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SECTION 2.4: LIMITS AND INFINITY II 
 
 

LEARNING OBJECTIVES 
 

     • Understand infinite limits at a point and relate them to vertical asymptotes of  

     graphs. 

     • Be able to evaluate infinite limits at a point, particularly for rational functions 

     expressed in simplified form, and use a short cut to find vertical asymptotes of  

     their graphs. 

     • Be able to use informal Limit Form notation to analyze infinite limits at a point. 
 

 

PART A: VERTICAL ASYMPTOTES (“VA”s) and 

INFINITE LIMITS AT A POINT 
 

In Section 2.1, we discussed finite limits at a point a.  

We saw (two-sided) limits where 
   
lim
x a

f x( ) = L a, L( ) . 
 

In Section 2.3, we discussed finite and infinite limits at ±( )  infinity .  

We saw examples where lim
x

f x( )  or lim
x

f x( )  is L L( ) , , or . 

 

Now, if   a : 
 

f   has an infinite limit at a point a 
  

lim
x a+

f x( )  or 

  
lim

x a
f x( )  is  or . 

 

    • We read 
  
lim
x a

f x( ) =  as “the limit of f x( )  as x approaches a is infinity.” 
 

    • See Footnote 1 for an alternate definition. 
 

 

A vertical asymptote, which we will denote by “VA,” is a vertical line that a 

graph approaches in an “explosive” sense. (See Section 2.1, Example 11.) 
 
 

Using Infinite Limits at a Point to Find Vertical Asymptotes (VAs) 
 

        The graph of y = f x( )  has a vertical asymptote (VA) at  x = a  
 
a( )  

 
  

lim
x a+

f x( )  or 

  
lim

x a
f x( )  is  or . 

 

         • That is, the graph has a VA at x = a   there is an infinite limit there  

         from one or both sides. 
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The number of VAs the graph has can be a nonnegative integer (0, 1, 2, …), or  

it can have infinitely many VAs (consider f x( ) = tan x ). 
 

• If   f   is rational, then the graph cannot have infinitely many VAs. 
 

• If   f   is polynomial, then the graph has no VAs. 
 

Note: The graph of 
 
y = f x( )  cannot cross over a VA, but it can cross over an HA 

(see Section 2.3, Example 6). 

 

Example 1 (The Graph of the Reciprocal Function has an “Odd VA”; 

Revisiting Section 2.3, Example 1) 

Let f x( ) =
1

x
. Evaluate 

  
lim

x 0+
f x( )  and 

  
lim

x 0
f x( ) , and show that  

the graph of y = f x( )  has a vertical asymptote (VA) at x = 0 . 
 

§ Solution 
 

Let’s use the numerical / tabular approach: 
 

x 
 1  

1

10
 

1

100
  0   0

+
 

1

100
 

1

10
 1  

f x( ) =
1

x
  1   10   100     100   10  1  

• Apparently, as x approaches 0 from the right, f x( )  increases without 

bound. That is, 
  

lim
x 0+

f x( ) = . 

 

• Also, as x approaches 0 from the left, f x( )  decreases without bound. 

That is, 
  

lim
x 0

f x( ) = . 

 

• Either limit statement implies that the graph of 
 
y = f x( )  below has a 

vertical asymptote (“VA”) at x = 0 , the y-axis. 
 

 

 

• 
  
lim
x 0

f x( )  does not exist (DNE). 

(See Footnote 2.) § 
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Example 1 gave us the most basic cases of the following Limit Forms. 
 

 

Limit Form 
1

0
+

,  and  Limit Form 
1

0
 

 

• These Limit Forms can be rescaled, as described in Section 2.3, Part A. 
 

“Odd and Even VAs” 
 

Assume that the graph of y = f x( )  has a VA at x = a . 

(The following terminology is informal and nonstandard.) 
 

• If the two one-sided limits at x = a  are  and , in either order, then 

the VA is an “odd VA.”  
 

• If those limits are both  or both , then the VA is an “even VA.” 
 

• In Example 1, the y-axis was an “odd VA,” partly due to the fact that   f   

was an odd function. The graph of 
 
y = f x( )  “shot off” in different 

directions around the VA. 
 

• In Example 2 below, the y-axis is an “even VA,” partly due to the fact that 

g is an even function, where g x( ) =
1

x2
. The graph of y = g x( )  “shoots off” 

in the same direction around the VA. 
 

Example 2 (A Graph With an “Even VA”) 
 

Evaluate lim
x 0+

1

x2
, lim

x 0

1

x2
, and lim

x 0

1

x2
. 

 

§ Solution 
 

Because   x
2
> 0  for all x 0 , all three give: Limit Form 

1

0
+

.  

The graph of 
  
y =

1

x2
 is below. 

 

 

  
lim

x 0+

1

x2
= , 

  
lim

x 0

1

x2
= , and 

  
lim
x 0

1

x2
= . §
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PART B: EVALUATING INFINITE LIMITS FOR RATIONAL FUNCTIONS 
 

Example 3 (Evaluating Infinite Limits at a Point for a Rational Function) 
 

Let 
  
f x( ) =

x +1

x3
+ 4x2

. Evaluate 
  

lim
x 4+

f x( ) , 
  

lim
x 4

f x( ) , and 
  

lim
x 4

f x( ) . 

 

§ Solution 
 

  
lim

x 4
x +1( ) = 4 +1= 3 , and 

  
lim

x 4
x3

+ 4x2( ) = 4( )
3

+ 4 4( )
2

= 0 . 

 

All three problems give the Limit Form 
 

3

0
. For each, we must know how 

the denominator approaches 0. Since it is easier to analyze signs of products 

than of sums (for example, do we automatically know the sum of a and b if 

  a > 0  and   b < 0?), we will factor the denominator. 
 

WARNING 1: Many students improperly use methods such as the 

“Division Method” and “DTS” from Section 2.3. Those methods are 

designed to evaluate “long-run” limits, not limits at a point. 
 

lim
x 4+

f x( ) = lim
x 4+

x +1

x3
+ 4x2

= lim
x 4+

x +1

3

x2

16

x + 4( )
0+

Limit Form 
3

0
+

 

 

WARNING 2: Write  0
+

 and  0  as necessary. 
 

In the denominator: Remember that 

“positive times positive equals positive.” 
 

          =  
 

   

lim
x 4

f x( ) = lim
x 4

x +1

x3
+ 4x2

= lim
x 4

x +1

3

x2

16

x + 4( )
0

Limit Form 
3

0

 

 

In the denominator: Remember that 

“positive times negative equals negative.” 
 

          =  
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lim

x 4
f x( )  does not exist (DNE). (See Footnote 2.) 

The graph of 
 
y = f x( )  is below. Observe the “odd VA” at x = 4 . 

(Why is there an HA at the x-axis?) 
 

 
§ 

 

Finding VAs for Graphs of “Simplified” Rational Functions 
 

Let 

 

f x( ) =
N x( )
D x( )

, where N x( )  and D x( )  are nonzero polynomials in x 

with no real zeros in common; this is guaranteed (by the Factor Theorem 

from Precalculus) if they have no variable factors in common, up to 

constant multiples. Then,  
 

   The graph of y = f x( )  has a VA at x = a   a is a real zero of D x( ) . 

 

Note: The numerator and the denominator of 

x
1
3

3x 1
 are common factors  

up to constant multiples (the denominator is 3 times the numerator); 

observe that 
1

3
 is a real zero of both. 
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Example 4 (Finding VAs for the Graph of a “Simplified” Rational Function; 

Revisiting Example 3) 
 

Let f x( ) =
x +1

x3
+ 4x2

. Find the equations of the vertical asymptotes (VAs) of 

the graph of 
 
y = f x( ) . Justify using limits. 

 

§ Solution 

  

f x( ) =
x +1

x3
+ 4x2

=
x +1

x2 x + 4( )
, which is simplified. The VAs have equations 

  x = 0  and   x = 4 , corresponding to the real zeros of the denominator. 
 

To justify the VA at   x = 0 , show there is an infinite limit there. Either of 

the following will suffice: 
 

lim
x 0+

f x( ) = lim
x 0+

x +1

x3
+ 4x2

= lim
x 0+

x +1

1

x2

0+

x + 4( )
4

Limit Form 
1

0
+

=

 

 

lim
x 0

f x( ) = lim
x 0

x +1

x3
+ 4x2

= lim
x 0

x +1

1

x2

0+

x + 4( )
4

Limit Form 
1

0
+

=

 

 

• Since 0 is a real zero of D x( )  with multiplicity 2 (an even number),  

there is an “even VA” at x = 0 . 
 

To justify the VA at   x = 4 , show there is an infinite limit there, as we did 

in Example 3, by showing either 
  

lim
x 4+

f x( ) = , or 
  

lim
x 4

f x( ) = . 

