
(Section 2.7: Precise Definitions of Limits)  2.7.1

 

SECTION 2.7: PRECISE DEFINITIONS OF LIMITS 
 

 

LEARNING OBJECTIVES 
 

     • Know rigorous definitions of limits, and use them to rigorously prove limit 

     statements. 

 

 

PART A: THE “STATIC” APPROACH TO LIMITS 
 

We will use the example 

  

lim
x 4

7
1

2
x = 5 in our quest to rigorously define what 

a limit at a point is. We consider lim
x a

f x( ) = L , where 

  
f x( ) = 7

1

2
x , a = 4 , 

and L = 5 . The graph of y = f x( )  is the line below. 
 

 
 

The “dynamic” view of limits states that, as x “approaches” or “gets closer to” 4,  

 
f x( )  “approaches” or “gets closer to” 5. (See Section 2.1, Footnote 2.) 

 

The precise approach takes on a more “static” view. The idea is that, if x is close 

to 4, then f x( )  is close to 5. 

 

The Lottery Analogy 

 

Imagine a lottery in which every x Dom f( )  represents a player. However, 

we disqualify  x = a  (here,   x = 4), because that person manages the lottery. 

(See Section 2.1, Part C.) 
 

Each player is assigned a lottery number by the rule 

  
f x( ) = 7

1

2
x . 

The “exact” winning lottery number (the “target”) turns out to be L = 5 . 
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When Does Player x Win? 

 

In this lottery, more than one player can win, and it is sufficient for a  

player to be “close enough” to the “target” in order to win. In particular,  

Player x wins 
 

x a( )   the player’s lottery number, 
 
f x( ) , is  

strictly within  units of L, where  > 0. The Greek letter  (“epsilon”) 

often represents a small positive quantity. Here,  is a tolerance level that 

measures how liberal the lottery is in determining winners. 

 

Symbolically: 
 

  
Player x wins x a( )   L < f x( ) < L +  

 

Subtract L from all three parts. 
 

      < f x( ) L <  

 

1< r < 1 r < 1. 

Similarly: 
 

     
  

 f x( ) L <  

 

 
f x( ) L  is the distance (along the y-axis) between Player x’s lottery 

number, 
 
f x( ) , and the “target” L. 

 

Player x wins 
 

x a( )   this distance is less than . 
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Where Do We Look for Winners? 
 

We only care about players that are “close” to  x = a  (here,   x = 4), excluding 

a itself. These players x are strictly between 0 and  units of a, where  > 0 . 

Like , the Greek letter  (“delta”) often represents a small positive 

quantity.  is the half-width of a punctured -neighborhood of a.  
 

Symbolically: 
 

   
  
Player x is "close" to a  a < x < a +  x a( )  

 

That is, x a , a +( ) \ a{ } . 

Subtract a from all three parts. 
 

          

  

 < x a <  x a( )
 0 < x a <

 

 

 
x a  is the distance between Player x and a. 

 

Player x is “close” to a  this distance is strictly between 0 and . 
 

• If the distance is 0, we have  x = a , which is disqualified. 

 

In the figure on the left, the value for  is giving us a punctured  

-neighborhood of a in which everyone wins.  
 

• In this sense, if x is close to a, then 
 
f x( )  is close to L. 

 

Observe that any smaller positive value for  could also have been chosen. 

(See the figure on the right. The dashed lines are not asymptotes; they 

indicate the boundaries of the open intervals and the puncture at  x = a .) 
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How Does the “Static” Approach to Limits Relate to the “Dynamic” Approach? 
 

Why is 

  

lim
x 4

7
1

2
x = 5? Because, regardless of how small we make the 

tolerance level  and how tight we make the lottery for the players, there is 

a value for  for which the corresponding punctured -neighborhood of 

a = 4  is made up entirely of winners. That is, the corresponding “punctured 

box” (see the shaded boxes in the figures) traps the graph of y = f x( )  on 

the punctured -neighborhood. 
 

