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   • The conventional approach to calculus is founded on limits. 

 

   • In this chapter, we will develop the concept of a limit by example. 

 

   • Properties of limits will be established along the way. 

 

   • We will use limits to analyze asymptotic behaviors of functions and their graphs. 

 

   • Limits will be formally defined near the end of the chapter. 

 

   • Continuity of a function (at a point and on an interval) will be defined using limits. 
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SECTION 2.1: AN INTRODUCTION TO LIMITS 
 

 

LEARNING OBJECTIVES 
 

     • Understand the concept of (and notation for) a limit of a rational function at a  

     point in its domain, and understand that “limits are local.” 

     • Evaluate such limits. 

     • Distinguish between one-sided (left-hand and right-hand) limits and  

     two-sided limits  and what it means for such limits to exist. 

     • Use numerical / tabular methods to guess at limit values. 

     • Distinguish between limit values and function values at a point. 

     • Understand the use of neighborhoods and punctured neighborhoods in the 

     evaluation of one-sided and two-sided limits. 

     • Evaluate some limits involving piecewise-defined functions. 

 

PART A: THE LIMIT OF A FUNCTION AT A POINT 
 

Our study of calculus begins with an understanding of the expression 
  
lim
x a

f x( ) , 

where a is a real number (in short, a ) and   f   is a function. This is read as: 
 

“the limit of f x( )  as x approaches a.” 
 

• WARNING 1:  means “approaches.” Avoid using this symbol outside 

the context of limits. 
 

• 
  
lim
x a

 is called a limit operator. Here, it is applied to the function   f . 

 

 

  
lim
x a

f x( )  is the real number that f x( )  approaches as x approaches a, if such a 

number exists. If f x( )  does, indeed, approach a real number, we denote that 

number by L (for limit value). We say the limit exists, and we write: 
 

  
lim
x a

f x( ) = L ,   or   
 
f x( ) L  as  x a . 

 

These statements will be rigorously defined in Section 2.7. 
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When we evaluate 
  
lim
x a

f x( ) , we do one of the following: 

 

• We find the limit value L (in simplified form). 
 

We write: lim
x a

f x( ) = L . 

 

• We say the limit is  (infinity) or  (negative infinity). 
 

We write: 
  
lim
x a

f x( ) = , or 
  
lim
x a

f x( ) = . 

 

• We say the limit does not exist (“DNE”) in some other way. 
 

We write: lim
x a

f x( )  DNE. 

(The “DNE” notation is used by Swokowski but few other authors.) 

If we say the limit is  or , the limit is still nonexistent. Think of  and  

as “special cases of DNE” that we do write when appropriate; they indicate why 

the limit does not exist. 
 

       lim
x a

f x( )  
 

exists           does not exist 
 

  The limit is a real number, L.      “DNE”     
 

             

 
 

  
lim
x a

f x( )  is called a limit at a point, because x = a  corresponds to a point on the 

real number line. Sometimes, this is related to a point on the graph of   f . 

Example 1 (Evaluating the Limit of a Polynomial Function at a Point) 
 

Let 
  
f x( ) = 3x2

+ x 1. Evaluate lim
x 1

f x( ) . 
 

§ Solution 
 

f   is a polynomial function with implied domain 
 
Dom f( ) = .  

We substitute (“plug in”)   x = 1 and evaluate 
  
f 1( ) . 

 

WARNING 2: Sometimes, the limit value 
  
lim
x a

f x( )  does not equal 

the function value f a( ) . (See Part C.) 
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lim
x 1

f x( ) = lim
x 1

3x2
+ x 1( )  

WARNING 3: Use grouping symbols when taking the limit of 

an expression consisting of more than one term. 

      = 3 1( )
2

+ 1( ) 1 

WARNING 4: Do not omit the limit operator 
  
lim
x 1

 until this 

substitution phase. 
 

WARNING 5: When performing substitutions, be prepared to 

use grouping symbols. Omit them only if you are sure they are 

unnecessary. 

      = 3 

We can write: lim
x 1

f x( ) = 3, or 
  
f x( ) 3 as x 1. 

 

• Be prepared to work with function and variable names other than   f   and x. 

For example, if 
  
g t( ) = 3t2

+ t 1, then lim
t 1

g t( ) = 3, also. 

 

The graph of 
 
y = f x( )  is below. 

 

Imagine that the arrows in the figure 

represent two lovers running towards each 

other along the parabola. What is the  

y-coordinate of the point they are 

approaching as they approach x = 1?  

It is 3, the limit value.  
 

TIP 1: Remember that y-coordinates of 

points along the graph correspond to 

function values. § 
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Example 2 (Evaluating the Limit of a Rational Function at a Point) 
 

Let 
  
f x( ) =

2x +1

x 2
. Evaluate lim

x 3
f x( ) . 

 

§ Solution 
 

f   is a rational function with implied domain 
   
Dom f( ) = x x 2{ } . 

We observe that 3 is in the domain of   f  in short, 3 Dom f( )( ) , so we 

substitute (“plug in”)   x = 3 and evaluate 
  
f 3( ) . 

 

  

lim
x 3

f x( ) = lim
x 3

2x +1

x 2

=
2 3( ) +1

3( ) 2

= 7

 

 

The graph of 
 
y = f x( )  is below. 

 

 

 

 

 

 

 

 

Note: As is often the case, you might not 

know how to draw the graph until later. 

 

• Asymptotes. The dashed lines are asymptotes, which are lines that a 

graph approaches  
 

- in a “long-run” sense  

(see the horizontal asymptote, or “HA,” at y = 2 ), or  
 

- in an “explosive” sense  

(see the vertical asymptote, or “VA,” at x = 2 ).  

“HA”s and “VA”s will be defined using limits in Sections 2.3 

and 2.4, respectively. 
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• “Limits are Local.” What if the lover on the left is running along 

the left branch of the graph? In fact, we ignore the left branch, 

because of the following key principle of limits. 
 

“Limits [at a Point] are Local” 
 

When analyzing lim
x a

f x( ) , we only consider the behavior  

of   f    in the “immediate vicinity” of x = a . 
 

In fact, we may exclude consideration of x = a  itself,  

as we will see in Part C. 
 

In the graph, we only care what happens “immediately around”  

x = 3. Section 2.7 will feature a rigorous approach. § 

Example 3 (Evaluating the Limit of a Constant Function at a Point) 
 

  
lim

x
2 = 2 .  

 

(Observe that substituting x =  

technically works here, since there is 

no “x” in “2,” anyway.) 
 

 

• A constant approaches itself. We can write 2 2  (“2 approaches 2”) as 

 x . When we think of a sequence of numbers approaching 2, we may 

think of distinct numbers such as 2.1, 2.01, 2.001, …. However, the 

constant sequence 2, 2, 2, … is also said to approach 2. § 

All constant functions are also polynomial functions, and all polynomial 

functions are also rational functions. The following theorem applies to all three 

Examples thus far. 

 

Basic Limit Theorem for Rational Functions 
 

If   f   is a rational function, and 
  
a Dom f( ) , 

then 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate the limit, substitute (“plug in”)  x = a , and evaluate 
 
f a( ) . 

 

We will justify this theorem in Section 2.2. 
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PART B: ONE- AND TWO-SIDED LIMITS; EXISTENCE OF LIMITS 
 

lim
x a

 is a two-sided limit operator in 
  
lim
x a

f x( ) , because we must consider the 

behavior of   f   as x approaches a from both the left and the right. 
 

  
lim

x a
 is a one-sided left-hand limit operator. 

  
lim

x a
f x( )  is read as: 

 

“the limit of f x( )  as x approaches a from the left.” 
 

  
lim

x a+
 is a one-sided right-hand limit operator. 

  
lim

x a+
f x( )  is read as: 

 

“the limit of f x( )  as x approaches a from the right.” 
 

 

Example 4 (Using a Numerical / Tabular Approach to Guess a Left-Hand Limit 

Value) 
 

Guess the value of 
  

lim
x 3

x + 3( )  using a table of function values. 

 

§ Solution 
 

Let 
  
f x( ) = x + 3. 

  
lim

x 3
f x( )  is the real number, if any, that 

 
f x( )  

approaches as x approaches 3 from lesser (or lower) numbers. That is, we 

approach   x = 3 from the left along the real number line. 
 

We select an increasing sequence of real numbers (x values) approaching 3 

such that all the numbers are close to (but less than) 3. We evaluate the 

function at those numbers, and we guess the limit value, if any, the function 

values are approaching. For example: 
 

x 2.9 2.99 2.999  3  

  
f x( ) = x + 3 5.9 5.99 5.999  6 (?)  

 

We guess: 
  

lim
x 3

x + 3( ) = 6 . 

 

WARNING 6: Do not confuse superscripts with signs of numbers.  

Be careful about associating the “ ” superscript with negative numbers. 

Here, we consider positive numbers that are close to 3. 
 

• If we were taking a limit as x approached 0, then we would 

associate the “ ” superscript with negative numbers and the “+” 

superscript with positive numbers. 
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The graph of 
 
y = f x( )  is below. We only consider the behavior of   f 

“immediately” to the left of x = 3 . 

        

WARNING 7: The numerical / tabular approach is unreliable, and it is 

typically unacceptable as a method for evaluating limits on exams.  

(See Part D, Example 11 to witness a failure of this method.) However, it 

may help us guess at limit values, and it strengthens our understanding of 

limits. § 

Example 5 (Using a Numerical / Tabular Approach to Guess a Right-Hand Limit 

Value) 
 

Guess the value of 
  

lim
x 3+

x + 3( )  using a table of function values. 

 

§ Solution 
 

Let 
  
f x( ) = x + 3. 

  
lim

x 3+
f x( )  is the real number, if any, that 

 
f x( )  

approaches as x approaches 3 from greater (or higher) numbers. That is, 

we approach   x = 3 from the right along the real number line. 
 

We select a decreasing sequence of real numbers (x values) approaching 3 

such that all the numbers are close to (but greater than) 3. We evaluate the 

function at those numbers, and we guess the limit value, if any, the function 

values are approaching. For example: 

x  3
+

 3.001 3.01 3.1 

  
f x( ) = x + 3  6 (?)  6.001 6.01 6.1 

 

We guess: lim
x 3+

x + 3( ) = 6 . 
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The graph of 
 
y = f x( )  is below. We only consider the behavior of   f 

“immediately” to the right of x = 3 . 

        
§ 

Existence of a Two-Sided Limit at a Point 
 

  
lim
x a

f x( ) = L   lim
x a

f x( ) = L,   and lim
x a+

f x( ) = L , a, L( ) . 

 

• A two-sided limit exists  the corresponding left-hand and right-hand 

limits exist, and they are equal. 

• If either one-sided limit does not exist (DNE), or if the two one-sided  

limits are unequal, then the two-sided limit does not exist (DNE). 