 

• Since 4  is a real zero of D x( )  with multiplicity 1 (an odd 

number), there is an “odd VA” at   x = 4 . § 
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FOOTNOTES 
 

1. Alternate definition of an infinite limit at a point. If we say that   f   has an infinite limit at a 

 

  
lim

x a +
f x( ) =   or lim

x a
f x( ) = , we then extend the idea of an “infinite limit” 

to examples such as the following:  
 

 

f x( ) =

1

x
, if x is a rational number x( )

1

x
, if x is an irrational number x ;  really, x \( )

 

 

as x 0 . In this work, we will not use this definition. 

 

2. Infinity and the real projective line.  

• The affinely extended real number system, denoted by  or 
 

, , includes two points 

of infinity, one referred to as  (or + ) and the other referred to as . (We are 

“adjoining” them to the real number system.) We obtain the two-point compactification of 

the real numbers. We never refer to  and  as real numbers, though. 

• In the projectively extended real number system, denoted by  
*

,  and  are treated as 

the same  (we collapse them together and identify them with one another as ), and we then 

obtain the one-point compactification of the real numbers, also known as the real projective 

line. Then, 
 

1

0
= , the slope of a vertical line is , 

  
lim
x 0

1

x
= , and 

  
lim

x 4

x +1

x2
+ 4x

= . 

• A point at infinity is sometimes added to the complex plane, and it typically corresponds to 

the “north pole” of a Riemann sphere that the complex plane is wrapped around. 

• See “Projectively Extended Real Numbers” in MathWorld (web) and “Real projective line” 

in Wikipedia (web). 
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SECTION 2.5: THE INDETERMINATE FORMS

0

0
AND  

 
 

LEARNING OBJECTIVES 
 

     • Understand what it means for a Limit Form to be indeterminate. 

     • Recognize indeterminate forms, and know what other Limit Forms yield. 

     • Learn techniques for resolving indeterminate forms when evaluating limits, 

     including factoring, rationalizing numerators and denominators, and 

     (in Chapter 10)  L'Hôpital's Rule . 
 

 

PART A: WHAT ARE INDETERMINATE FORMS? 
 

An indeterminate form is a Limit Form that could yield a variety of real values;  

the limit might not exist. Further analysis is required to know what the limit is.  
 

The seven “classic” indeterminate forms are: 
 

 

0

0
, ,  0 , ,  

0
,  0

0
, and  1 . 

 

• Observe that the first six forms involve 0 and/or ±( ) , while the seventh 

involves 1 and . 
  

In Section 2.3, Parts D and E, we encountered the indeterminate form 
±

±
.  

This is simply written as , since further analysis is required, anyway. 

(Sometimes, signs matter in the forms. For example, 
 
Limit Form ( )  is 

indeterminate, while 
 
Limit Form +( ) . See Part D.) 

 

Example 1 (0/0 is an Indeterminate Form) 
 

      If  c , 
 

lim
x 0

cx

x
Limit Form 

0

0
= lim

x 0
c

= c

 

 

 

• We are taking a limit as   x 0 , so 

the fact that 
 

cx

x
 is undefined at x = 0  

is irrelevant. (See Section 2.1, Part C.)

 

c could be 2, , etc. 

 

Limit Form 
0

0
 can yield any real number.  
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We already know that 

 

Limit Form 
0

0
 is indeterminate, but we can 

further show that it can yield nonexistent limits: 
 

lim
x 0+

x

x2
Limit Form 

0

0
= lim

x 0+

1

x
Limit Form 

1

0
+

= . 

 

  

lim
x 0

x

x2
Limit Form 

0

0
= lim

x 0

1

x
Limit Form 

1

0
= . 

 

  

lim
x 0

x

x2
Limit Form 

0

0
= lim

x 0

1

x
, which does not exist (DNE). 

 

• We will use 

 

Limit Form 
0

0
 when we define derivatives in Chapter 3. 

 

• In turn, 
 
L'Hôpital's Rule  will use derivatives to resolve indeterminate 

forms, particularly 
0

0
 and . (See Chapter 10.) § 

 

Example 2 ( /  is an Indeterminate Form) 
 

If c 0 , 
 

  

lim
x

cx

x
Limit Form = lim

x
c

= c

 

 

c could be 2, , etc. Limit Form  can yield any real number. 

(In the Exercises, you will demonstrate how it can yield 0 and .) § 

Example 3 (1/0 is Not an Indeterminate Form) 
 

Limit Form 
1

0
 , , or “DNE.” We know a lot! The form is not 

indeterminate, although we must know how the denominator approaches 0. 

 

Limit Form 
1

0
+

. 

 

Limit Form 
1

0
. 

  

lim
x

1

sin x

x

 “DNE”;  

see Section 2.3, Example 6. § 
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PART B: RESOLVING THE
0

0
FORM BY FACTORING AND CANCELING;

GRAPHS OF RATIONAL FUNCTIONS

 

 

Let 

 

f x( ) =
N x( )
D x( )

, where N x( )  and D x( )  are nonzero polynomials in x. 

We do not require simplified form, as we did in Section 2.4. If a is a real zero of 

both N x( )  and D x( ) , then we can use the Factor Theorem from Precalculus to 

help us factor 
 
N x( )  and 

 
D x( )  and simplify f x( ) .  

 

Factor Theorem 
 

a is a real zero of D x( )   x a( )  is a factor of D x( ) . 
 

• This also applied to Section 2.4, but it now helps that the same goes for 

 
N x( ) . 

 

 

Example 4 (Factoring and Canceling/Dividing to Resolve a 0/0 Form) 
 

Let 
  
f x( ) =

x2
1

x2 x
. Evaluate: a) 

  
lim
x 1

f x( )  and b) 
  

lim
x 0+

f x( ) . 

 

§ Solution to a) 
 

The Limit Form is 
0

0
: 

 

     
  
lim
x 1

N x( ) = lim
x 1

x2
1( ) = 1( )

2

1= 0 , and  

     lim
x 1

D x( ) = lim
x 1

x2 x( ) = 1( )
2

1( ) = 0 . 

 

1 is a real zero of both N x( )  and D x( ) , so x 1( )  is a common factor.  

We will cancel x 1( )  factors and simplify f x( )  to resolve the 
0

0
 form. 

 

WARNING 1: Some instructors prefer “divide out” to “cancel.” 
 

TIP 1: It often saves time to begin by factoring and worry about  

Limit Forms later. 
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lim
x 1

f x( ) = lim
x 1

x2
1

x2 x
Limit Form 

0

0

= lim
x 1

x +1( ) x 1( )

x x 1( )

= lim
x 1

x +1

x

=
1( ) +1

1( )
= 2

 

§ 

§ Solution to b) 

The Limit Form is 
1

0
: 

 

     
  

lim
x 0+

N x( ) = lim
x 0+

x2
1( ) = 0( )

2

1= 1, and  

     lim
x 0+

D x( ) = lim
x 0+

x2 x( ) = 0( )
2

0( ) = 0 . 

 

Here, when we cancel x 1( )  factors and simplify f x( ) , it is a matter of 

convenience. It takes work to see that 
  

lim
x 0+

D x( ) = lim
x 0+

x2 x( ) = 0 , 

and then 

 

Limit Form 
1

0
. 

 

  

lim
x 0+

f x( ) = lim
x 0+

x2
1

x2 x
Limit Form 

1

0

= lim
x 0+

x +1( ) x 1( )

x x 1( )

= lim
x 0+

x +1

x
Limit Form 

1

0
+

=

 

§ 
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The Graph of a Rational Function   f   at a Point a 
 

The graph of y = f x( )  has one of the following at  x = a  
 
a( ) : 

 

1) The point 
  
a, f a( )( ) , if f a( )  is real a Dom f( )( ) . 

 

In 2) and 3) below,  

• x a( )  is a factor of the denominator, D x( ) . 

• That is, a is a real zero of D x( ) , and a Dom f( ) . 
 

2) A VA, if simplifying 
 
f x( )  yields the Limit Form 

c

0
 as  x a  c 0( ) .  

• That is, there is at least one x a( )  factor of D x( )  that cannot be 

canceled/divided out. It will still force the denominator towards 0 

as x a . 
 

3) A hole at the point 
  
a, L( ) , if f a( )  is undefined a Dom f( )( ) , but 

lim
x a

f x( ) = L L( ) .  

• That is, x a( )  is a factor of D x( ) , but all such factors can  

be canceled/divided out by x a( )  factor(s) in the numerator.  

Then, the denominator is no longer forced towards 0. 

• A hole can only occur if we start with the Limit Form 
0

0
, because  

a denominator approaching 0 can only be prevented from  

“exploding” f x( )  if the numerator approaches 0, as well. 