As  0
+

, we can choose values for  in such a way that the 

corresponding shaded “punctured boxes” always trap the graph and zoom 

in, or collapse in, on the point 4, 5( ) . (This would have been the case even if 

that point had been deleted from the graph.) In other words, there are 

always winners close to a = 4 . 
 

• As x gets arbitrarily close to a, f x( )  gets arbitrarily close to L. 

 

If  = 1, we can choose = 2 .  If  = 0.5 , we can choose = 1. 
 

             
 

For this example, if  is any positive real number, we can choose = 2 . 

Why is that?  

 

• Graphically, we can exploit the fact that the slope of the line 

  
y = 7

1

2
x  is 

 

1

2
. Remember, 

 

slope =
rise

run
. Along the line, an x-run 

of 2 units corresponds to a y-drop of 1 unit. 

 

• We will demonstrate this rigorously in Example 1. 
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 PART B: THE PRECISE - DEFINITION OF A LIMIT AT A POINT  

 

 

 
The Precise - Definition of a Limit at a Point  

(Version 1) 
 

         For 
 
a, L , if a function   f   is defined on a punctured neighborhood of a, 

 

  
lim
x a

f x( ) = L   for every  > 0, there exists a  > 0  such that,  

if 0 < x a <  (that is, if x is “close” to a, excluding a itself), 

then 
 

f x( ) L <  (that is, 
 
f x( )  is “close” to L). 

 

Variation Using Interval Form 
 

We can replace 0 < x a <  with: x a , a +( ) \ a{ } . 
 

We can replace 
 

f x( ) L <  with: 
  
f x( ) L , L +( ) . 

 

 
The Precise - Definition of a Limit at a Point  

(Version 2: More Symbolic) 

 

         For 
 
a, L , if a function   f   is defined on a punctured neighborhood of a, 

 

  
lim
x a

f x( ) = L    > 0 , 
 

> 0   

  
0 < x a < f x( ) L <( ) . 
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Example 1 (Proving the Limit Statement from Part A) 
 

Prove 

  

lim
x 4

7
1

2
x = 5 using a precise -  definition of a limit at a point. 

 

§ Solution 
 

We have: 

  
f x( ) = 7

1

2
x , a = 4 , and   L = 5 . 

 

We need to show: 
 

 > 0 , 
 

> 0   
  
0 < x a < f x( ) L <( ) ; i.e., 

 > 0 , > 0   

  

0 < x 4 < 7
1

2
x 5( ) < . 

 

Rewrite 
 

f x( ) L  in terms of 
 

x a ; here, 
  

x 4 : 

 

  

f x( ) L = 7
1

2
x 5( )

=
1

2
x + 2

 

Factor out 
1

2
, the coefficient of x. 

To divide the +2 term by 

 

1

2
, we multiply it by 

 
2  and obtain 

 
4 .  

 

       

  

=
1

2
x 4( )

=
1

2
x 4

 

 

This is because, if m and n represent real 

quantities, then mn = m n . 
 

              

  
=

1

2
x 4  

 

We have: f x( ) L =
1

2
x 4 ; call this statement *. 
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Assuming  is fixed 
 

> 0( ) , find an appropriate value for . 

 

We will find a value for  that corresponds to a punctured  

-neighborhood of a = 4  in which everyone wins. This means that, 

for every player x in there: 

 

  

f x( ) L <

1

2
x 4 < by *( )

x 4 < 2

 

 

We choose  = 2 . We will formally justify this choice in our 

verification step. 

 

Observe that, since  > 0, then our  > 0 . 

 

Verify that our choice for  is appropriate. 

 

We will show that, given  and our choice for  = 2( ) , 

  
0 < x a < f x( ) L < . 