 

Our guesses, 
  

lim
x 3

x + 3( ) = 6  and 
  

lim
x 3+

x + 3( ) = 6 , imply lim
x 3

x + 3( ) = 6 . 

 

In fact, all three limits can be evaluated by substituting x = 3  into x + 3( ) : 
 

  
lim

x 3
x + 3( ) = 3+ 3= 6; 

  
lim

x 3+
x + 3( ) = 3+ 3= 6; 

  
lim
x 3

x + 3( ) = 3+ 3= 6 . 

This procedure is generalized in the following theorem. 
 

 

Extended Limit Theorem for Rational Functions 
 

If   f   is a rational function, and 
  
a Dom f( ) , 

then 
  

lim
x a

f x( ) = f a( ) , 
  

lim
x a+

f x( ) = f a( ) , and 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate each limit, substitute (“plug in”) x = a , and evaluate f a( ) . 
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WARNING 8: Substitution might not work if   f   is not a rational function. 

Example 6 (Pitfalls of Substituting into a Function that is Not Rational) 
 

Let 
  
f x( ) = x +1. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

Observe that Dom f( ) = x x 0{ } = 0, ) , because x  is real when 

x 0 , but it is not real when x < 0 . 
 

This is important, because x is only allowed to approach 0 (or whatever a is) 

through Dom f( ) . Here, x is allowed to approach 0 from the right but not 

from the left.  

 

Right-Hand Limit: lim
x 0+

f x( ) = 1. 

Substituting x = 0  works: 
  

lim
x 0+

f x( ) = lim
x 0+

x +1( ) = 0 +1= 1. 

 

Left-Hand Limit: lim
x 0

f x( )  does not exist (DNE). 

Substituting x = 0  does not work here. 

Two-Sided Limit: 
  
lim
x 0

f x( )  does not exist (DNE). 

This is because the corresponding left-hand limit does not exist 

(DNE). 

Observe that   f   is not a rational function, so the aforementioned theorem 

does not apply, even though 
  
0 Dom f( ) .   f   is, however, an algebraic 

function, and we will discuss algebraic functions in Section 2.2. § 
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PART C: IGNORING THE FUNCTION AT a 
 

Example 7 (Ignoring the Function at ‘a’ When Evaluating a Limit;  

Modifying Examples 4 and 5) 
 

Let 
  
g x( ) = x + 3, x 3( ) .  

 

(We are deleting 3 from the domain of the function in Examples 4 and 5;  

this changes the function.) 
 

Evaluate 
  

lim
x 3

g x( ) , 
  

lim
x 3+

g x( ) , and 
  
lim
x 3

g x( ) . 

 

§ Solution 
 

Since 3 Dom g( ) , we must delete the point 3, 6( )  from the graph of 

y = x + 3 to obtain the graph of g below. 
 

        
 

We say that g has a removable discontinuity at x = 3  (see Section 2.8), and 

the graph of g has a hole at the point 3, 6( ) . 
 

Observe that, as x approaches 3 from the left and from the right,  

g x( )  approaches 6, even though g x( )  never equals 6. 
 

  
g 3( )  is undefined, yet the following statements are true: 

 

  
lim

x 3
g x( ) = 6 , 

  
lim

x 3+
g x( ) = 6 , and  

  
lim
x 3

g x( ) = 6 . 

 

There literally does not have to be a point at x = 3  (in general, x = a ) for 

these limits to exist! Observe that substituting x = 3  into x + 3( )  works. § 
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Example 8 (Ignoring the Function at ‘a’ When Evaluating a Limit; 

Modifying Example 7) 
 

Let the function h be defined piecewise as follows: 

  

h x( ) =
x + 3, x 3

7, x = 3
 . 

 

(A piecewise-defined function applies different evaluation rules to different 

subsets of (groups of numbers in) its domain. This type of function can lead 

to interesting limit problems.) 
 

Evaluate 
  
lim
x 3

h x( ) . 

 

§ Solution 
 

h is identical to the function g from Example 7, except that 3 Dom h( ) , and 

h 3( ) = 7 . As a result, we must add the point 3, 7( )  to the graph of g to 

obtain the graph of h below. 
 

        
 

As with g, h also has a removable discontinuity at x = 3 , and its graph also 

has a hole at the point 3, 6( ) . 
 

Observe that, as x approaches 3 from the left and from the right,  

h x( )  also approaches 6. 
 

  
lim
x 3

h x( ) = 6  once again, even though h 3( ) = 7 . 

 

WARNING 2 repeat (applied to   f  ): Sometimes, the  

limit value 
  
lim
x a

f x( )  does not equal the function value 
 
f a( ) . § 

 

As in Example 7, observe that substituting x = 3  into x + 3( )  works. § 
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The existence (or value) of lim
x a

f x( )  need not depend on the  

existence (or value) of f a( ) . 
 

 

• Sometimes, it does help to know what f a( )  is when evaluating 
  
lim
x a

f x( ) . 

In Section 2.8, we will say that   f   is continuous at a  lim
x a

f x( ) = f a( ) , 

provided that 
  
lim
x a

f x( )  and 
 
f a( )  exist. We appreciate continuity, because we 

can then simply substitute x = a  to evaluate a limit, which was what we did when 

we applied the Basic Limit Theorem for Rational Functions in Part A. 
 

 

• In Examples 7 and 8, we dealt with functions that were not continuous at x = 3 , 

yet substituting x = 3  into x + 3( )  allowed us to evaluate the one- and two-sided 

limits at a = 3 . We will develop theorems that cover these Examples. We first need 

the following definitions. 

 

A neighborhood of a is an open interval along the real number line that is  

symmetric about a. 
 

For example, the interval 0, 2( )  is a neighborhood of 1. Since 1 is the 

midpoint of 0, 2( ) , the neighborhood is symmetric about 1. 

A punctured (or deleted) neighborhood of a is constructed by taking a 

neighborhood of a and deleting a itself. 
 

For example, the set 0, 2( ) \ 1{ } , which can be written as 0, 1( ) 1, 2( ) ,  

is a punctured neighborhood of 1. It is a set of numbers that are 

“immediately around” 1 on the real number line. 
 

• The notation 0, 2( ) \ 1{ }  indicates that we can construct it by taking 

the neighborhood 0, 2( )  and deleting 1. 
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“Puncture Theorem” for Limits of Locally Rational Functions 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a punctured neighborhood of x = a . 

Then, 
  
lim
x a

f x( ) = lim
x a

r x( ) = r a( ) . 

• To evaluate the limits, substitute (“plug in”)  x = a  into r x( ) , and  

evaluate r a( ) . 

 

• That is, if a function rule is given by a rational expression r x( )   

locally (immediately) around x = a , where a Dom r( ) , then  

evaluate the rational expression at a to obtain the limit of the  

function at a. 

Refer to Examples 7 and 8. Let r x( ) = x + 3 . Observe that r is a rational function, 

and 3 Dom r( ) . Both the g and h functions were defined by x + 3  locally 

(immediately) around x = 3 . More precisely, they were defined by x + 3  on some 

punctured neighborhood of x = 3 , say 2.9, 3.1( ) \ 3{ } . Therefore, 
 

  
lim
x 3

g x( ) = lim
x 3

r x( ) = r 3( ) = 3+ 3= 6 , and 

 

  
lim
x 3

h x( ) = lim
x 3

r x( ) = r 3( ) = 3+ 3= 6 . 

 

It is easier to write: 
 

  
lim
x 3

g x( ) = lim
x 3

x + 3( ) = 3+ 3= 6, and 

 

  
lim
x 3

h x( ) = lim
x 3

x + 3( ) = 3+ 3= 6 . 

 

The figure below refers to g, but it also applies to h. 

The dashed line segment at x = 3  reiterates the puncture there. 
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Why does the theorem only require that a function be locally rational about a? 

Consider the following Example. 
 

Example 9 (Limits are Local) 
 

Let 

  

f t( ) =
t + 2, t < 0

t , t 0
 . Evaluate 

  
lim

t 1
f t( ) . 

 

§ Solution 
 

Observe that f t( ) = t + 2  is the only rule that is relevant as t approaches 1 

locally from the left and from the right. We only consider values of t that 

are “immediately around” a = 1. “Limits are Local!” 
 

It is irrelevant that the rule f t( ) = t  is different, or that it is not rational. § 

The following definitions will prove helpful in our study of one-sided limits. 
 

 

A left-neighborhood of a is an open interval of the form c, a( ) , where c < a . 
 

A right-neighborhood of a is an open interval of the form a, c( ) , where c > a . 

A punctured neighborhood of a consists of both a left-neighborhood of a and  

a right-neighborhood of a. 
 

For example, the interval 0, 1( )  is a left-neighborhood of 1. It is a set of 

numbers that are “immediately to the left” of 1 on the real number line. 
 

The interval 1, 2( )  is a right-neighborhood of 1. It is a set of numbers that 

are “immediately to the right” of 1 on the real number line. 

 
 

We now modify the “Puncture Theorem” for one-sided limits.  
 

• Basically, when evaluating a left-hand limit such as 
  

lim
x a

f x( ) , we use the 

function rule that governs the x-values “immediately to the left” of a on the real 

number line.  
 

• Likewise, when evaluating a right-hand limit such as lim
x a+

f x( ) , we use the 

rule that governs the x-values “immediately to the right” of a. 
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Variation of the “Puncture Theorem” for Left-Hand Limits 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a left-neighborhood of x = a . 

Then, 
  

lim
x a

f x( ) = lim
x a

r x( ) = r a( ) . 

Variation of the “Puncture Theorem” for Right-Hand Limits 

Let r be a rational function, and let a Dom r( ) . 

Let f x( ) = r x( )  on a right-neighborhood of x = a . 

Then, lim
x a+

f x( ) = lim
x a+

r x( ) = r a( ) . 

 

 

Example 10 (Evaluating One-Sided and Two-Sided Limits of a Piecewise-Defined 

Function) 
 

Let 

  

f x( ) =
3, if x 0

2x2 , if 0 < x < 1

2x, if x > 1

 . 

Evaluate the one-sided and two-sided limits of   f   at 1 and at 0. 
 

§ Solution 

The graph of y = f x( )  is below. It helps, but it is not required to evaluate 

limits. Instead, we can evaluate limits of relevant function rules. 
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lim
x 1

f x( ) = lim
x 1

2x2

= 2 1( )
2

= 2

 

  The left-hand limit as x 1 : 

We use the rule 
  
f x( ) = 2x2 , because it 

applies to a left-neighborhood of 1,  

say 
 
0.9,1( ) . 

  

lim
x 1+

f x( ) = lim
x 1+

2x

= 2 1( )
= 2

 

The right-hand limit as x 1+ : 

We use the rule f x( ) = 2x , because it 

applies to a right-neighborhood of 1,  

say 
 
1,1.1( ) . 

  
lim
x 1

f x( ) = 2  

The two-sided limit as x 1: 

The left-hand and right-hand limits at 1 

exist, and they are equal, so the two-sided 

limit exists and equals their common value. 
  