(If the numerator fails to prevent this, we get a VA.) 
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Example 5 (VAs and Holes on the Graph of a Rational Function; 

Revisiting Example 4) 
 

Let 
  
f x( ) =

x2
1

x2 x
. Identify any vertical asymptotes (VAs) and holes on 

the graph of y = f x( ) . 
 

§ Solution 

In Example 4, we saw that: f x( ) =
x2

1

x2 x
=

x +1( ) x 1( )

x x 1( )
=

x +1

x
x 1( ) . 

The real zeros of   x
2 x  are 0 and 1, so they correspond to VAs or holes. 

 

• In 4a, we found that: 
  
lim
x 1

f x( ) = 2 , even though 1 Dom f( ) , so the 

graph has a hole at the point 1, 2( ) . As x 1, the factor 
  

x 1( ) 0 .  

When we simplify 
 
f x( ) , we cancel (divide out) all of the 

  
x 1( )  factors in 

the denominator. The new denominator, x, no longer approaches 0, and 

the overall limit exists. 
 

• In 4b, we found that: 
  

lim
x 0+

f x( ) = , so the graph has a VA at x = 0   

(the y-axis). When we simplify 
 
f x( ) , we cannot cancel (divide out) the  

x factor in the denominator. As   x 0 , the new denominator, x, still 

approaches 0.  

The graph of 
  
y =

x2
1

x2 x
 or  y =

x +1

x
x 1( ),  or  y = 1+

1

x
x 1( )   

is below. 

  

 

 

 

 

Since 0 is a zero of the new 

denominator, x, with multiplicity 1,  

the VA at x = 0  is an “odd VA.” 
 

Why is there an HA at y = 1? § 
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PART C: RESOLVING THE
0

0
FORM BY RATIONALIZING;

GRAPHS OF ALGEBRAIC FUNCTIONS

 

 

Graphs of algebraic functions can also have points, VAs, and holes. Unlike graphs 

of rational functions, they can also have “blank spaces” where there are no points 

for infinitely many real values of x. 
 

Example 6 (Rationalizing a Numerator to Resolve a 0/0 Form) 
 

Evaluate 
  
lim
x 0

9 x 3

x
. 

 

§ Solution 
 

Observe that 9 x  is real on a punctured neighborhood of 0.  

We assume x 0 . 
 

lim
x 0

9 x 3

x
Limit Form 

0

0

= lim
x 0

9 x 3( )
x

9 x + 3( )
9 x + 3( )

Rationalizing the numerator( )

= lim
x 0

9 x( )
2

3( )
2

x 9 x + 3( )
WARNING 2:  Write the entire

denominator! It's not just x.

= lim
x 0

9 x( ) 9

x 9 x + 3( )

= lim
x 0

x

1( )

x 9 x + 3( )

= lim
x 0

1

9 x + 3
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=
1

9 0( ) + 3

=
1

6

 

 

  
lim
x 0

f x( ) =
1

6
, even though 0 Dom f( ) , where 

  
f x( ) =

9 x 3

x
.  

Therefore, the graph of y = f x( )  has a hole at the point 0,
1

6
. 

 

The graph of y = f x( )  is below. What is Dom f( )? 
 

 § 

 

PART D: LIMIT FORMS THAT ARE NOT INDETERMINATE 

 

Cover up the “Yields” columns below and guess at the results of the Limit Forms 

 
c( ) . Experiment with sequences of numbers and with extreme numbers. 

For example, for , or 
1

, look at 1000( )
10,000

=
1

1000( )
10,000 . 

 

        Fractions 

Limit Form Yields 

1
 0+  

1

0+
  

1
  

0
+

  

 

0
+

  0
+

 

 

   Sums, Differences, Products 

Limit Form Yields 
 

 + c  
 

 

 

 + c  
 

 

 

+  
 

 

 

 
 

 

 

1 
 

 

 

 
 

 

    With Exponents 

Limit Form Yields 
 

 
 

 

 

 
 

 0
+

 

 

 0  
 

0 

 

 2  
 

 

 

1

2
 0 
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SECTION 2.6: THE SQUEEZE (SANDWICH) THEOREM 
 
 

LEARNING OBJECTIVES 
 

     • Understand and be able to rigorously apply the Squeeze (Sandwich) Theorem 

     when evaluating limits at a point and “long-run” limits at ±( ) infinity. 

 

 

PART A: APPLYING THE SQUEEZE (SANDWICH) THEOREM TO 

LIMITS AT A POINT 
 

We will formally state the Squeeze (Sandwich) Theorem in Part B. 
 

Example 1 below is one of many basic examples where we use the Squeeze 

(Sandwich) Theorem to show that lim
x 0

f x( ) = 0 , where f x( )  is the product of a 

sine or cosine expression and a monomial of even degree.  
 

• The idea is that “something approaching 0” times “something bounded” 

(that is, trapped between two real numbers) will approach 0. Informally, 
 

 

Limit Form 0 bounded( ) 0 . 
 

 

Example 1 (Applying the Squeeze (Sandwich) Theorem to a Limit at a Point) 
 

Let f x( ) = x2 cos
1

x
. Prove that lim

x 0
f x( ) = 0 . 

 

§ Solution 
 

• We first bound cos
1

x
,  

which is real for all x 0 . 
 

• Multiply all three parts by   x
2
 

so that the middle part becomes 

f x( ) .  
 

WARNING 1: We must observe 

that   x
2
> 0  for all x 0 ,  

or at least on a punctured 

neighborhood of x = 0 , so that 

we can multiply by x2  without 

reversing inequality symbols. 

    1 cos
1

x
1 x 0( )  

 
 

 

  

x2 x2
cos

1

x
x2 x 0( )
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• As   x 0 , the left and right 

parts approach 0. Therefore, 

by the Squeeze (Sandwich) 

Theorem, the middle part, 

f x( ) , is forced to approach 0, 

also. The middle part is 

“squeezed” or “sandwiched” 

between the left and right parts, 

so it must approach the same 

limit as the other two do. 

  
lim
x 0

x2( ) = 0 , and lim
x 0

x2
= 0 , so 

  

lim
x 0

x2
cos

1

x
= 0  by the Squeeze 

Theorem. 
 

Shorthand: As x 0 , 
 

   

x2

0

x2
cos

1

x

Therefore, 0
by the Squeeze
(Sandwich) Theorem

x2

0

x 0( ) .

 

The graph of 

  

y = x2
cos

1

x
, together with the squeezing graphs of   y = x2

 

and   y = x2
, is below. 

 

     
(The axes are scaled differently.) 

§ 
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In Example 2 below, f x( )  is the product of a sine or cosine expression and a 

monomial of odd degree.  

Example 2 (Handling Complications with Signs) 
 

Let f x( ) = x3
sin

1

x
3

. Use the Squeeze Theorem to find lim
x 0

f x( ) . 

 

§ Solution 1 (Using Absolute Value) 
 

• We first bound 

  

sin
1

x
3

, 

which is real for all x 0 . 
 

• WARNING 2: The problem 

with multiplying all three parts 

by   x
3
 is that   x

3
< 0  when 

x < 0 . The  inequality 

symbols would have to be 

reversed for x < 0 . 
 

Instead, we use absolute value 

here. We could write 

  

0 sin
1

x
3

1 x 0( ) , 

but we assume that absolute 

values are nonnegative. 

• Multiply both sides of the 

inequality by 
  

x3
. We know 

  
x3

> 0 x 0( ) . 

 

• “The product of absolute 

values equals the absolute 

value of the product.” 
 

• If, say, 
  
a 4 , then 

  4 a 4 . Similarly: 

        

  

1 sin
1

x
3

1 x 0( )  

 

 

 

 

                

  

sin
1

x
3

1 x 0( )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

         

  

x3
sin

1

x
3

x3 x 0( )  

 

 

 

 

           

  

x3
sin

1

x
3

x3 x 0( )  

 

      x3 x3
sin

1

x
3

x3 x 0( )
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• Now, apply the Squeeze 

(Sandwich) Theorem. 
 

  
lim
x 0

x3( ) = 0 , and lim
x 0

x3
= 0 , so 

  

lim
x 0

x3
sin

1

x
3

= 0  by the Squeeze 

Theorem. 
 

Shorthand: As x 0 , 
 

 

   

x3

0

x3
sin

1

x
3

Therefore, 0
by the Squeeze
(Sandwich) Theorem

x3

0

x 0( ) . §

§ Solution 2 (Split Into Cases: Analyze Right-Hand and Left-Hand Limits 

Separately) 
 

First, we analyze: 

  

lim
x 0+

x3
sin

1

x
3

. 

Assume x > 0 , since we are taking a limit as   x 0
+

. 
 

