such a way that the
corresponding shaded “punctured boxes” always trap the graph and zoom

in, or collapse in, on the point (4, 5). (This would have been the case even if

that point had been deleted from the graph.) In other words, there are
always winners close to a =4.

« As x gets arbitrarily close to a, f(x) gets arbitrarily close to L.

If e=1, we can choose 6 =2. If e=0.5, we can choose 6 =1.

X

For this example, if € is any positive real number, we can choose ¢ = 2¢.
Why is that?

» Graphically, we can exploit the fact that the slope of the line
y=17 —%x IS — % Remember, slope = E. Along the line, an x-run

run
of 2 units corresponds to a y-drop of 1 unit.

» We will demonstrate this rigorously in Example 1.
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PART B: THE PRECISE € -6 DEFINITION OF ALIMIT AT APOINT

The Precise -0 Definition of a Limit at a Point
(Version 1)

For a, L € R, if a function f is defined on a punctured neighborhood of a,

lim f(x) = L < for every € >0, there exists a 6 >0 such that,
XxX—a

if 0< ‘ xX—a ’ <O (that is, if x is “close” to a, excluding « itself),

then ‘f(x)— L ‘ < € (that s, f(x) 1s “close” to L).

Variation Using Interval Form

We can replace 0<|x—a|<8 with: xe(a-5, a+8)\{a}.
We can replace‘ f(x)—L‘<e with: f(x)e(L-¢, L+e).

The Precise €-6 Definition of a Limit at a Point

(Version 2: More Symbolic)

For a,L € R, if a function f is defined on a punctured neighborhood of a,

lim f(x)=L & Ve>0,36>0 >

X—a

(0<‘x—a|<5 = ‘f(x)—L‘<s).
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Example 1 (Proving the Limit Statement from Part A)

Prove XI[)n4 (7 —Exj =5 using a precise -6 definition of a limit at a point.
8 Solution
1
We have: f(x)=7—5x, a=4,and L=5.

We need to show:

Ve>0,36>0 > (O<|x—a|<6 = ‘ f(x)—L‘<z—:); I.e.,

(7—%x]—(5) <e].

Rewrite ‘ f(x)— L‘ in terms of|x—a|; here, |x—4|:

Ve>0,36>0 > [0<|x—4|<5 =

Factor out — % the coefficient of x.

To divide the +2 term by — % we multiply it by
—2 and obtain —4.

1

= —g(x—“)
1

=173 | x4

This is because, if m and n represent real
quantities, then | mn | = | m || n | :

=2 x-4]
2

We have: ‘ f (x)— L ‘ = %| x—4|; call this statement *.
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Assuming ¢ is fixed (g > O), find an appropriate value for 6.
We will find a value for ¢ that corresponds to a punctured
0 -neighborhood of a =4 in which everyone wins. This means that,
for every player x in there:
‘ f(x)— Li<e &

%‘x—4 <e (by*) o

‘x—4 < 2¢€

We choose ¢ = 2e. We will formally justify this choice in our
verification step.

Observe that, since £ >0, thenour 6 >0.
Verify that our choice for ¢ is appropriate.
We will show that, given & and our choice for 6 (5: 28),
0<‘x—a‘<5 = ‘ f(x)—L‘<g.
O<‘x—a‘<5 =
O<‘x—4‘<5 =
0<‘X—4‘<28 =
O<l‘x—4‘<g =
2
‘ f(x)—L‘<e (by *)
Note: It is true that: 0<‘ f(x)— L‘<e, but the first inequality
(O<‘ f(x)- L‘) does not help us.

Q.E.D.
(“Quod erat demonstrandum” — Latin for “which was to be
demonstrated / proven / shown.” This is a formal end to a proof.) 8
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PART C: DEFINING ONE-SIDED LIMITS AT A POINT

The precise definition of lim f (x)= L can be modified for left-hand and

right-hand limits. The only changes are the x-intervals where we look for
winners. (See red type.) These x-intervals will no longer be symmetric about a.

» Therefore, we will use interval form instead of absolute value notation
when describing these x-intervals.

* Also, we will let o represent the entire width of an x-interval, not just half
the width of a punctured x-interval.

The Precise €-0 Definition of a Left-Hand Limit at a Point

For a,L € R, if a function f is defined on a left-neighborhood of a,

lim f(x):L < Ve>0,d0>0 >

xX—a

|:xe(a—5, a) = ‘f(x)—L‘<8]

The Precise €-6 Definition of a Right-Hand Limit at a Point

For a,L € R, if a function f is defined on a right-neighborhood of «,

lim f(x)=L & Ve>0,35>0 >

X—a

|:,\'e(a,a+5) = ‘f(x)—L‘<8].

Left-Hand Limit Right-Hand Limit

Winning
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PART D: DEFINING “LONG-RUN” LIMITS

The precise definition of XIgna f (x) = L can also be modified for “long-run”

limits. Again, the only changes are the x-intervals where we look for winners.
(See red type.) These x-intervals will be unbounded.

» Therefore, we will use interval form instead of absolute value notation
when describing these x-intervals.

* Also, instead of using ¢, we will use M (think “Million”) and N (think
“Negative million”) to denote “points of no return.”

The Precise €-M Definition of lim f (x) =V

X —>

For L € R, if a function f is defined on some interval (c, oo), ceR.

lim f(x)=L & Ve>0,IMeR >

X—> o

|:,\'>M; that is,xe(M,oo) = ‘f(x)—L‘<8]

The Precise €-N Definition of lim f (x) =L

X —> —o0

For L e R, if a function f is defined on some interval (— oo, c), celR.

lim f(x)=L & Ve>0,3NeR >

X—>—oo

|:.\‘<N; that is,xe(—oo,N) = ‘f(x)—L’<8]

x)=L; here, f(x)=£+2 lim f(x)zL; here, f(x)=£+2

X X —>—oo X

lim

L+¢&

I —
L+ &€ &

L — &€

y=f(x)
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How Does the ““Static”” Approach to “Long-Run’’ Limits Relate to the “Dynamic”
Approach?

Why is XILm [E + 2) = 2 ? Because, regardless of how small we make the
= | X

tolerance level € and how tight we make the lottery for the players, there is

a “point of no return” M after which all the players win. That is, the

corresponding box (see the shaded boxes in the figures below) traps the

graph of y= f(x) forall x> M.

As £ — 0", we can choose values for M in such a way that the
corresponding shaded boxes always trap the graph and zoom in, or
collapse in, on the HA y = 2. In other words, there are always winners as
X—> o0,

If e=1, we can choose M =1. If €e=0.5, we can choose M =2.

. e .. 1
For this example, if £ is any positive real number, we can choose M =—
€

PART E: DEFINING INFINITE LIMITS AT A POINT

Challenge to the reader:

Give precise “ M-5” and “N-§” definitions of lim f(x) = and
X—a

lim f (x)==co (aeR), where the function f is defined on a punctured

neighborhood of a.