  

lim
x 0

f x( ) = lim
x 0

3

= 3

 

  The left-hand limit as x 0 : 

We use the rule f x( ) = 3 , because it 

applies to a left-neighborhood of 0,  

say 
 

0.1, 0( ) . 

  

lim
x 0+

f x( ) = lim
x 0+

2x2

= 2 0( )
2

= 0

 

  The right-hand limit as x 0 + : 

We use the rule f x( ) = 2x2 , because it 

applies to a right-neighborhood of 0,  

say 0, 0.1( ) . 

lim
x 0

f x( )  

does not exist (DNE) 

  The two-sided limit as x 0 : 

The left-hand and right-hand limits at 0 

exist, but they are unequal, so the  

two-sided limit does not exist (DNE). 
 

 

              
   § 
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PART D: NONEXISTENT LIMITS 
 

Example 11 (Nonexistent Limits) 
 

Let 

  

f x( ) = sin
1

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. Ask your instructor if s/he might have you 

even attempt to draw this. In a sense, the classic sine wave is being turned 

“inside out” relative to the y-axis. 
 

 
 

 

 

As x approaches 0 from the right  

(or from the left), the function values 

oscillate between 1 and 1.  

They do not approach a single real 

number. Therefore, 

  
lim

x 0+
f x( )  does not exist (DNE), 

  
lim

x 0
f x( )  does not exist (DNE), and  

lim
x 0

f x( )  does not exist (DNE). 

 

 

Note 1: The y-axis is not a vertical asymptote (VA) here, because the graph 

and the function values are not “exploding” without bound around the  

y-axis. 
 

Note 2: Here is an example of how the numerical / tabular approach 

introduced in Part B might lead us astray: 
 

x  0
+

 
1

3
 

1

2
 

1
 

  

f x( ) = sin
1

x
 

 

0 (?)

NO!
 0 0 0 

§ 
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Example 12 (Infinite and/or Nonexistent Limits) 
 

Let 
  
f x( ) =

1

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and lim

x 0
f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. We will discuss this graph in later sections. 
 

 
 

 
 

As x approaches 0 from the right, the 

function values increase without bound.  
 

Therefore, 
  

lim
x 0+

f x( ) = . 

 

As x approaches 0 from the left, the  

function values decrease without bound.  
 

Therefore, 
  

lim
x 0

f x( ) = . 

 

 and  are mismatched. 
 

Therefore, lim
x 0

f x( )  does not exist (DNE). 

In fact, all three limits do not exist. For example, 
  

lim
x 0+

f x( ) , does not 

exist, because the function values do not approach a single real number as 

x approaches 0 from the right. The expressions  and  indicate why the 

one-sided limits do not exist, and we write  and  where appropriate. § 

Example 13 (Infinite and Nonexistent Limits) 
 

Let 
  
f x( ) =

1

x2
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and 

  
lim
x 0

f x( ) . 

 

§ Solution 
 

The graph of y = f x( )  is below. Observe that   f   is an even function.
 

 

 

  
lim

x 0+
f x( ) = , 

  
lim

x 0
f x( ) = , and 

  
lim
x 0

f x( ) = . § 
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Example 14 (A Nonexistent Limit) 
 

Let 
 
f x( ) =

x

x
. Evaluate 

  
lim

x 0+
f x( ) , 

  
lim

x 0
f x( ) , and lim

x 0
f x( ) . 

 

§ Solution 
 

Note:   f   is not a rational function, but it is an algebraic function, since 

f x( ) =
x

x
=

x2

x
. 

 

Remember that: x =
x, if x 0

x, if x < 0
 . 

 

Then, 

  

f x( ) =
x

x
=

x

x
= 1, if x > 0

x

x
= 1, if x < 0

 , and 
  
f 0( )  is undefined. 

 

The graph of y = f x( )  is below. 
 

        
 

  
lim

x 0+
f x( ) = 1, 

  
lim

x 0
f x( ) = 1, and  

  
lim
x 0

f x( )  does not exist (DNE), 

due to the fact that the right-hand and left-hand limits are 

unequal. § 
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FOOTNOTES 
 

1. Limits do not require continuity. In Section 2.8, we will discuss continuity, a property of 

functions that helps our lovers run along the graph of a function without having to jump or 

hop. In Exercises 1-3, we could imagine the lovers running towards each other (one from the 

left, one from the right) while staying on the graph of   f   and without having to jump or hop, 

provided they were placed on appropriate parts of the graph. Sometimes, the “run” requires 

jumping or hopping. Let 

   

f x( ) =
0, if x is a rational number x( )
x, if x is an irrational number x ;  really, x \( )

 . 

It turns out that 
  
lim
x 0

f x( ) = 0 . 

 

2. Misconceptions about limits.  

See “Why Is the Limit Concept So Difficult for Students?” by Sally Jacobs in the Fall 2002 

edition (vol.24, No.1) of The AMATYC Review, pp.25-34. 

• Students can be misled by the use of the word “limit” in real-world contexts. For example, a 

speed limit is a bound that is not supposed to be exceeded; there is no such restriction on 

limits in calculus.  

• Limit values can sometimes be attained. For example, if a function   f   is continuous at 

 x = a  (see Examples 1-3), then the function value takes on the limit value at  x = a . 

• Limit values do not have to be attained. See Examples 7 and 8. 
 

Observations: 

• The dynamic view of limits, which involves ideas of motion and “approaching”  

(for example, our lovers), may be more accessible to students than the static view preferred 

by many textbook authors. The static view is exemplified by the formal definitions of limits 

we will see in Section 2.7. The dynamic view greatly assists students in transitioning to the 

static view and the formal definitions. 

• Leading mathematicians in 18
th
- and 19

th
-century Europe heatedly debated ideas of limits. 

 

3. Multivariable calculus. When we go to higher dimensions, there may be more than two 

possible approaches (not just left-hand and right-hand) when analyzing limits at a point! 

Neighborhoods can take the form of disks or balls. 
 

4. An example where a left-hand limit exists but not the right-hand limit.  

Let 

  

f x( ) =
x + x 1+ x( )

x
sin

1

x
=

x sin
1

x
,         if x < 0

2 + x( )sin
1

x
,   if x > 0

 . 

 

 

Then, 
  

lim
x 0

f x( ) = 0 , which can be proven by the Squeeze (Sandwich) Theorem in  

Section 2.6. However, lim
x 0+

f x( )  does not exist (DNE).  

See William F. Trench, Introduction to Real Analysis (free online at: 

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF), p.39. 
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SECTION 2.2: 

PROPERTIES OF LIMITS and ALGEBRAIC FUNCTIONS 
 

 

LEARNING OBJECTIVES 
 

     • Know properties of limits, and use them to evaluate limits of functions,  

     particularly algebraic functions. 

     • Understand how the properties of limits justify the limit theorems in Section 2.1. 

     • Be able to use informal Limit Form notation to analyze limits. 

     • Learn to exercise caution when handling Limit Form 0even( ) . 

 

 

PART A: PROPERTIES OF LIMITS / THE ALGEBRA OF LIMITS; 

LIMIT FORMS 
 

Assume that: lim
x a

f x( ) = L
1
, and lim

x a
g x( ) = L

2
, where a, L

1
, L

2
. 

 

1) The limit of a sum equals the sum of the limits. 
 

lim
x a

f x( ) + g x( ) = lim
x a

f x( ) + lim
x a

g x( )

= L
1
+ L

2

 

 

• We may refer to this as the Sum Rule of Limits. 
 

For example, as x a , if f x( ) 2  and g x( ) 3 , then f x( ) + g x( ) 5 . 

We can represent this informally using a Limit Form: Limit Form 2 + 3( ) 5 . 
 

WARNING 1: Limit Forms. There is no standard notation for Limit Forms, 

and they represent footnotes to the rigorous evaluation of limits. Different 

instructors may have different rules on when Limit Forms need to be written. 
 

 

2) The limit of a difference equals the difference of the limits. 
 

lim
x a

f x( ) g x( ) = lim
x a

f x( ) lim
x a

g x( )

= L
1

L
2

 

 

For example, Limit Form 5 3( ) 2 .  
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3) The limit of a product equals the product of the limits. 

  

lim
x a

f x( )g x( ) , or lim
x a

f x( )g x( ) = lim
x a

f x( ) lim
x a

g x( )

= L
1
L

2

 

For example, Limit Form 2 3( ) 6 . 

4) The limit of a quotient equals the quotient of the limits, 

if the limit of the divisor (or denominator) is not zero. 

lim
x a

f x( )
g x( )

, or lim
x a

f x( )
g x( )

=

lim
x a

f x( )

lim
x a

g x( )

=
L

1

L
2

, if L
2

0

 

 

For example, Limit Form 
6

2
3. 

 

5) The limit of a (positive integer) power equals the power of the limit. 

If n is a positive integer 
 
n +( ) , then: 

 

  

lim
x a

f x( )
n

= lim
x a

f x( )
n

= L
1( )

n

 

 

• This is a direct consequence of Property 3. For instance, 

  
lim
x a

x2
= lim

x a
xx = lim

x a
x( ) lim

x a
x( ) = lim

x a
x( )

2

. 

 

For example, Limit Form 2
constant 3( )( ) 8 . 

 

• The seemingly simpler statement Limit Form 23( ) 8  is also true, but it 

actually says something more powerful. It says that “something approaching 2” 

raised to an “exponent approaching 3” will approach 8. However, this idea 

falls apart when the base f x( )  approaches a negative number. It is true that 

Limit Form 2( )
constant 3( )( ) 8 , for example, but it is not true that 

Limit Form 2( )
3( ) 8 . Think about why 2( )

3.5
, or 2( )

7/2
 , is not a real 

number; we will address this issue in Part B. 
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6) The limit of a constant multiple equals the constant multiple of the limit. 

(“Constant Factors Pop Out.”) 

If  c , then:  

  

lim
x a

c f x( ) , or lim
x a

cf x( ) = c lim
x a

f x( )

= cL
1

 

 

For example, twice “something that approaches 3” will approach 6. 
 

• In multivariable calculus, if y is independent of x, then we can pop out y. 

Note: Properties 5, 6, and 7 (upcoming) are generalized in Section 2.8, Footnote 6. 
 

 

 

Limit Operators are Linear 
 

Properties 1), 2), and 6) imply that limit operators are linear operators. 

This means that we can take limits term-by-term, and then  

constant factors “pop out,” assuming the limits exist. (See Footnote 1.) 
 

• This is a key property that is shared by differentiation and integration 

operators in later chapters. 
 

 

Properties 1-6, building on the elementary rules 
  
lim
x a

c = c  and 
  
lim
x a

x = a  

 
a, c( ) , justify the Basic Limit Theorem for Rational Functions in  

Section 2.1. A demonstration follows. 
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Example 1 (Demonstrating How the Properties of Limits Justify the Basic Limit 

Theorem for Rational Functions) 
 

Evaluate lim
x 4

3x2 1

x + 5
 using the properties of limits in this section. 