• We first bound 

  

sin
1

x
3

, 

which is real for all x 0 . 
 

• Multiply all three parts by 

x3  so that the middle part 

becomes f x( ) . We know 

  x
3
> 0  for all   x > 0 . 

 

• Now, apply the Squeeze 

(Sandwich) Theorem. 

  

 

 

 

 

 

 

 

 

 

      

  

1 sin
1

x
3

1 x > 0( )  

 
 

 

  

x3 x3
sin

1

x
3

x3 x > 0( )  

 
 

 

 

  
lim

x 0+
x3( ) = 0 , and 

  
lim

x 0+
x3

= 0 , so 

  

lim
x 0+

x3
sin

1

x
3

= 0  by the Squeeze 

Theorem. 
 

Shorthand: As   x 0
+

, 
 

x3

0

x3
sin

1

x
3

Therefore, 0
by the Squeeze
(Sandwich) Theorem

x3

0

x > 0( ) .
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Second, we analyze: 

  

lim
x 0

x3
sin

1

x
3

. 

Assume x < 0 , since we are taking a limit as   x 0 . 

• We first bound 

  

sin
1

x
3

, 

which is real for all x 0 . 
 

• Multiply all three parts by 

x3  so that the middle part 

becomes f x( ) . We know 

  x
3
< 0  for all   x < 0 , so we 

reverse the  inequality 

symbols. 
 

• Reversing the compound 

inequality will make it 

easier to read. 
 

• Now, apply the Squeeze 

(Sandwich) Theorem. 

 

    

  

1 sin
1

x
3

1 x < 0( )  

 

 

 

 

  

x3 x3
sin

1

x
3

x3 x < 0( )  

 

 

 

 

 

   

  

x3 x3
sin

1

x
3

x3 x < 0( )  

 

  
lim

x 0
x3

= 0 , and 
  

lim
x 0

x3( ) = 0 , so 

  

lim
x 0

x3
sin

1

x
3

= 0  by the Squeeze 

Theorem. 
 

Shorthand: As   x 0 , 
 

x3

0

x3
sin

1

x
3

Therefore, 0
by the Squeeze
(Sandwich) Theorem

x3

0

x < 0( ) . 

 

Now, 

  

lim
x 0+

x3
sin

1

x
3

= 0 , and 

  

lim
x 0

x3
sin

1

x
3

= 0 , so 

lim
x 0

x3
sin

1

x
3

= 0 . § 
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Example 3 (Limits are Local) 
 

Use 
  
lim
x 0

x2
= 0  and 

  
lim
x 0

x6
= 0  to show that 

  
lim
x 0

x4
= 0 . 

 

§ Solution 
 

Let I = 1, 1( ) \ 0{ } . I is a punctured neighborhood of 0. 

Shorthand: As x 0 , 
 

   

x6

0

x4

Therefore, 0
by the Squeeze
(Sandwich) Theorem

x2

0

x I( )  

 

WARNING 3: The direction of the  inequality symbols may 

confuse students. Observe that 

 

1

2

4

=
1

16
, 

 

1

2

2

=
1

4
, and 

 

1

16
<

1

4
. 

 

We conclude: lim
x 0

x4
= 0 . 

 

We do not need the compound inequality to hold true for all nonzero values 

of x. We only need it to hold true on some punctured neighborhood of 0 so 

that we may apply the Squeeze (Sandwich) Theorem to the two-sided limit 

  
lim
x 0

x4
. This is because “Limits are Local.” 

 

As seen below, the graphs of   y = x6
 and   y = x2

 squeeze (from below and 

above, respectively) the graph of   y = x4
 on I.  In Chapter 6, we will be able 

to find the areas of the bounded regions. 
 

       
§ 
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PART B: THE SQUEEZE (SANDWICH) THEOREM 
 

We will call B the “bottom” function and T  the “top” function. 
 

The Squeeze (Sandwich) Theorem 
 

Let B and T  be functions such that B x( ) f x( ) T x( )  on a punctured 

neighborhood of a. 
 

If 
  
lim
x a

B x( ) = L  and 
   
lim
x a

T x( ) = L L( ) , then 
  
lim
x a

f x( ) = L . 
 

 

Variation for Right-Hand Limits at a Point 
 

Let B x( ) f x( ) T x( )  on some right-neighborhood of a. 
 

If lim
x a+

B x( ) = L  and lim
x a+

T x( ) = L L( ) , then lim
x a+

f x( ) = L . 

 

Variation for Left-Hand Limits at a Point 
 

Let 
 
B x( ) f x( ) T x( )  on some left-neighborhood of a. 

\ 

If 
  

lim
x a

B x( ) = L  and 
   

lim
x a

T x( ) = L L( ) , then 
  

lim
x a

f x( ) = L . 

 

 

PART C: VARIATIONS FOR “LONG-RUN” LIMITS 
 

In the upcoming Example 4, f x( )  is the quotient of a sine or cosine expression 

and a polynomial. 
 

• The idea is that “something bounded” divided by “something approaching 

±( ) infinity” will approach 0. Informally, 
 

 

 Limit Form 
bounded

±
0 . 
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Example 4 (Applying the Squeeze (Sandwich) Theorem to a “Long-Run” Limit; 

Revisiting Section 2.3, Example 6) 
 

Evaluate: a) 
  
lim

x
f x( )  and b) 

  
lim

x
f x( ) , where 

  
f x( ) =

sin x

x
. 

 

§ Solution to a) 
 

Assume   x > 0 , since we are taking a limit as x . 
 

• We first bound   sin x . 
 

• Divide all three parts by x 

x > 0( )  so that the middle 

part becomes f x( ) . 

    1 sin x 1 x > 0( )  
 

1

x

sin x

x

1

x
x > 0( )  

 

 

• Now, apply the Squeeze 

(Sandwich) Theorem. 

 

 

  

lim
x

1

x
= 0 , and lim

x

1

x
= 0 , so 

  
lim

x

sin x

x
= 0  by the Squeeze Theorem. 

 

Shorthand: As  x , 
 

   

1

x
0

sin x

x
Therefore, 0
by the Squeeze
(Sandwich) Theorem

1

x
0

x > 0( ) . §

 

§ Solution to b) 
 

Assume   x < 0 , since we are taking a limit as  x . 

 

• We first bound   sin x . 
 

• Divide all three parts by x 

so that the middle part 

becomes f x( ) . But   x < 0 , 

so we must reverse the  

inequality symbols. 
 

• Reversing the compound 

inequality will make it 

easier to read. 

    1 sin x 1 x < 0( )  
 

1

x

sin x

x

1

x
x < 0( )  

 

 
 

 

 

   
  

1

x

sin x

x

1

x
x < 0( )  
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• Now, apply the Squeeze 

(Sandwich) Theorem. lim
x

1

x
= 0 , and 

  

lim
x

1

x
= 0 , so 

lim
x

sin x

x
= 0  by the Squeeze Theorem. 

 

Shorthand: As x , 
 

   

1

x
0

sin x

x
Therefore, 0
by the Squeeze
(Sandwich) Theorem

1

x
0

x < 0( )

The graph of y =
sin x

x
, together with the squeezing graphs of y =

1

x
 and 

  
y =

1

x
, is below. We can now justify the HA at y = 0  (the x-axis). 
 

 (The axes are scaled differently.) § 

Variation for “Long-Run” Limits to the Right 
 

Let 
 
B x( ) f x( ) T x( )  on some x-interval of the form 

  
c,( ) ,  c . 

If lim
x

B x( ) = L  and lim
x

T x( ) = L L( ) , then lim
x

f x( ) = L . 
 

• In Example 4a, we used   c = 0 . We need the compound inequality to hold 

“forever” after some point c. 
 

Variation for “Long-Run” Limits to the Left 
 

Let 
 
B x( ) f x( ) T x( )  on some x-interval of the form 

  
, c( ) ,  c . 

If 
  

lim
x

B x( ) = L  and 
   

lim
x

T x( ) = L L( ) , then 
  

lim
x

f x( ) = L . 
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SECTION 2.7: PRECISE DEFINITIONS OF LIMITS 
 
 

LEARNING OBJECTIVES 
 

     • Know rigorous definitions of limits, and use them to rigorously prove limit 

     statements. 
 

 

PART A: THE “STATIC” APPROACH TO LIMITS 
 

We will use the example 

  

lim
x 4

7
1

2
x = 5  in our quest to rigorously define what 

a limit at a point is. We consider lim
x a

f x( ) = L , where 
  
f x( ) = 7

1

2
x , a = 4 , 

and L = 5 . The graph of y = f x( )  is the line below. 
 

 
 

The “dynamic” view of limits states that, as x “approaches” or “gets closer to” 4,  

 
f x( )  “approaches” or “gets closer to” 5. (See Section 2.1, Footnote 2.) 