 

  

0 < x a <

0 < x 4 <

0 < x 4 < 2

0 <
1

2
x 4 <

f x( ) L < by *( )

 

 

Note: It is true that: 
  
0 < f x( ) L < , but the first inequality 

  
0 < f x( ) L( )  does not help us. 

 

Q.E.D. 

(“Quod erat demonstrandum” – Latin for “which was to be 

demonstrated / proven / shown.” This is a formal end to a proof.) § 
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PART C: DEFINING ONE-SIDED LIMITS AT A POINT 

 

The precise definition of 
  
lim
x a

f x( ) = L  can be modified for left-hand and  

right-hand limits. The only changes are the x-intervals where we look for 

winners. (See red type.) These x-intervals will no longer be symmetric about a.  
 

• Therefore, we will use interval form instead of absolute value notation 

when describing these x-intervals. 
 

• Also, we will let  represent the entire width of an x-interval, not just half 

the width of a punctured x-interval. 

 

 
The Precise - Definition of a Left-Hand Limit at a Point  

 

For 
   a, L , if a function   f   is defined on a left-neighborhood of a, 

 

  
lim

x a
f x( ) = L    > 0 , > 0   

x a , a( ) f x( ) L < . 

 

 
The Precise - Definition of a Right-Hand Limit at a Point  

 

For 
   a, L , if a function   f   is defined on a right-neighborhood of a, 

 

  
lim

x a+
f x( ) = L    > 0 , 

 
> 0   

  
x a, a +( ) f x( ) L < . 

 

 

 Left-Hand Limit      Right-Hand Limit 
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PART D: DEFINING “LONG-RUN” LIMITS 

 

The precise definition of 
  
lim
x a

f x( ) = L  can also be modified for “long-run” 

limits. Again, the only changes are the x-intervals where we look for winners.  

(See red type.) These x-intervals will be unbounded.  
 

• Therefore, we will use interval form instead of absolute value notation 

when describing these x-intervals. 
 

• Also, instead of using , we will use M (think “Million”) and N  (think 

“Negative million”) to denote “points of no return.” 
 

The Precise -M Definition of lim
x

f x( ) = L  

For   L , if a function   f   is defined on some interval 
  
c,( ) ,   c . 

 

lim
x

f x( ) = L    > 0 , 
  M   

  
x > M ; that is, x M ,( ) f x( ) L < . 

 

The Precise -N Definition of lim
x

f x( ) = L  

For   L , if a function   f   is defined on some interval 
  

, c( ) ,   c . 

 

lim
x

f x( ) = L    > 0 , 
  N   

  
x < N ; that is, x , N( ) f x( ) L < . 

 

 lim
x

f x( ) = L; here,  f x( ) =
1

x
+ 2   lim

x
f x( ) = L; here,  f x( ) =

1

x
+ 2 
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How Does the “Static” Approach to “Long-Run” Limits Relate to the “Dynamic” 

Approach? 
 

Why is lim
x

1

x
+ 2 = 2 ? Because, regardless of how small we make the 

tolerance level  and how tight we make the lottery for the players, there is 

a “point of no return” M after which all the players win. That is, the 

corresponding box (see the shaded boxes in the figures below) traps the 

graph of y = f x( )  for all x > M . 

 

As  0
+

, we can choose values for M in such a way that the 

corresponding shaded boxes always trap the graph and zoom in, or 

collapse in, on the HA 
  y = 2 . In other words, there are always winners as 

x . 

 

If  = 1, we can choose M = 1.  If  = 0.5 , we can choose M = 2 . 
 

             
 

For this example, if  is any positive real number, we can choose 

  
M =

1
. 

 

PART E: DEFINING INFINITE LIMITS AT A POINT 

 

Challenge to the reader: 

 

Give precise “  M - ” and “  N - ” definitions of 
  
lim
x a

f x( ) =  and 

  
lim
x a

f x( ) =  
 
a( ) , where the function   f   is defined on a punctured 

neighborhood of a. 