 

§ Solution 
 

lim
x 4

3x2 1

x + 5
=

lim
x 4

3x2 1( )
lim
x 4

x + 5( )
by Property 4 on quotients( )

=

lim
x 4

3x2 lim
x 4

1

lim
x 4

x + lim
x 4

5
by Properties 1, 2 on sums, differences( )

=

lim
x 4

3x2 1

4 + 5
by elementary rules( )

=

3 lim
x 4

x2( ) 1

4 + 5
by Property 6 on constant multiples( )

=

3 lim
x 4

x( )
2

1

4 + 5

by Property 5 on powers, or

by Property 3 on products: x2
= xx

=
3 4( )

2

1

4 + 5
by elementary rules; see Note 1 below( )

=
47

9

 

Note 1: Observe that the limit can be evaluated by simply substituting x = 4  

into 
  

3x2 1

x + 5
, as the Basic Limit Theorem for Rational Functions suggests. 

 

Note 2: Observe that all indicated limits exist and there are no zero 

denominator issues, so we could apply Properties 1-6. Our use of the “= ” 

sign is appropriate here, though we often use it informally even when the 

limit turns out not to exist. § 
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Properties of One-Sided Limits 
 

Properties 1-6 extend naturally to one-sided limits. For example,  
 

  
lim

x a
f x( ) + g x( ) = lim

x a
f x( ) + lim

x a
g x( ) , and 

  
lim

x a+
f x( ) + g x( ) = lim

x a+
f x( ) + lim

x a+
g x( ) ,  

 

provided the indicated limits exist. 

 

 

PART B: PROPERTIES OF LIMITS OF ROOTS 
 

We now motivate Property 7, a much more complicated property on roots. 
 

Example 2 (Evaluating the Limit of a Square Root) 
 

Evaluate 
  
lim
x 1

x , 
  
lim

x 1
x , 

  
lim

x 0+
x , 

  
lim

x 0
x , and 

  
lim
x 0

x . 

 

§ Solution 
 

The graph of y = x  is below. We emphasize the interesting cases where 

a = 0 . 
 

     
 

  
lim
x 1

x = 1 = 1, evidently. 

 

  
lim

x 1
x  does not exist (DNE). 

 

• Actually, this is not because 1  is imaginary. It is because there is 

no punctured neighborhood of x = 1 on which x  is real. There is 

no way to approach x = 1 through the domain of   f , where   f   is the 

(principal) square root function. 
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Review Section 2.1, Example 6. Dom f( ) = 0, )  here, as well. 

 

lim
x 0+

x = 0 = 0. 

 

  
lim

x 0
x  does not exist (DNE). 

 

Therefore, 
  
lim
x 0

x  does not exist (DNE). § 

 

 

Example 3 (Evaluating the Limit of a Cube Root) 
 

Evaluate 
  
lim

x 1
x

3
 and 

  
lim
x 0

x
3

. 

 

§ Solution 
 

The graph of y = x3  is below.  
 

 
 

The domain of the cube root function is  . The (principal) cube roots of 

negative real numbers are (negative) real numbers; this is a key difference 

from square roots. It turns out that substituting x = a  works here for both 

limits. 
 

lim
x 1

x
3

= 13
= 1. 

 

  
lim
x 0

x
3

= 0
3

= 0 . 

§ 

 

Property 7 now extends our observations from Examples 2 and 3 to more  

general radicands, not just x, and also to general types of roots. 
 

WARNING 2: In theory, even roots tend to require more thought than odd roots. 
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As before, assume 
  
lim
x a

f x( ) = L
1
. 

 

7) The limit of a root equals the root of the limit … sometimes. 

If n is a positive integer 
 
n +( ) , and either 

 

• (n is odd), or  
 

• (n is even, and 
  
L

1
> 0 ), then: 

  

lim
x a

f x( )n = lim
x a

f x( )n

= L
1

n

 

 

For example, Limit Form 4( ) 2 , and Limit Form 83( ) 2 . 

(The index of a radical, such as the “3” in 83 , is assumed to be a constant.) 
 

WARNING 3: The Limit Form 0even
, corresponding to L1 = 0 , could either yield 

a limit value of 0 or a limit that does not exist (DNE). Informally, 

Limit Form 0even( ) 0 or “DNE,” but further analysis is required to determine 

which is the case.  
 

Limit Forms such as 1  and 54  imply that the limits do not exist (DNE). 
 

Property 7* below elaborates on limits of even roots. 
 

7*) Properties of Limits of Even Roots 
 

Let n be a positive even integer.  
 

• If 
  
L

1
> 0 , then lim

x a
f x( )n = L

1
n  by Property 7. 

 

• If 
  
L

1
< 0 , then 

  
lim
x a

f x( )n  does not exist (DNE). The one-sided limits 

  
lim

x a+
f x( )n  and 

  
lim

x a
f x( )n  also do not exist (DNE). 

 

• If 
  
L

1
= 0 , then 

  
lim
x a

f x( )n =  0 or “DNE.” In particular, 
 

•• 
  
lim
x a

f x( )n = 0 f x( ) 0  on some punctured neighborhood of a; 

change this to a right-neighborhood for a right-hand limit and a  

left-neighborhood for a left-hand limit.  
 

•• Otherwise, the limit does not exist (DNE). 
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PART C: LIMITS OF ALGEBRAIC FUNCTIONS 
 

Our understanding of Property 7 will now allow us to extend our Basic Limit 

Theorem for Rational Functions to more general algebraic functions. 
 

Remember that: 

• all constant functions are also polynomial functions,  

• all polynomial functions are also rational functions, and 

• all rational functions are also algebraic functions. 
 

 

Basic Limit Theorem for Algebraic Functions 
 

If   f   is an algebraic function, 
  
a Dom f( ) , and  

no radicand of any even root approaches 0 in the limit 

(informally, the Limit Form 0even
 does not appear), 

 

then 
  
lim
x a

f x( ) = f a( ) . 

 

• To evaluate the limit, substitute (“plug in”)  x = a , and evaluate 
 
f a( ) . 

 

If the Limit Form 0even
 does appear, this substitution method might still 

work, but further analysis is required. How is the radicand approaching 0? 
 

 

Example 4 (Evaluating the Limit of an Algebraic Function) 
 

Let 

  

f x( ) =
x 4

3

3x 9( )
2
+ x + 3 . Evaluate lim

x 2
f x( ) . 

 

§ Solution 
 

f   is an algebraic function. Observe that: 

f x( )  is real  x + 3 0  and  3x 9( )
2

0 . As a result, 

   
Dom f( ) = x x 3 and x 3{ } = 3, ) \ 3{ } = 3, 3) 3,( ) . 
We observe that 

  
2 Dom f( ) , and the Limit Form 0even

 will not appear, so 

we substitute (“plug in”)   x = 2  and evaluate 
  
f 2( ) . 

 

TIP 1: As a practical matter, when we evaluate the limit of an algebraic 

function, we often substitute immediately and see what happens.  

(We might not have time to find the domain.) If we end up with a  

real number, and if any 0even
 Limit Forms encountered only yield 0  

(not “DNE”), then that number will be the limit value. 
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lim
x 2

f x( ) = lim
x 2

x 4
3

3x 9( )
2
+ x + 3

=
2( ) 43

3 2( ) 9
2
+ 2( ) + 3

=
23

9
+ 5

=
2

3

9
+ 5,  or  5

2
3

9
,  or  

9 5 2
3

9

 

§ 

We confront the Limit Form 0even
 in the following Examples. 

Example 5  (Resolving the Limit  Form 0even )  

Evaluate 
  
lim

r 1+
3r 2 3 . 

 

§ Solution 
 

• The radicand   3r 2 3 is rational. By the Extended Limit Theorem for 

Rational Functions in Section 2.1, we find that 
  
lim

r 1+
3r 2 3( ) = 0, so we 

are facing the Limit Form 0even
.  

 

• We use Property 7*. We will show that   3r 2 3 0  on a right-

neighborhood of r = 1, and then 
  
lim

r 1+
3r 2 3 = 0 . Otherwise, the limit 

would not exist (DNE). 

 

• The graph of   y = 3r 2 3 follows. It is an upward-opening parabola in the 

ry-plane. The zeros of   3r 2 3, 1 and 1, correspond to the r-intercepts.  

The domain of   3r 2 3  consists of the r-values that make   y = 3r 2 3 0 . 

It corresponds to the parts of the parabola that lie above or on the r-axis. 

This is important, because we are only allowed to approach r = 1 through 

this domain (in purple). In fact, here, we can approach r = 1 from the right. 
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Therefore, 
  
lim

r 1+
3r 2 3 = 0 . 

 

 

(For more, see Section 2.7: 

Nonlinear Inequalities in the 

Precalculus notes.) 

 

Here’s a non-graphical approach. As   r 1+ , r > 1. Now, 
 

r > 1

r 2
> 1

3r 2
> 3

3r 2 3> 0

 

 

 

Therefore, 
  
lim

r 1+
3r 2 3 = 0 . 

 

The graph of   y = 3r 2 3  is below. Observe that the graph disappears 

where   3r 2 3< 0; this is where we fall outside the domain (in purple).  

 
§ 



(Section 2.2: Properties of Limits and Algebraic Functions)  2.2.11. 

 

Example 6 (Evaluating a Limit Using Example 5 and Properties of Limits) 
 

Evaluate 
  
lim

r 1+
7 3r 2 3 + 5( ) . 

 

§ Solution 
 

   

   

lim
r 1+

7 3r 2 3 + 5( ) = lim
r 1+

7 3r 2 3 + lim
r 1+

5 by Prop.1 on sums( )

= 7 lim
r 1+

3r 2 3 + 5
by Prop. 6 on constant

multiples,  elem. rules

= 7 0( ) + 5 by Example 5( )
= 5

 

§ 
 

Example 7  (Resolving the Limit  Form 0even )  
 

Evaluate lim
x 7

x + 7( )
2

. 

 

§ Solution 1 
 

As x 7 , 
  

x + 7( )
2

0 . 

x + 7( )
2

0  for all real x 

 
x( ) . Therefore,  

 

  
lim

x 7
x + 7( )

2

= 0 . § 

 

 

 

 

 
 

 

 

§ Solution 2 
 

 

lim
x 7

x + 7( )
2

= lim
x 7

x + 7

= 7 + 7

= 0

 

 

Below is the graph of 

  
y = x + 7( )

2

, or 
  
y = x + 7 . 