 

The precise approach takes on a more “static” view. The idea is that, if x is close 

to 4, then f x( )  is close to 5. 

 

The Lottery Analogy 
 

Imagine a lottery in which every x Dom f( )  represents a player. However, 

we disqualify  x = a  (here,   x = 4 ), because that person manages the lottery. 

(See Section 2.1, Part C.) 
 

Each player is assigned a lottery number by the rule 
  
f x( ) = 7

1

2
x . 

The “exact” winning lottery number (the “target”) turns out to be L = 5 . 
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When Does Player x Win? 
 

In this lottery, more than one player can win, and it is sufficient for a  

player to be “close enough” to the “target” in order to win. In particular,  

Player x wins 
 

x a( )   the player’s lottery number, 
 
f x( ) , is  

strictly within  units of L, where  > 0 . The Greek letter  (“epsilon”) 

often represents a small positive quantity. Here,  is a tolerance level that 

measures how liberal the lottery is in determining winners. 
 

Symbolically: 
 

  
Player x wins x a( )   L < f x( ) < L +  

 

Subtract L from all three parts. 
 

      < f x( ) L <  
 

1< r < 1 r < 1. 

Similarly: 
 

     
  

 f x( ) L <  

 

 
f x( ) L  is the distance (along the y-axis) between Player x’s lottery 

number, 
 
f x( ) , and the “target” L. 

 

Player x wins 
 

x a( )   this distance is less than . 
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Where Do We Look for Winners? 
 

We only care about players that are “close” to  x = a  (here,   x = 4 ), excluding 

a itself. These players x are strictly between 0 and  units of a, where  > 0 . 

Like , the Greek letter  (“delta”) often represents a small positive 

quantity.  is the half-width of a punctured -neighborhood of a.  
 

Symbolically: 
 

   
  
Player x is "close" to a  a < x < a +  x a( )  

 

That is, x a , a +( ) \ a{ } . 

Subtract a from all three parts. 
 

          

  

 < x a <  x a( )
 0 < x a <

 

 

 
x a  is the distance between Player x and a. 

 

Player x is “close” to a  this distance is strictly between 0 and . 
 

• If the distance is 0, we have  x = a , which is disqualified. 
 

In the figure on the left, the value for  is giving us a punctured  

-neighborhood of a in which everyone wins.  
 

• In this sense, if x is close to a, then 
 
f x( )  is close to L. 

 

Observe that any smaller positive value for  could also have been chosen. 

(See the figure on the right. The dashed lines are not asymptotes; they 

indicate the boundaries of the open intervals and the puncture at  x = a .) 
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How Does the “Static” Approach to Limits Relate to the “Dynamic” Approach? 
 

Why is 

  

lim
x 4

7
1

2
x = 5? Because, regardless of how small we make the 

tolerance level  and how tight we make the lottery for the players, there is 

a value for  for which the corresponding punctured -neighborhood of 

a = 4  is made up entirely of winners. That is, the corresponding “punctured 

box” (see the shaded boxes in the figures) traps the graph of y = f x( )  on 

the punctured -neighborhood. 
 

As  0
+

, we can choose values for  in such a way that the 

corresponding shaded “punctured boxes” always trap the graph and zoom 

in, or collapse in, on the point 4, 5( ) . (This would have been the case even if 

that point had been deleted from the graph.) In other words, there are 

always winners close to a = 4 . 
 

• As x gets arbitrarily close to a, f x( )  gets arbitrarily close to L. 

 

If  = 1, we can choose = 2 .  If  = 0.5 , we can choose = 1. 
 

             
 

For this example, if  is any positive real number, we can choose = 2 . 

Why is that?  
 

• Graphically, we can exploit the fact that the slope of the line 

  
y = 7

1

2
x  is 

 

1

2
. Remember, 

 
slope =

rise

run
. Along the line, an x-run 

of 2 units corresponds to a y-drop of 1 unit. 
 

• We will demonstrate this rigorously in Example 1. 
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 PART B: THE PRECISE - DEFINITION OF A LIMIT AT A POINT  

 

 

 The Precise - Definition of a Limit at a Point  

(Version 1) 
 

         For 
 
a, L , if a function   f   is defined on a punctured neighborhood of a, 

 

  
lim
x a

f x( ) = L   for every  > 0 , there exists a  > 0  such that,  

if 0 < x a <  (that is, if x is “close” to a, excluding a itself), 

then 
 

f x( ) L <  (that is, 
 
f x( )  is “close” to L). 

 

Variation Using Interval Form 
 

We can replace 0 < x a <  with: x a , a +( ) \ a{ } . 
 

We can replace 
 

f x( ) L <  with: 
  
f x( ) L , L +( ) . 

 

 The Precise - Definition of a Limit at a Point  

(Version 2: More Symbolic) 
 

         For 
 
a, L , if a function   f   is defined on a punctured neighborhood of a, 

 

  
lim
x a

f x( ) = L    > 0 ,  > 0   

  
0 < x a < f x( ) L <( ) . 
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Example 1 (Proving the Limit Statement from Part A) 
 

Prove 

  

lim
x 4

7
1

2
x = 5  using a precise -  definition of a limit at a point. 

 

§ Solution 
 

We have: 
  
f x( ) = 7

1

2
x , a = 4 , and   L = 5 . 

 

We need to show: 
 

 > 0 ,  > 0   
  
0 < x a < f x( ) L <( ) ; i.e., 

 > 0 , > 0   

  

0 < x 4 < 7
1

2
x 5( ) < . 

 

Rewrite 
 

f x( ) L  in terms of 
 

x a ; here, 
  

x 4 : 

 

  

f x( ) L = 7
1

2
x 5( )

=
1

2
x + 2

 

Factor out 
1

2
, the coefficient of x. 

To divide the +2  term by 
 

1

2
, we multiply it by 

 2  and obtain  4 .  
 

       

  

=
1

2
x 4( )

=
1

2
x 4

 

 

This is because, if m and n represent real 

quantities, then mn = m n . 
 

              

  
=

1

2
x 4  

 

We have: f x( ) L =
1

2
x 4 ; call this statement *. 
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Assuming  is fixed 
 

> 0( ) , find an appropriate value for . 

 

We will find a value for  that corresponds to a punctured  

-neighborhood of a = 4  in which everyone wins. This means that, 

for every player x in there: 
 

  

f x( ) L <

1

2
x 4 < by *( )

x 4 < 2

 

 

We choose  = 2 . We will formally justify this choice in our 

verification step. 
 

Observe that, since  > 0 , then our  > 0 . 

 

Verify that our choice for  is appropriate. 
 

We will show that, given  and our choice for  = 2( ) , 

  
0 < x a < f x( ) L < . 

 

  

0 < x a <

0 < x 4 <

0 < x 4 < 2

0 <
1

2
x 4 <

f x( ) L < by *( )

 

 

Note: It is true that: 
  
0 < f x( ) L < , but the first inequality 

  
0 < f x( ) L( )  does not help us. 

 

Q.E.D. 

(“Quod erat demonstrandum” – Latin for “which was to be 

demonstrated / proven / shown.” This is a formal end to a proof.) § 
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PART C: DEFINING ONE-SIDED LIMITS AT A POINT 
 

The precise definition of 
  
lim
x a

f x( ) = L  can be modified for left-hand and  

right-hand limits. The only changes are the x-intervals where we look for 

winners. (See red type.) These x-intervals will no longer be symmetric about a.  
 

• Therefore, we will use interval form instead of absolute value notation 

when describing these x-intervals. 
 

• Also, we will let  represent the entire width of an x-interval, not just half 

the width of a punctured x-interval. 
 

 The Precise - Definition of a Left-Hand Limit at a Point  

 

For 
   a, L , if a function   f   is defined on a left-neighborhood of a, 

 

  
lim

x a
f x( ) = L    > 0 , > 0   

x a , a( ) f x( ) L < . 

 

 The Precise - Definition of a Right-Hand Limit at a Point  

 

For 
   a, L , if a function   f   is defined on a right-neighborhood of a, 

 

  
lim

x a+
f x( ) = L    > 0 ,  > 0   

  
x a, a +( ) f x( ) L < . 

 

 

 Left-Hand Limit      Right-Hand Limit 
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PART D: DEFINING “LONG-RUN” LIMITS 
 

The precise definition of 
  
lim
x a

f x( ) = L  can also be modified for “long-run” 

limits. Again, the only changes are the x-intervals where we look for winners.  

(See red type.) These x-intervals will be unbounded.  
 

• Therefore, we will use interval form instead of absolute value notation 

when describing these x-intervals. 
 

• Also, instead of using , we will use M (think “Million”) and N  (think 

“Negative million”) to denote “points of no return.” 
 