 

 §

FOOTNOTES 
 

1. Limits of linear combinations. The fact that limit operators are linear implies that the limit 

of a linear combination of f x( )  and g x( )  equals the linear combination of the limits: 

lim
x a

c f x( ) + d g x( ) = c lim
x a

f x( ) + d lim
x a

g x( )

= cL
1
+ dL

2
c, d( )
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SECTION 2.3: LIMITS AND INFINITY I 
 

 

LEARNING OBJECTIVES 
 

     • Understand “long-run” limits and relate them to horizontal asymptotes of graphs. 

     • Be able to evaluate “long-run” limits, possibly by using short cuts for polynomial, 

     rational, and/or algebraic functions. 

     • Be able to use informal Limit Form notation to analyze “long-run” limits. 

     • Know how to use “long-run” limits in real-world modeling. 
 

 

PART A: HORIZONTAL ASYMPTOTES (“HA”s) and “LONG-RUN” LIMITS 

 

A horizontal asymptote, which we will denote by “HA,” is a horizontal line that a 

graph approaches in a “long-run” sense. We graph asymptotes as dashed lines. 

 

“Long-Run” Limits 
 

We will informally call 
  
lim

x
f x( )  the “long-run” limit to the right and 

lim
x

f x( )  the “long-run” limit to the left. 

 

• We read lim
x

f x( )  as “the limit of f x( )  as x approaches infinity.” 

 

 

Using “Long-Run” Limits to Find Horizontal Asymptotes (HAs) 
 

        The graph of 
 
y = f x( )  has a horizontal asymptote (HA) at y = L  

 
L( )  

  lim
x

f x( ) = L,  or lim
x

f x( ) = L( ) . 

 

         • That is, the graph has an HA at y = L   one (or both) of the “long-run” 

         limits is L. 
 

The graph can have 0, 1, or 2 HAs. The following property implies that,  

if   f   is rational, then its graph cannot have two HAs. 
 

“Twin (Long-Run) Limits” Property of Rational Functions 
 

         If   f   is a rational function, then 

  
lim

x
f x( ) = L lim

x
f x( ) = L  L( ) .  

 

         • That is, if f x( )  has a “long-run” limit value  L  as x “explodes” in one 

         direction along the x-axis, then L must also be the “long-run” limit value  

         as x “explodes” in the other direction.  
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Example 1 (The Graph of the Reciprocal Function has One HA.) 

Let 
  
f x( ) =

1

x
. Evaluate lim

x
f x( )  and lim

x
f x( ) , and identify any 

horizontal asymptotes (HAs) of the graph of y = f x( ) .  
 

§ Solution 
 

Let’s use the numerical / tabular approach: 
 

x   100   10   1   1  10  100  

  
f x( ) =

1

x
  0  

 

1

100
 

 

1

10
 1 1  

 

1

10
 

 

1

100
  0  

 

• Apparently, as x increases without bound, 
 
f x( )  approaches 0.  

That is, 
  
lim

x
f x( ) = 0 . 

 

• Also, as x decreases without bound, f x( )  approaches 0. 

That is, 
  

lim
x

f x( ) = 0. 

 

• Either limit statement implies that the graph of y = f x( )  below has a 

horizontal asymptote (HA) at y = 0 , the x-axis. We will discuss the 

vertical asymptote (“VA”) at the y-axis in Section 2.4. 
 

            

Note: The graph of 
  
y =

1

x
 is a “rotated” hyperbola, a type of conic section 

with two branches. Its asymptotes are the coordinate axes (the x- and  

y-axes). § 
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x can only approach  from the left and  from the right. 
 

 
 

(It is now harder to apply our motto, “Limits are Local.” Abstractly, we 

could consider the behavior of   f   on a sort of left-neighborhood of , or on 

a sort of right-neighborhood of .) 
 

• In Example 1, as x , y  or f x( )  approaches 0 from above (that is, from 

greater values). This is denoted by f x( ) 0+ . In Section 2.4, we will see the 

need for this notation, as opposed to just f x( ) 0 , particularly when a limit 

analysis is a piece of a larger limit problem. 
 

• Likewise, as x , y  or f x( )  approaches 0 from below (that is, from  

lesser values). This is denoted by f x( ) 0 . 

 

Example 1 gave us the most basic cases of the following Limit Forms. 
 

 

 

Limit Form 
1

0+ ,  and  Limit Form 
1

0  

 

• It is often sufficient to simply write “0” as opposed to “0+ ” or “0 ,” 

especially if it is your “final answer” to a given limit problem. In Example 6, 

we will have to write “0,” as neither 0+  nor 0  would be appropriate. 
 

The following property covers variations on such Limit Forms. 
 

Rescaling Property of Limit Forms 
 

The following rules apply to Limit Forms that do not yield a nonzero real 

number. They must yield 0 (perhaps as 0+  or 0 ), , , or “DNE.” 
 

• If the Limit Form is multiplied or divided by a positive real number,  

then the resulting Limit Form yields the same result as the first. 
 

• If the Limit Form is multiplied or divided by a negative real number,  

then the resulting Limit Form yields the opposite result.  
 

(If the first Limit Form yields “DNE,” then so does the second. 

Also, 0+  and 0  are opposites.) 
 

In Section 2.2, Limit Property 6 on constant multiples told us how to 

rescale Limit Forms that do yield a nonzero real number. For example,  

twice a Limit Form that yields 3 will yield 6. 
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Example Set 2 (Rescaling Limit Forms) 
 

  

Limit Form 
2

0+

Limit Form 0

  

Limit Form 
3

0

Limit Form 
4.1

0+

 

 

In fact, Limit Form 
c

0  for all real c 
 
c( ) . 

§ 

 

Example 3 (A Graph with Two HAs; Revisiting Example 14 in Section 2.1) 

Let 
 
f x( ) =

x

x
.  

Identify any horizontal asymptotes (HAs) of the graph of y = f x( ) .  
 

§ Solution 
 

We obtained the graph of y = f x( )  below in Section 2.1, Example 14. 
 

       
 
 

Observe that 
  
lim

x
f x( ) = 1, and 

  
lim

x
f x( ) = 1. 

Therefore, the graph has two HAs, at   y = 1 (a “right-hand HA”) and at 

  y = 1 (a “left-hand HA”).  

• Usually, when a graph exhibits this kind of flatness and coincides 

with the HAs, we don’t even bother drawing the dashed lines. 
 

Although   f   is piecewise rational, it is not a rational function overall, so the 

“Twin (Long-Run) Limits Property” does not apply. § 
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Example 4 (A Graph with No HAs) 
 

Let 
  
f x( ) = x + 3. 

 

 
 

  
lim

x
f x( ) = , and 

  
lim

x
f x( ) = . 

 

Neither long-run limit exists, so the 

graph has no HAs. 
 

Because of these nonexistent limits, the 

“Twin (Long-Run) Limits Property” 

does not apply. § 

Example 5 (A Graph with No HAs) 
 

Let 
  
f x( ) = sin x . 

 

 

 

The graph has no HAs, because 

lim
x

f x( )  and lim
x

f x( )  do not exist 

(DNE). This is because the function 

values oscillate between 1 and 1 and 

do not approach a single real number as 

x , nor as x . We cannot 

even say that the limit is  or . § 

Example 6 (A Graph That Crosses Over Its HA) 
 

Let 
  
f x( ) =

sin x

x
. 

 

 

The graph has one HA, at y = 0 , since 

  
lim

x
f x( ) = 0 , and 

  
lim

x
f x( ) = 0. 

These are proven using the Squeeze 

(Sandwich) Theorem from Section 2.6. 

A graph can cross over its HA; here, it 

happens infinitely many times! 
 

• HAs relate to long-run behaviors of 

f x( ) , not local behaviors. 
 

• Note: In Section 3.4, we will show 

why the hole at 0, 1( )  is important! § 



(Section 2.3: Limits and Infinity I)  2.3.6 
 

PART B : "LONG - RUN" LIMIT RULES FOR  
c

x
k

 

 

The following rules will help us evaluate “long-run” limits of algebraic functions. 

Observe that 
1

x
 is a basic example of 

c

xk
. 

 

   
lim

x
xk

= k +( )  

 

"Long-Run" Limit Rules for 
c

xk
 

 

If c is a real number and k is a positive rational number c , k +( ) , 
then: 

 

• 
  
lim

x

c

xk
= 0 , because Limit Form 

c
0 . 

 

• lim
x

c

xk
= 0 , if  x

k
 is real for x < 0 , because Limit Form 

c

±
0 ; 

otherwise, 
  

lim
x

c

xk
 does not exist (DNE). 

  
 

WARNING 1: The “DNE” case arises for a “long-run” limit as x  when the 

denominator of 
c

xk
 involves an even root. 

 

• What about other values of k? See the Exercises for a case where   k < 0 .  

See Footnote 1 on positive irrational values of k. 
 

Example 7  (Applying the "Long - Run" Limit Rules for 
c

xk )  

 

Let f x( ) =
1

x2
. 

 

 

lim
x

1

x2
= 0 , since Limit Form 

1
0+ . 

  
lim

x

1

x2
= 0, since Limit Form 

1
0+ . 

§ 
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Example 8  (Applying the "Long - Run" Limit Rules for 
c

xk )  

 

Let f x( ) =
x3

. 

 

 

lim
x x3

= 0 , since Limit Form 0 . 

  
lim

x x3
= 0 , since Limit Form 0+ . § 

 

Example 9  (Applying the "Long - Run" Limit Rules for 
c

xk )  

 

Let f x( ) =
1

2 x3( )
=
1 / 2( )

x1/3
. 

 

 

  
lim

x

1 / 2( )
x1/3

= 0 , since Limit Form 
1 / 2

0+ . 

  
lim

x

1 / 2( )
x1/3

= 0 , since Limit Form 
1 / 2

0 . 

Observe that x1/3 , or x3 , is real (and negative) 

for all x < 0 , so the desired limit is 0. 

Furthermore, we can say it is 0 , since 

x1/3  as x . §
 

Example 10  (Applying the "Long - Run" Limit Rules for 
c

xk )  

 

Let f x( ) =
2

x34
=
2

x3/4
. 

 

 

  
lim

x

2

x3/4
= 0 , since Limit Form 

2
0+ . 

  
lim

x

2

x3/4
 does not exist (DNE); see Footnote 2. 

Observe that   x
3/4

, or x34
, involves an  

even root, so it is not real for all x < 0 . §
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PART C: “LONG-RUN” LIMITS OF POLYNOMIAL FUNCTIONS 
 

Constant functions are the only polynomial functions whose graphs have an HA. 
 

“Long-Run” Limits of Constant Functions 
 

If  c , then: 
  
lim

x
c = c , and 

  
lim

x
c = c . 

 

The graph of  y = c  has itself as its sole HA. 

 

Example 11 (The Graph of a Constant Function Has One HA) 
 

  
lim

x
2 = 2, and 

  
lim

x
2 = 2 . 

 

 
 

The graph has an HA at y = 2 , but we omit the 

dashed line here. §

 

On the other hand, a nonconstant polynomial function either increases or 

decreases without bound (it “explodes”) in the “long run” to the right. It also 

“explodes” to the left. Its graph has no HAs. 
 

“Long-Run” Limits of Nonconstant Polynomial Functions 
 

If   f   is a nonconstant polynomial function, then: 
 

  
lim

x
f x( ) =  or , and 

  
lim

x
f x( ) =  or . 

 

The graph of y = f x( )  has no HAs. 
 

• In Example 4, we looked at 
  
f x( ) = x + 3. (Granted, “explosive” may be 

too strong a term for the “long-run” behavior of that linear function   f .) 
 

• The following short cut will help us determine whether a “long-run” limit 

is  or . 
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“Dominant Term Substitution (DTS)” Short Cut for Polynomial Functions 
 

Let   f   be a polynomial function. The “long-run” limits of f x( )  are  

the same as those of its dominant term, which is the leading term.  

We substitute by replacing f x( )  with its dominant term. 
 

• For more on dominant terms, see Footnote 4. 
 

• This technique can be extended carefully to other functions, as we  

will see. (See Part E and Footnotes 5 and 6 for pitfalls.)  
 

This short cut is justified by factoring and the following: 
 

 
Limit Form  1( ) . 

 

WARNING 2: “DTS” is used to evaluate “long-run” limits, not limits at a point. 
 

Example 12 (Evaluating a “Long-Run” Limit of a Polynomial Function) 
 

Evaluate lim
x

x8 x6( ) . 
 

§ Solution 1 (Using the “DTS” Short Cut) 
 

There is a tension between the two terms,   x
8
 and   x6 , because   x

8
 as 

 x , while   x6 . (Review the “long-run” behavior of monomials 

such as these and their graphs in Section 2.2 of the Precalculus notes.) 
 

• In Section 2.5, we will see that Limit Form  ( )  is 

indeterminate; further analysis is required. 
 

The leading term,   x
8
, dictates the “long-run” behavior of their sum, 

because its magnitude “overwhelms” the magnitude of x6  in the  

“long run.” (See Footnotes 3 and 4.) The graph of y = x8 x6  below shares 

the “long-run” upward-opening bowl shape that the graph of y = x8  does. 
 

WARNING 3:   x
8
 is the leading term because it is the term of 

highest degree, not because it is written first. 
 
 

Applying the “DTS” short cut: 
 

  

lim
x

x8 x6( ) = lim
x

x8

=
 

 
 § 
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§ Solution 2 (Using a Factoring Method to Rigorously Justify “DTS”) 
 

We begin by factoring out the leading term x8( ) , not the GCF ± x6( ) . 
 

   

lim
x

x8 x6( ) = lim
x

x8 1
x6

x8

= lim
x

x8 1
1

x2

1( )

=
 

 

 

As  x ,   x
8

. By Part B, 

  

1

x2
0 , and thus 

  

1
1

x2
1. 

Then, Limit Form 1( ) . 

§ 
 

 

PART D: “LONG-RUN” LIMITS OF RATIONAL FUNCTIONS 
 

Let   f   be a rational function. The “Twin (Long-Run) Limits” Property from  

Part A implies that the graph of y = f x( )  can have no HAs or exactly one HA. 
 

“Long-run” limits of f x( )  can be found rigorously by using the  

“Division Method” below. It is related to, but easier to apply than, our  

Factoring Method from Example 12. 
 

“Division Method” for Evaluating “Long-Run” Limits of Rational Functions 
 

Let 

 

f x( ) =
N x( )
D x( )

, where the numerator N x( )  and the denominator D x( )   

are nonzero polynomials in x. Divide (each term of) N x( )  and D x( )  by 

the highest power of x (the power of x in the leading term) in the 

denominator 
 
D x( ) . The “long-run” limits of the resulting expression  

will be the same as those of f x( ) . 
 

• This procedure ensures that the new denominator will approach a  

nonzero real number, namely the leading coefficient of 
 
D x( ) . 

The overall “long-run” limits will then be easy to find. 
 

WARNING 4: The “Division Method” is used to evaluate “long-run” 

limits, not limits at a point. Students often forget this. 
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By comparing the degrees of N x( )  and D x( ) , denoted by deg N x( )( )  and 

deg D x( )( ) , we will categorize rational functions into three cases, each with its 

own short cut for identifying HAs and/or evaluating “long-run” limits.  
 

 

Case 1: Equal Degrees 
 

If 
  
deg N x( )( ) = deg D x( )( ) , then the sole HA of the graph of y = f x( )   

is at 
  
y = L L 0( ) , where 

  

L =
the leading coefficient of  N x( )
the leading coefficient of  D x( )

,  

the ratio of the leading coefficients. Also, 
 

  
  
lim

x
f x( ) = L , and 

  
lim

x
f x( ) = L . 

 

Example 13 (Evaluating “Long-Run” Limits of a Rational Function; 

Case 1: Equal Degrees) 
 

Evaluate lim
x

f x( )  and lim
x

f x( ) , where 
  
f x( ) =

4x3
+ x 1

5x3 2x
. 

 

§ Solution 1 (Using the Short Cut for Case 1) 
 

Let N x( ) = 4x3
+ x 1 and D x( ) = 5x3 2x . They both have degree 3. 

The ratio of their leading coefficients is 
4

5
 (or 0.8), so y =

4

5
 is the  

sole HA for the graph of y = f x( )  below.  
 

Also, lim
x

f x( ) =
4

5
, and lim

x
f x( ) =

4

5
. 

 

 

§ 
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§ Solution 2 (Using the “Division Method” to Rigorously Justify the Short Cut) 
 

f x( ) =
nonconstant polynomial in x

nonconstant polynomial in x
, so both of its “long-run” limits will 

have Limit Form 
±

±
. This is simply written as , since further analysis 

is required, anyway. In Section 2.5, we will discuss indeterminate forms 

such as this. 
 

The “Division Method” tells us to divide (each term of) the numerator and 

the denominator by x3 , the highest power of x in the denominator. 
 

lim
x

f x( ) = lim
x

4x3
+ x 1

5x3 2x
Indeterminate Limit Form 

= lim
x

4x3

x3
+

x

x3

1

x3

5x3

x3

2x

x3

= lim
x

4 +
1

x2

0

1

x3

0

5
2

x2

0

WARNING 5 :

When applying Part B,

remember the arrows!

=
4

5

 

 

By the “Twin (Long-Run) Limits” Property of Rational Functions, 

lim
x

f x( ) =
4

5
, also, and the graph of y = f x( )  has its sole HA at y =

4

5
. 

 

We can also show that 
  

lim
x

f x( ) =
4

5
 by using a very similar solution. § 
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§ Solution 3 (Using a Factoring Method to Rigorously Justify the Short Cut) 
 

In Example 12, we factored the leading term out of a polynomial.  

Here, we will do the same to the numerator and the denominator. 
 

lim
x

4x3
+ x 1

5x3 2x
= lim

x

4x3 1+
x

4x3

1

4x3

5x3 1
2x

5x3

= lim
x

4 x3

5 x3

4

5

1+
1

4x2

0

1

4x3

0

1
2

5x2

0

1( )

=
4

5

 

 

By the “Twin (Long-Run) Limits” Property of Rational Functions, 

  
lim

x
f x( ) =

4

5
, also, and the graph of y = f x( )  has its sole HA at 

  
y =

4

5
. 

 

The “DTS” short cut can be modified as follows. If we replace the 

numerator and the denominator with their dominant terms,   4x3
 and 5x3 , 

respectively, then we can simply take the “long-run” limits of the result. 
 

• The idea is that f x( )  behaves like 
  

4x3

5x3
, or 

4

5
, in the “long run.” 

The following is informal, and pitfalls of this “DTS” short cut will be seen 

in Part E and Footnotes 5 and 6. 
 

     

  

lim
x

f x( ) = lim
x

4x3
+ x 1

5x3 2x

= lim
x

4x3

5x3

=
4

5

 

 
 

  
lim

x
f x( ) =

4

5
  

by using a very similar solution. 

§ 
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Case 2: “Bottom-Heavy” in Degree 
 

If deg N x( )( ) < deg D x( )( ) , then   f   is a proper rational function, and the 

sole HA of the graph of y = f x( )  is at y = 0 , the x-axis. Also, 
 

  
lim

x
f x( ) = 0 , and 

  
lim

x
f x( ) = 0. 

 

Example 14 (Evaluating “Long-Run” Limits of a Rational Function; 

Case 2: “Bottom-Heavy” in Degree) 
 

Evaluate lim
x

f x( )  and lim
x

f x( ) , where 
  
f x( ) =

x2 3

x3
+ 4x2

+1
. 

 

§ Solution 1 (Using the Short Cut for Case 2) 
 

Let N x( ) = x2 3  and D x( ) = x3 + 4x2 +1. deg N x( )( ) < deg D x( )( ) , 

because 2 < 3 , so f x( )  is “bottom-heavy” in degree and is proper. 

Therefore, y = 0  is the sole HA for the graph of y = f x( ) .  
 

Also, 
  
lim

x
f x( ) = 0 , and 

  
lim

x
f x( ) = 0. § 

 

§ Solution 2 (Using the “Division Method” to Rigorously Justify the Short Cut) 
 

   

lim
x

f x( ) = lim
x

x2 3

x3
+ 4x2

+1
Indeterminate Limit Form 

= lim
x

x2

x3

3

x3

x3

x3
+

4x2

x3
+

1

x3

= lim
x

1

x

0

3

x3

0

1+
4

x
0

+
1

x3

0

= 0

 

 

By the “Twin (Long-Run) Limits” Property of Rational Functions, 

lim
x

f x( ) = 0, also, and the graph of y = f x( )  has its sole HA at   y = 0 . § 
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§ Solution 3 (Using a Factoring Method to Rigorously Justify the Short Cut) 
 

   

lim
x

x2 3

x3
+ 4x2

+1
= lim

x

x2

1( )

1
3

x2

x3

x( )

1+
4x2

x3
+

1

x3

= lim
x

1

x

0( )

1
3

x2

0

1+
4

x
0

+
1

x3

0

1( )

= 0

 

 

By the “Twin (Long-Run) Limits” Property of Rational Functions, 

lim
x

f x( ) = 0, also, and the graph of y = f x( )  has its sole HA at   y = 0 . 

The “DTS” short cut suggests that f x( )  behaves like 
  

1

x
 in the “long run.” 

 

  

lim
x

f x( ) = lim
x

x2 3

x3
+ 4x2

+1

= lim
x

x2

x3

= lim
x

1

x
Limit Form 

1

= 0
 

lim
x

f x( ) = 0  

by using a very similar solution. 

The graph of y = f x( )  (on the left) behaves like that of y =
1

x
 (on the right) 

and approaches their common HA at   y = 0  in the “long run.” 

       § 
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Case 3: “Top-Heavy” in Degree 
 

If deg N x( )( ) > deg D x( )( ) , then the graph of y = f x( )  has no HAs. 