The Precise -M Definition of lim
x

f x( ) = L  

For   L , if a function   f   is defined on some interval 
  
c,( ) ,   c . 

 

lim
x

f x( ) = L    > 0 , 
  M   

  
x > M ; that is, x M ,( ) f x( ) L < . 

 

The Precise -N Definition of lim
x

f x( ) = L  

For   L , if a function   f   is defined on some interval 
  

, c( ) ,   c . 
 

lim
x

f x( ) = L    > 0 , 
  N   

  
x < N ; that is, x , N( ) f x( ) L < . 

 

 lim
x

f x( ) = L; here,  f x( ) =
1

x
+ 2   lim

x
f x( ) = L; here,  f x( ) =

1

x
+ 2  
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How Does the “Static” Approach to “Long-Run” Limits Relate to the “Dynamic” 

Approach? 
 

Why is lim
x

1

x
+ 2 = 2 ? Because, regardless of how small we make the 

tolerance level  and how tight we make the lottery for the players, there is 

a “point of no return” M after which all the players win. That is, the 

corresponding box (see the shaded boxes in the figures below) traps the 

graph of y = f x( )  for all x > M . 
 

As  0
+

, we can choose values for M in such a way that the 

corresponding shaded boxes always trap the graph and zoom in, or 

collapse in, on the HA   y = 2 . In other words, there are always winners as 

x . 
 

If  = 1, we can choose M = 1 .  If  = 0.5 , we can choose M = 2 . 
 

             
 

For this example, if  is any positive real number, we can choose 
  
M =

1
. 

 

PART E: DEFINING INFINITE LIMITS AT A POINT 
 

Challenge to the reader: 
 

Give precise “  M - ” and “  N - ” definitions of 
  
lim
x a

f x( ) =  and 

  
lim
x a

f x( ) =  
 
a( ) , where the function   f   is defined on a punctured 

neighborhood of a. 
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SECTION 2.8: CONTINUITY 
 
 

LEARNING OBJECTIVES 
 

     • Understand and know the definitions of continuity at a point (in a one-sided and  

     two-sided sense), on an open interval, on a closed interval, and variations thereof. 

     • Be able to identify discontinuities and classify them as removable, jump, or  

     infinite. 

     • Know properties of continuity, and use them to analyze the continuity of rational, 

     algebraic, and trigonometric functions and compositions thereof. 

     • Understand the Intermediate Value Theorem (IVT) and apply it to solutions of 

     equations and real zeros of functions. 
 

 

PART A: CONTINUITY AT A POINT 
 

Informally, a function   f   with domain  is everywhere continuous (on )   

we can take a pencil and trace the graph of   f   between any two distinct points on 

the graph without having to lift up our pencil. 
 

We will make this idea more precise by first defining continuity at a point a 

 
a( )  and then continuity on intervals. 

 

Continuity at a Point a 
 

f   is continuous at x = a   
 

1) 
 
f a( )  is defined (real); that is, a Dom f( ) , 

 

2) 
  
lim
x a

f x( )  exists (is real), and 
 

3) 
  
lim
x a

f x( ) = f a( ) . 

 

f   is discontinuous at x = a    f   is not continuous at x = a . 
 

Comments 
 

1) ensures that there is literally a point at  x = a . 

2) constrains the behavior of   f   immediately around x = a . 

3) then ensures “safe passage” through the point a, f a( )( )  on the graph of 

y = f x( ) . Some sources just state 3) in the definition, since the form of 

3) implies 1) and 2). 
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Example 1 (Continuity at a Point; Revisiting Section 2.1, Example 1) 
 

Let 
  
f x( ) = 3x2

+ x 1. Show that   f   is continuous at x = 1. 
 

§ Solution 
 

1) 
  
f 1( ) = 3 , a real number 1 Dom f( )( )  

2) 
  
lim
x 1

f x( ) = 3 , a real number, and 

3) 
  
lim
x 1

f x( ) = f 1( ) . 

 

Therefore,   f   is continuous at x = 1. The graph of y = f x( )  is below. 

 

 

 

 

 

Note: The Basic Limit Theorem for 

Rational Functions in Section 2.1 

basically states that a rational function is 

continuous at any number in its domain. § 

Example 2 (Discontinuities at a Point; Revisiting Section 2.2, Example 2) 
 

Let 
 
f x( ) = x . Explain why   f   is discontinuous at x = 1 and x = 0 . 

 

§ Solution 

• f 1( )  is not real 

1 Dom f( )( ) , so   f   is 

discontinuous at x = 1. 
 

•
  
f 0( ) = 0 , but 

  
lim
x 0

x  

does not exist (DNE), so   f   

is discontinuous at x = 0 . 

The graph of y = f x( )  is below. 
  

 
 

 

Some sources do not even bother calling  1 and 0 “discontinuities” of   f , 

since   f   is not even defined on a punctured neighborhood of x = 1 or of 

x = 0 . § 
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PART B: CLASSIFYING DISCONTINUITIES 
 

We now consider cases where a function   f   is discontinuous at x = a , even though 

f   is defined on a punctured neighborhood of x = a . 
 

We will classify such discontinuities as removable, jump, or infinite. 

(See Footnotes 1 and 2 for another type of discontinuity.) 

Removable Discontinuities 
 

A function   f   has a removable discontinuity at x = a   
 

1) 
  
lim
x a

f x( )  exists (call this limit L), but 
 

2)  f   is still discontinuous at x = a . 

• Then, the graph of y = f x( )  has a hole at the point 
  
a, L( ) . 

 

Example 3 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 7) 

Let g x( ) = x + 3, x 3( ) . Classify the discontinuity at x = 3 . 
 

§ Solution 
 

g has a removable discontinuity 

at x = 3 , because: 
 

1) 
  
lim
x 3

g x( ) = 6 , but 

 

2)  g is still discontinuous at x = 3 ;  

here, g 3( )  is undefined. 

 

 

 

 

The graph of y = g x( )  below has a 

hole at the point 
 
3, 6( ) . 

                
§ 
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Example 4 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 8) 
 

Let h x( ) =
x + 3, x 3

7, x = 3
 . Classify the discontinuity at x = 3 . 

 

§ Solution 

h has a removable discontinuity 

at x = 3 , because: 
 

1) 
  
lim
x 3

h x( ) = 6 , but 

 

2)  h is still discontinuous at x = 3 ;  

here, lim
x 3

h x( ) h 3( ) , 

because  6 7 . 
 

The graph of y = h x( )  also has a 

hole at the point 3, 6( ) . 
 

 
§ 
 

Why are These Discontinuities Called “Removable”? 
 

The term “removable” is a bit of a misnomer here, since we have no 

business changing the function at hand. 
 

The idea is that a removable discontinuity at a can be removed by 

(re)defining the function at a; the new function will then be continuous at a.  
 

For example, if we were to define 
  
g 3( ) = 6  in Example 3 and redefine 

  
h 3( ) = 6  in Example 4, then we would remove the discontinuity at x = 3  in 

both situations. We would obtain the graph below. 
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Jump Discontinuities 
 

A function   f   has a jump discontinuity at x = a   
 

1) 
  

lim
x a

f x( )  exists, and     (call this limit L
1
) 

 

2) lim
x a+

f x( )  exists, but      (call this limit 
  
L

2
) 

 

3) 
  

lim
x a

f x( ) lim
x a+

f x( ) .     ( L
1

L
2
) 

 

• Therefore, 
  
lim
x a

f x( )  does not exist (DNE).  
 

• It is irrelevant how f a( )  is defined, or if it is defined at all. 

Example 5 (Jump Discontinuity at a Point; Revisiting Section 2.1, Example 14) 
 

Let 

  

f x( ) =
x

x
=

x

x
= 1, if x > 0

x

x
= 1, if x < 0

 . Classify the discontinuity at x = 0 . 

 

§ Solution 

f   has a jump discontinuity at 

x = 0 , because: 
 

1) 
  

lim
x 0

f x( ) = 1, and 

 

2) 
  

lim
x 0+

f x( ) = 1, but 

 

3) 
  
lim
x 0

f x( )  does not exist 

(DNE), because  1 1. 
 

We cannot remove this 

discontinuity by defining 

  
f 0( ) . 

The graph of y = f x( )  is below.  
 

        

§ 
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Infinite Discontinuities 
 

A function   f   has an infinite discontinuity at x = a   
 

  
lim

x a+
f x( )  or 

  
lim

x a
f x( )  is  or . 

 

• That is, the graph of y = f x( )  has a VA at x = a . 
 

• It is irrelevant how 
 
f a( )  is defined, or if it is defined at all. 

Example 6 (Infinite Discontinuities at a Point; Revisiting Section 2.4, Exs. 1 and 2) 
 

The functions described below have infinite discontinuities at x = 0 . 

We will study   ln x  in Chapter 7 (see also the Precalculus notes, Section 3.2). 
 

f x( ) =
1

x
   

  
g x( ) =

1

x2
   

  
h x( ) = ln x  

         
§ 
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PART C: CONTINUITY ON AN OPEN INTERVAL 
 

We can extend the concept of continuity in various ways. 

(For the remainder for this section, assume a < b .) 
 

Continuity on an Open Interval 
 

A function   f   is continuous on the open interval 
  
a, b( )    

f   is continuous at every number (point) in a, b( ) . 
 

• This extends to unbounded open intervals of the form  

a,( ) , , b( ) , and ,( ) . 
 

In Example 6, all three functions are continuous on the interval 0,( ) . 

The first two functions are also continuous on the interval 
 

, 0( ) . 
We will say that the “continuity intervals” of the first two functions are: 

, 0( ) , 0,( ) . However, this terminology is not standard. 
 

• In Footnote 1,   f   has the singleton (one-element) set 0{ }  as a  

“degenerate continuity interval.” See also Footnotes 2 and 3. 
 

• Avoid using the union ( )  symbol here. In Section 2.1, Example 10, 

 f   was continuous on , 0( ]  and 0, 1( ) , but not on , 1( ) . 
 

 

PART D: CONTINUITY ON OTHER INTERVALS; ONE-SIDED CONTINUITY 

 
Continuity on a Closed Interval 

 

A function   f   is continuous on the closed interval a, b   
 

1)  f   is defined on a, b , 
 

2)  f   is continuous on a, b( ) ,  
 

3) 
  

lim
x a+

f x( ) = f a( ) , and 

 

4) 
  

lim
x b

f x( ) = f b( ) . 

 

3) and 4) weaken the continuity requirements at the endpoints, a and b. 

Imagine taking limits as we “push outwards” towards the endpoints. 
 

3) implies that   f   is continuous from the right at a. 

4) implies that   f   is continuous from the left at b. 
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Example 7 (Continuity on a Closed Interval) 
 

Let 
  
f x( ) = 1 x2

. Show that   f   is continuous on the closed interval 1, 1[ ] . 
 

§ Solution 
 

The graph of y = f x( )  is below. 
 

 
 

 

  

y = 1 x2

y2
= 1 x2 y 0( )

x2
+ y2

= 1 y 0( )

 

 

The graph is the upper half of the unit 

circle centered at the origin, including 

the points 
 

1, 0( )  and 
 
1, 0( ) . 

 

f   is continuous on 1,1 , because: 
 

1)  f   is defined on 
 

1,1 , 
 

2)  f   is continuous on 1,1( ) ,  
 

3) 
  

lim
x 1+

f x( ) = f 1( ) , so   f   is continuous from the right at 1, and 

 

4) 
  

lim
x 1

f x( ) = f 1( ) , so   f   is continuous from the left at 1. 

 

Note: 
  
f 1( ) = 0 , and 

  
f 1( ) = 0 , but they need not be equal. 

 

 f   has 1,1  as its sole “continuity interval.” When giving “continuity 

intervals,” we include brackets where appropriate, even though   f   is not 

continuous (in a two-sided sense) at 1 and at 1 (WARNING 1).  

 

• Some sources would call 
 

1,1( )  the continuity set of   f  ; it is the set of all 

real numbers at which   f   is continuous. (See Footnotes 2 and 3.)  § 

 

Challenge to the Reader: Draw a graph where   f   is defined on 
  

a, b , and   f   is 

continuous on 
  
a, b( ) , but   f   is not continuous on the closed interval 

  
a, b . 



(Section 2.8: Continuity)  2.8.9 
 

 

Continuity on Half-Open, Half-Closed Intervals 

 f   is continuous on an interval of the form a, b)  or a, )   

 f   is continuous on 
  
a, b( )  or 

  
a,( ) , respectively, and it is continuous  

from the right at a. 
 

 f   is continuous on an interval of the form 
  
a, b(  or 

  
, b(   

 f   is continuous on 
  
a, b( )  or 

  
, b( ) , respectively, and it is continuous  

from the left at b. 

 

Example 8 (Continuity from the Right; Revisiting Example 2) 
 

Let f x( ) = x . 

 

 f   is continuous on 
 
0,( ) . 

  

lim
x 0+

x = 0 = f 0( ) , so   f   is 

continuous from the right at 0. 
 

The sole “continuity interval” 

of   f   is 0, ) . 

 

 
 
 

The graph of y = f x( )  is below.       

 § 

Example 9 (Continuity from the Left) 
 

Let 
 
f x( ) = x . 

 

 f   is continuous on , 0( ) . 
  

  
lim

x 0
x = 0 = f 0( ) , so   f   is 

continuous from the left at 0. 
 

The sole “continuity interval” 

of   f   is 
 

, 0( . 

 

 
 

 

The graph of y = f x( )  is below. 
 

 § 
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PART E: CONTINUITY THEOREMS 
 

 

Properties of Continuity / Algebra of Continuity Theorems 
 

If   f   and g are functions that are continuous at x = a , then so are the 

functions: 
 

•  f + g ,  f g , and  fg .  
 

• 
f

g
, if 

  
g a( ) 0 . 

 

•  f
n
, if n is a positive integer exponent 

 
n +( ) . 

 

• fn , if: 

• (n is an odd positive integer), or  

• (n is an even positive integer, and f a( ) > 0 ). 

 

In Section 2.2, we showed how similar properties of limits justified the Basic 

Limit Theorem for Rational Functions. Similarly, the properties above, together 

with the fact that constant functions and the identity function (represented by 

f x( ) = x ) are everywhere continuous on , justify the following: 

 

Continuity of Rational Functions 
 

A rational function is continuous on its domain.  
 

• That is, the “continuity interval(s)” of a rational function   f   are  

its domain interval(s).  
 

In particular, polynomial functions are everywhere continuous (on  ). 
 

Although this is typically true for algebraic functions in general, there are 

counterexamples (see Footnote 4). 

 

Example 10 (Continuity of a Rational Function; Revisiting Example 6) 
 

If 
  
f x( ) =

1

x
, then 

  
Dom f( ) = , 0( ) 0,( ) . 

 f   is rational, so the “continuity intervals” of   f   are: 
 

, 0( ) , 0,( ) . § 



(Section 2.8: Continuity)  2.8.11

When analyzing the continuity of functions that are not rational, we may need to 

check for one-sided continuity at endpoints of domain intervals. 

Example 11 (Continuity of an Algebraic Function; Revisiting Chapter 1, Ex. 6) 
 

Let 
  
h x( ) =

x + 3

x 10
. What are the “continuity intervals” of h?  

 

§ Solution 
 

In Chapter 1, we found that Dom h( ) = 3,10) 10,( ) . 

We will show that the “continuity intervals” are, in fact, the  

domain intervals, 
 

3,10)  and 
 
10,( ) . 

 

By the Algebra of Continuity Theorems, we find that h is continuous on 

3,10( )  and 10,( ) .  
 

Now, 
  

lim
x 3+

h x( ) = 0 = h 3( ) , because Limit Form 
0+

13
0 . 

Therefore, h is continuous from the right at x = 3 , and its  

“continuity intervals” are: 3,10)  and 10,( ) . 

 

The graph of y = h x( )  is below. 
 

 
§ 
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Continuity of Composite Functions 
 

If g is continuous at a, and   f   is continuous at g a( ) , then 
  f g  is  

continuous at a. 
 

(See Footnote 5.) 
 

Continuity of Basic Trigonometric Functions 
 

The six basic trigonometric functions (sine, cosine, tangent, cosecant,  

secant, and cotangent) are continuous on their domain intervals.  
 

 

Example 12 (Continuity of a Composite Function) 
 

Let 

  

h x( ) = sec
1

x
. Where is h continuous? 

 

§ Solution 
 

Observe that 
  
h x( ) = f g( ) x( ) = f g x( )( ) , where: 

the “inside” function is given by 
  
g x( ) =

1

x
, and  

the “outside” function   f   is given by 
  
f ( ) = sec , where 

  
=

1

x
. 

 

g is continuous at all real numbers except 0 x 0( ) . 
f   is continuous on its domain intervals. 
 

   

sec  is real cos 0,  and  x 0

2
+ n n( ) ,  and  x 0

1

x 2
+ n n( ) ,  and  x 0

 

 

We can replace both sides of the inequation with 

their reciprocals, because we exclude the case 

  x = 0 , and both sides are never 0. 
 