Also, 

    
  
lim

x
f x( ) =  or , and 

    lim
x

f x( ) =  or . 

 

If we apply “DTS” to N x( )  and D x( )  by replacing them with their 

dominant terms, then the “long-run” limits of the result will be the same  

as the “long-run” limits of f x( ) . This was true in Case 1 and Case 2, 

as well. 
 

• If 
  
deg N x( )( ) = deg D x( )( ) +1, then the graph of y = f x( )  has a  

slant asymptote (“SA”), also known as an oblique asymptote. 
 

 

Example 15 (Evaluating “Long-Run” Limits of a Rational Function; 

Case 3: “Top-Heavy” in Degree) 
 

Evaluate lim
x

f x( )  and lim
x

f x( ) , where 
  
f x( ) =

5+ 3x2
+ 6x3

1+ 3x2
. 

 

§ Solution 1 (Using the “DTS” Short Cut) 
 

For convenience, we will rewrite the numerator and the denominator in 

descending powers of x: 
  
f x( ) =

6x3
+ 3x2 5

3x2
+1

. Let N x( ) = 6x3 + 3x2 5  

and D x( ) = 3x2 +1 . deg N x( )( ) > deg D x( )( ) , because 3 > 2 , so f x( )  is 

“top-heavy” in degree. The graph of y = f x( )  has no HAs. We know that 

the “long-run” limits will be infinite; we now specify them as  or . 
 

 

  

lim
x

f x( ) = lim
x

6x3
+ 3x2 5

3x2
+1

= lim
x

6x3

3x2

= lim
x

2x L.F. 2( )

=

   

  

lim
x

f x( ) = lim
x

6x3
+ 3x2 5

3x2
+1

= lim
x

6x3

3x2

= lim
x

2x L.F. 2 ( )( )
=

 

 

The idea is that f x( )  behaves like 2x  in the “long run.” § 
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§ Solution 2 (Using the “Division Method” to Rigorously Justify the Short Cut) 
 

   

   

lim
x

f x( ) = lim
x

6x3
+ 3x2 5

3x2
+1

Indeterminate Limit Form 

= lim
x

6x3

x2
+

3x2

x2

5

x2

3x2

x2
+

1

x2

= lim
x

6x + 3
5

x2

0

3 +
1

x2

0

Limit Form 
3

=

 

 

The “Twin (Long-Run) Limits” Property does not apply, because this limit 

is not real. When evaluating lim
x

f x( ) , the initial algebra is identical. 

 

   

   

lim
x

f x( ) = lim
x

6x3
+ 3x2 5

3x2
+1

Indeterminate Limit Form 

= lim
x

6x3

x2
+

3x2

x2

5

x2

3x2

x2
+

1

x2

= lim
x

6x + 3
5

x2

0

3 +
1

x2

0

Limit Form 
3

=

 

§ 
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§ Solution 3 (Using a Factoring Method to Rigorously Justify the Short Cut) 
 

   

lim
x

6x3
+ 3x2 5

3x2
+1

= lim
x

6

2( )

x3

x( )

1+
3x2

6x3

5

6x3

3

1( )

x2

1( )

1+
1

3x2

= lim
x

2x( )
( )

1+
1

2x

0

5

6x3

0

1+
1

3x2

0

1( )

Limit Form 1( )

=

 

 

The “Twin (Long-Run) Limits” Property does not apply, because this limit 

is not real. When evaluating lim
x

f x( ) , the initial algebra is identical. 

 

   

lim
x

6x3
+ 3x2 5

3x2
+1

= lim
x

6

2( )

x3

x( )

1+
3x2

6x3

5

6x3

3

1( )

x2

1( )

1+
1

3x2

= lim
x

2x( )
( )

1+
1

2x

0

5

6x3

0

1+
1

3x2

0

1( )

Limit Form ( ) 1( )

=

 

§ 
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Example 16 (Finding a Slant Asymptote (SA); Revisiting Example 15) 
 

Find the slant asymptote (SA) for the graph of y = f x( ) , where 

f x( ) =
5+ 3x2

+ 6x3

1+ 3x2
, or 

6x3
+ 3x2 5

3x2
+1

. 

 

§ Solution 
 

deg N x( )( ) = deg D x( )( ) +1 , since 3 = 2 +1.  

Therefore, the graph of y = f x( )  has a slant asymptote (SA). 

Unfortunately, our previous methods for evaluating “long-run” limits are not 

guaranteed to give us the equation of the SA. We will use Long Division 

(see Section 2.3 of the Precalculus notes) to re-express f x( )  and find the 

SA. We begin with the “descending powers” form 
  
f x( ) =

6x3
+ 3x2 5

3x2
+1

 

and insert missing terms by using zero coefficients (helpful but optional). 
 

   
 

We stop the division process here, because the degree of the remainder 

2x 6( )  is less than the degree of the divisor 
  
3x2

+1( ) ; that is, 1< 2 .  

We can now re-express f x( )  in the form: quotient( ) +
remainder( )

divisor( )
. 

 

   

f x( ) = 2x + 1

polynomial
  part, p x( )

+
2x 6

3x2
+1

proper rational
     part, r x( )

= 2x +1
2x + 6

3x2
+1
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r x( ) =

2x 6

3x2
+1

 represents a proper rational function. As a result, 
  
r x( ) 0  

as  x  and as  x ; see Case 1. In the “long run,” r x( )  “decays” in 

magnitude. Therefore, the graph of y = f x( )  approaches the graph of 

 
y = p x( )  as  x  and as  x . 

The graph of 
 
y = f x( )  below (in blue) approaches its SA,   y = 2x +1 

(dashed in brown), in the “long run.” 
 

 
 

 

“Zoom Out” Property of HAs and SAs 
 

A graph with an HA or SA will resemble the HA or SA in the  

“long run.” 
 

• If we keep expanding the scope of a grapher’s window, then a  

graph with an HA or SA will generally look more and more like  

the HA or SA. 

Note: In Example 15, we said that f x( )  behaves like 2x  in the “long run.”  

In fact, 2x  approaches 2x +1  in a relative sense, in that 
2x

2x +1
1  in the 

“long run.” However, 2x +1  is more accurate in an absolute sense, in that 

2x  always differs from it by 1. § 
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Example 17 (Evaluating “Long-Run” Limits of a Rational Function; 

Case 3: “Top-Heavy” in Degree) 
 

Evaluate lim
x

f x( )  and lim
x

f x( ) , and analyze the “long-run” behavior 

of the graph of y = f x( ) , where 
  
f x( ) =

4x7
+12x6

+ 5x4 23x3
+11

4x3 5
. 

 

§ Solution 1 (Using the “DTS” Short Cut) 
 

deg N x( )( ) > deg D x( )( ) , because 7 > 3 , so f x( )  is “top-heavy” in 

degree. The graph of y = f x( )  has no HAs (and no SAs). 
 

lim
x

f x( ) = lim
x

4x7

4x3

= lim
x

x4( )
=

 

lim
x

f x( ) = lim
x

4x7

4x3

= lim
x

x4( )
=

 

 

Long Division gives us: 
  
f x( ) = x4

+ 3x3 2 +
1

4x3 5
. 

The graph of   y = x4
+ 3x3 2  (on the right below) is a nonlinear 

asymptote that the graph of y = f x( )  approaches in the “long run.” 

Observe that the leading term is   x4 , which was the result of “DTS.” 

Based on this alone, we know that the graph of y = f x( )  approaches the 

shape of a downward-opening bowl if we “zoom out in the long run.” 

Graph of 
 
y = f x( )   Graph of   y = x4

+ 3x3 2  

        
§ 

 

§ Solutions 2 and 3 (Using the “Division Method” and Factoring) 
 

These are left for the reader. § 
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PART E: “LONG-RUN” LIMITS OF ALGEBRAIC FUNCTIONS 
 

“DTS” can be applied carefully to some “long-run” limits of general algebraic 

functions and beyond. (See Footnote 4 on dominant terms and Footnotes 5 and 6 

on pitfalls.) 
 

Example 18 (Using “DTS” to Evaluate “Long-Run” Limits of an Algebraic 

Function) 
 

lim
x

5x7/2 2x3
+ x1/4

+1+ x 2( ) = lim
x

5x7/2

=

 

 

• This is because   5x7/2
 is the dominant term as x . 

(Think of 1 as x0
, even though 00

 is controversial.) 
 

  
lim

x
5x7/2 2x3

+ x1/4
+1+ x 2( )  does not exist (DNE). 

 

• This is because   5x7/2
, also written as 

  
5 x( )

7

, and x1/4 , also written 

as x4 , are not real if   x < 0 . § 
 

 

“Dominant Term Substitution (DTS)” Short Cut for Algebraic Functions 
 

Let   f   be an algebraic function. When evaluating “long-run” limits of 

f x( ) , “DTS” can be applied to: 
 

• sums and differences of terms of the form cxk  
 
c , k( ) , 

• numerators and denominators, and 

• radicands and bases of powers, 
 

if f x( )  is real in the desired “long-run” direction(s), and  

if there are no “ties” as described in Warning 6 below.  
 

The “long-run” limit(s) of the result will be the same as those of f x( ) . 
 

 

f x( )  and g x( )  are of the same order  their “long-run” ratio in the desired 

direction is a nonzero real number, and thus neither dominates the other. 
 

• x2 , 5x2 , x4 +1 , and 3x4 x  are of the same order as x . 
 

WARNING 6: Avoid using “DTS” in the event of “ties.” Avoid using “DTS” if, 

at any stage of the evaluation process, you encounter a sum or difference of 

expressions that are of the same order, and simplification cannot resolve this. 
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WARNING 7: Showing work. Although “DTS” is a useful tool in calculus, you 

may be expected to give rigorous solutions to, say, Examples 19 and 20 on exams. 

Example 19 (Evaluating “Long-Run” Limits of an Algebraic Function) 

Evaluate: a)
  
lim

x
x x2

+ x( )  and b)
  

lim
x

x x2
+ x( ) . 

 

§ Solution to a) (Rationalizing a Numerator) 
 

Observe that x2 + x 0  for all x 0 , so 
  

x x2
+ x( )  is real as x . 

It is sufficient to observe that x2 + x 0  for all “sufficiently high” x-values.  
 

We re-express   x x2
+ x  as 

x x2 + x

1
 and rationalize the numerator. 

lim
x

x x2
+ x( ) Indeterminate Limit Form( )

= lim
x

x x2
+ x( )

1

x + x2
+ x( )

x + x2
+ x( )

Assume  x > 0.( )

= lim
x

x2 x2
+ x( )

x + x2
+ x

WARNING 8 : Use grouping symbols when 

subtracting more than one term.

= lim
x

x

x + x2
+ x

x2
+ x  is on the order of x, as is the entire denominator.

Now apply the "Division Method" by dividing the

numerator and the denominator by x.

= lim
x

x

x

x

x
+

x2
+ x

x
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= lim
x

1

1+
x2

+ x

x2

x2
= x = x,  since  x > 0.( )

= lim
x

1

1+ 1 +
1

x
0

=
1

2

 

§ 
 

§ Solution to b) (Rationalizing a Numerator) 
 

Observe that x2 + x 0  for all x 1 , so 
  

x x2
+ x( )  is real as x . 

It is sufficient to observe that x2 + x 0  for all “sufficiently low” x-values. 

We assume x 1 , and then only the last few steps effectively differ from 

our solution to a). 
 

lim
x

x x2
+ x( )

This turns out to be: Limit Form( ) .

= lim
x

x x2
+ x( )

1

x + x2
+ x( )

x + x2
+ x( )

= lim
x

x2 x2
+ x( )

x + x2
+ x

= lim
x

x

x + x2
+ x

= lim
x

x

x

x

x
+

x2
+ x

x
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= lim
x

1

1
x2

+ x

x2

x2
= x = x,  since  x 1, so  x = x2 .( )

= lim
x

1

1 1 +
1

x
0

1

1

Limit Form 
1

0+
; see Section 2.4

=

 

 

The graph of y = f x( ) , where f x( ) = x x2
+ x , is below. 

The “Twin (Long-Run) Limits” Property does not apply, because    

f   is not rational. 
 

 
§ 

 

§ (“DTS” Can Fail in the Event of “Ties”) 
 

If we try to apply “DTS” to a), we obtain: 
 

   
lim

x
x x2

+ x( ) =
?

lim
x

x x2( ) = lim
x

x x( ) = lim
x

x x( ) = 0 , 

 

which is incorrect. 
 

“DTS” fails here because neither x nor   x2
+ x  is dominant; they are 

both on the order of x. § 
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Example 20 (Evaluating “Long-Run” Limits of an Algebraic Function) 
 

Evaluate 
  
lim

x
f x( )  and 

  
lim

x
f x( ) , where 

  

f x( ) =
x10 5

x + 3( )
2

. 

 

§ Solution 1 (Using the “DTS” Short Cut) 
 

  x
10 5 0 on 

 
, 5

10( 5
10

, ) , and x + 3( )
2

= 0 x = 3 ,  

so f x( )  is real for “sufficiently high” and “sufficiently low” values of x. 
 

• In the radicand,   x
10 5 ,   x

10
 dominates 5. 

 

• In the power-base,   x + 3, x dominates 3. 

  

lim
x

x10 5

x + 3( )
2
= lim

x

x10

x( )
2

Now, x10
= x5

= x5  for x 0.( )
= lim

x

x5

x2

= lim
x

x3

=

 

lim
x

x10 5

x + 3( )
2
= lim

x

x10

x( )
2

Now, x10
= x5

= x5  for x 0.( )
= lim

x

x5

x2

= lim
x

x3( )
=

 

§ 
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§ Solution 2 (Using the “Division Method”) 
 

The denominator really has degree 2, so we will divide the numerator and 

the denominator by x2 . 
 

lim
x

x10 5

x + 3( )
2
= lim

x

x10 5

x2

x + 3( )
2

x2

x4
= x2  for x .( )

= lim
x

x10 5

x4

x + 3

x

2

= lim
x

x6 5

x4

0

1 +
3

x
0

2

Limit Form 
1

=

   

lim
x

x10 5

x + 3( )
2
= lim

x

x10 5

x2

x + 3( )
2

x2

x4
= x2  for x .( )

= lim
x

x10 5

x4

x + 3

x

2

= lim
x

x6 5

x4

0

1 +
3

x
0

2

Limit Form 
1

=

 

 

The graph of y = f x( )  is below. 
 

 
§ 
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PART F: A “WORD PROBLEM” 
 

Example 21 (Pond Problem) 
 

A freshwater pond contains 1000 gallons of pure water at noon. Starting at 

noon, a saltwater mixture is poured into the pond at the rate of 2 gallons 

per minute. The mixture has a salt concentration of 0.3 pounds of salt per 

gallon. (Ignore issues such as evaporation.) 
 

a) Find an expression for 
 
C t( ) , the salt concentration in the pond  

t minutes after noon, where t 0 . 
 

b) Find 
  
lim

t
C t( ) , and interpret the result. Discuss the realism of all this.  

 

§ Solution to a) 
 

Let 
 
V t( )  be the volume (in gallons) of the pond t minutes after noon t 0( ) .  

 

• t minutes after noon, 2t gallons of the incoming mixture have been 

poured into the pond. The pond started with 1000 gallons of pure 

water, so the total volume in the pond is given by:  
 

V t( ) = 1000 + 2t  (in gal). 

 

Let 
 
S t( )  be the weight (in pounds) of the salt in the pond t minutes after 

noon t 0( ) . 
 

• All of the salt in the pond at any moment had been poured in, so: 
 

S t( ) =
0.3 lb

gal
2t gal( ) = 0.6t  (in lb). 

 

Then, C t( ) =
S t( )
V t( )

=
0.6t

1000 + 2t

Multiply by 10, though 5 is better.

Multiply by 10, though 5 is better.

=
6t

10,000 + 20t

=
3t

5000 +10t
in 

lb

gal
§
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§ Solution to b) 

We will use Case 1 in Part D to find the desired “long-run” limit. 
 

  

lim
t

C t( ) = lim
t

3t

5000 +10t

=
3

10

lb

gal
, or 0.3

lb

gal

 

 

In the “long run,” the salt concentration in the pond approaches 0.3 

 

lb

gal
, 

the same as for the incoming mixture. However, this calculation assumes 

that the pond can approach infinite volume, which is unrealistic. Also, it 

assumes an unlimited supply of the incoming saltwater mixture. 
 

The graph of 
 
y = C t( )  is below. 

 
 

Think About It: Was the initial volume of the pond relevant in the  

“long-run” analysis? § 
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FOOTNOTES 
 

1. Irrational exponents; Roots of negative real numbers. It is true that  x
k

 and 

  
lim

x

c

xk
= 0  c , k +( ) . But what if k is (positive and) irrational k + \( )?  

For example, if  k = , then how do we define something like  2  when   x = 2 ?  

Remember that = 3.14159... . Consider the corresponding sequence: 
 

  

23
= 8

23.1
= 2

31

10 = 23110
8.57419

23.14
= 2

314

100 = 2

157

50 = 215750
8.81524

 

 

The limit of this sequence (as the number of digits of  approaches ) is taken to be  2 .  

It turns out that  2 8.82498 . However, defining 
 

2( )  is more problematic. For example, 

 
2( )

3.1

= 2( )
31

10 . We are looking for a 10
th

 root of 
 

2( )
31

. From the Precalculus notes 

(Section 6.5), we know that 2( )
31

 has ten distinct 10
th
 roots in , the set of complex 

numbers, none of them real. Refer to DeMoivre’s Theorem for the complex roots of a 

complex number. See The Math Forum @ Drexel: Ask Dr. Math, Meaning of Irrational 

Exponents.  

 

2. 

  

Limit Form 
1

DNE
0 or DNE . (The notation here is highly informal.)  

The desired limit must be either 0 or nonexistent (DNE), not even in the sense of  or .  

Otherwise, the denominator would have had to approach 0 in the latter cases or (if the desired 

limit were a nonzero real number L) the real reciprocal 1/L; the Limit Form is contradicted. 

• 

  

lim
x

1

D x( )
= 0 , where 

   

D x( ) =
x, if x is a rational number x( )

x, if x is an irrational number x ;  really, x \( )
 . 

• 
  

lim
x

1

sin x
= lim

x
csc x  does not exist (DNE). (The “= ” sign here is informal.) 

In Example 10, we saw the Limit Form 
2

DNE
 also yield “DNE.” 

 

3. Computer science and function growth. “Big O” notation is used in theoretical computer 

science to compare the growth of functions. The analysis of algorithms deals with the  

“long-run” efficiency of computer algorithms with respect to memory, time, and space 

requirements as, say, the input size approaches infinity. 
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4. Dominant terms. We say that  x
d

 “dominates”  x
n
 as  x    d > n  d, n( ) .  

If d > n , the (absolute value of)  x
d

 “explodes more dramatically” and makes the growth of 

the (absolute value) of  x
n
 seem negligible by comparison as x . More precisely, 

  
lim

x

xn

xd
= lim

x
xn d

= lim
x

x
d n( )

= lim
x

1

xd n
= 0   d > n , in which case d n > 0 ; 

see Part B and Footnote 1. 

• Also, 
  

lim
x

xn

xd
= 0   ( d > n , and xn

 and xd
 are real for all   x < 0 ). 

• This dominant term analysis can be extended to non-algebraic (or transcendental) 

expressions. For example, we will see the exponential expression  e
x
 in Chapter 7. However, 

the identification of a dominant term in a “long-run” analysis may well depend on whether 

we are considering a limit as  x  or a limit as x , beyond the “DNE” issue. It turns 

out that 
  

lim
x

1

ex
= 0 , so e

x
 dominates 1 as  x . However, it also turns out that 

lim
x

ex

1
= 0 , so 1 dominates  e

x
 as  x . 

• In   sin x + cos x , neither term dominates in the “long run.” Any nonconstant polynomial will 

dominate either term, in either “long-run” direction. 

 

5. A pitfall of “DTS.” 2x
 is another exponential expression we will see in Chapter 7. 

lim
x

2x+3

2x
= lim

x

2x 23

2x

1( )

= 8 . If we try to apply “DTS” locally and replace   x + 3 with x in 

the exponent of   2
x+3

, we obtain: lim
x

2x+3

2x
=

?

lim
x

2x

2x
= 1, which is incorrect. 

• It is risky to apply “DTS” to exponents, particularly when an exponential expression is a 

piece of a larger expression. (It is true, however, that 2x+3  and 2x  as x .) 

 

6. Another pitfall of “DTS.” 
  

lim
x

sin x sin x +( ) = lim
x

sin x + sin x See Note.( ) =  

  
lim

x
2sin x  does not exist (DNE). (The “= ” signs here are informal.) 

• Note: This is justified by the Sum Identity for the sine function, or by exploiting symmetry 

along the Unit Circle.  

• If we try to apply “DTS” locally and replace  x +  with x in the argument of 
  
sin x +( ) , 

we obtain: 
   

lim
x

sin x sin x +( ) =

?

lim
x

sin x sin x = 0 , which is incorrect. 

• As we saw in Part E and Footnote 5, it is risky to apply “DTS” locally to pieces of f x( ) , 

the expression we are finding a “long-run” limit for. 

• As we see here and in Footnote 5, it is especially dangerous to apply “DTS” to the 

argument of a non-algebraic (or transcendental) function. (We did safely apply “DTS” to 

entire numerators and entire denominators of f x( )  in Part D on rational functions.) 
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