 

   

x
1

2
+ n

n( ) ,  and  x 0  
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x
1

2
+ n

2

2

n( ) ,  and  x 0

x
2

+ 2 n
n( ) ,  and  x 0

 

 

h is continuous on: 
 

   

x x
2

+ 2 n
n( ) ,  and  x 0 , or 

 

   

x x
2

2n +1( )
n( ) ,  and  x 0 . 

§ 
 

 

PART F: THE INTERMEDIATE VALUE THEOREM (IVT) 
 

Continuity of a function constrains its behavior in important (and useful) ways. 

Continuity is central to some key theorems in calculus. We will see the Extreme 

Value Theorem (EVT) in Chapter 4 and Mean Value Theorems (MVTs) in 

Chapters 4 and 5. We now discuss the Intermediate Value Theorem (IVT), which 

directly relates to the meaning of continuity. We will motivate it before stating it. 

 

Example 13 (Motivating the IVT) 
 

Let 
  
f x( ) = x2

 on the x-interval 
 

0, 2 . The graph of y = f x( )  is below. 

 

 

  f   is continuous on 0, 2 , 

  
f 0( ) = 0 , and 

f 2( ) = 4 . 

 

The IVT guarantees that every real 

number (d) between 0 and 4 is a value of  

(is taken on by)   f   at some x-value (c) in 

 
0, 2 . §
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The Intermediate Value Theorem (IVT): Informal Statement 
 

If a function   f   is continuous on the closed interval a, b ,  

then   f   takes on every real number between 
 
f a( )  and 

 
f b( )  on 

  
a, b . 

 

The Intermediate Value Theorem (IVT): Precise Statement 
 

Let 
  
min f a( ) , f b( )( )  be the lesser of 

 
f a( )  and 

 
f b( ) ;  

if they are equal, then we take their common value. 

Let 
  
max f a( ) , f b( )( )  be the greater of f a( )  and f b( ) ;  

if they are equal, then we take their common value. 
 

A function   f   is continuous on 
  

a, b   

d min f a( ) , f b( )( ) , max f a( ) , f b( )( ) , c a, b   f c( ) = d . 

 

 

Example 14 (Applying the IVT to Solutions of Equations) 
 

Prove that x2 = 3 has a solution in 
 

0, 2 . 
 

§ Solution 
 

Let f x( ) = x2 . (We also let the desired function value, d = 3 .) 
 

  f   is continuous on 
 

0, 2 , 

f 0( ) = 0 , 

f 2( ) = 4 , and 

3 0, 4[ ]. 
 

Therefore, by the IVT, c 0, 2   (such that) f c( ) = 3 . 

That is, x2 = 3 has a solution (c) in 
 

0, 2 . 

Q.E.D. § 
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In Example 14, c = 3  was our solution to x2 = 3 in 0, 2[ ] ; d = 3  here. 
 

 
 

To verify the conclusion of the IVT in general, we can give a formula for c given 

any real number d in 
 

0, 4 , where c 0, 2[ ]  and f c( ) = d . 

 

Example 15 (Verifying the Conclusion of the IVT; Revisiting Examples 13 and 14) 

Verify the conclusion of the IVT for 
  
f x( ) = x2

 on the x-interval 0, 2[ ] . 
 

§ Solution 
 

 f   is continuous on 
 

0, 2 , so the IVT applies. 
  
f 0( ) = 0 , and 

  
f 2( ) = 4 . 

Let 
  
d 0, 4 , and let  c = d . 

 

• The following justifies our formula for c : 
 

  

f c( ) = d  and c 0, 2

c2
= d  and c 0, 2

c = d , a real number in 0, 2

 

 

WARNING 2: We do not write  c = ± d , because either   d = 0 , or a 

value for c would fall outside of 0, 2 . 

 

Observe:   0 d 4 0 d 2 . 

Then, 
  
c 0, 2 , and 

  
f c( ) = c2

= d( )
2

= d . 

Therefore, d 0, 4 , c 0, 2   f c( ) = d . § 
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Example 16 (c Might Not Be Unique) 

Let f x( ) = sin x  on the x-interval 

 

0,
5

2
. The graph of y = f x( )  is below. 

 

 
 

f 0( ) = 0 , and 

  

f
5

2
= 1 . Because   f   is continuous on 

 

0,
5

2
, the IVT 

guarantees that every real number d between 0 and 1 is taken on by   f   at 

some x-value c in 

 

0,
5

2
.  

 

WARNING 3: Given an appropriate value for d, there might be more than 

one appropriate choice for c. The IVT does not forbid that. 
 

WARNING 4: Also, there are real numbers outside of 
 

0,1  that are taken 

on by   f   on the x-interval 

 

0,
5

2
. The IVT does not forbid that, either. § 
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PART G: THE BISECTION METHOD FOR APPROXIMATING A ZERO OF A 

FUNCTION 
 

Our ability to solve equations is equivalent to our ability to find zeros of 

functions. For example, f x( ) = g x( ) f x( ) g x( ) = 0 ; we can solve the first 

equation by finding the zeros of h x( ) , where h x( ) = f x( ) g x( ) . 

 

We may have to use computer algorithms to approximate zeros of functions if we 

can’t find them exactly. 
 

• While we do have (nastier) analogs of the Quadratic Formula for 3
rd

- and 

4
th
-degree polynomial functions, it has actually been proven that there is  

no similar formula for higher-degree polynomial functions. 
 

The Bisection Method, which is the basis for some of these algorithms, uses the 

IVT to produce a sequence of smaller and smaller intervals that are guaranteed 

to contain a zero of a given function. 

 

The Bisection Method for Approximating a Zero of a Continuous Function   f 
 

Let’s say we want to approximate a zero of a function   f . 
 

Find x-values a
1
 and b

1
 
  
a

1
< b

1( )  such that 
  
f a

1( )  and 
  
f b

1( )  have  

opposite signs and   f   is continuous on a
1
, b

1
. (The method fails if such  

x-values cannot be found.) 
 

According to the IVT, there must be a zero of   f   in a
1
, b

1
, which we call 

our “search interval.” 
 

For example, consider the graph of y = f x( )  below. Our search interval is 

apparently 2, 8 . 
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If 
  
f a

1( )  or 
  
f b

1( )  were 0, then we would have found a zero of   f , and we 

could either stop or try to approximate another zero. 
 

If neither is 0, then we take the midpoint of the search interval and 

determine the sign of f x( )  there (in red below). We can then shrink the 

search interval (in purple below) and repeat the process. We call the 

Bisection Method an iterative method because of this repetition. 
 

 

x

x

x

 

We stop when we find a zero, or until the search interval is small enough 

so that we are satisfied with taking its midpoint as our approximation. 
 

A key drawback to numerical methods such as the Bisection Method is that, 

unless we manage to find n distinct real zeros of an   n
th

-degree polynomial 

 
f x( ) , we may need other techniques to be sure that we have found all of the 

real zeros, if we are looking for all of them. § 

 

Example 17 (Applying the Bisection Method; Revisiting Example 14) 
 

We can approximate 3  by approximating the positive real solution of 

x2 = 3, or the positive real zero of h x( ) , where h x( ) = x2 3 . 
 

Search interval a, b[ ] Sign of h a( )  Sign of h b( )  Midpoint 
Sign of h 

there 

0, 2[ ]   +  1  

1, 2[ ]  +  1.5  

1.5, 2[ ]   +  1.75 +  

1.5, 1.75[ ]  +  1.625  

etc. § 

In Section 4.8, we will use Newton’s Method for approximating zeros of a 

function, which tends to be more efficient. However, Newton’s Method requires 

differentiability of a function, an idea we will develop in Chapter 3. 
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FOOTNOTES 
 

1. A function with domain   that is only continuous at 0. (Revisiting Footnote 1 in  

Section 2.1.) Let f x( ) =
0, if x is a rational number x( )
x, if x is an irrational number x ;  really, x \( )

  . 

f   is continuous at x = 0 , because 
  
f 0( ) = 0 , and we can use the Squeeze (Sandwich) 

Theorem to prove that 
  
lim
x 0

f x( ) = 0 , also. The discontinuities at the nonzero real numbers 

are not categorized as removable, jump, or infinite. 

 

2. Continuity sets and a nowhere continuous function. See Cardinality of the Set of Real 

Functions With a Given Continuity Set by Jiaming Chen and Sam Smith. The 19
th
-century 

German mathematician Dirichlet came up with a nowhere continuous function, D: 

D x( ) =
0, if x is a rational number x( )
1, if x is an irrational number x ;  really, x \( )

 

 

3. Continuity on a set. This is tricky to define! See “Continuity on a Set” by R. Bruce Crofoot, 

The College Mathematics Journal, Vol. 26, No. 1 (Jan. 1995) by the Mathematical 

Association of America (MAA). Also see Louis A. Talman, The Teacher’s Guide to Calculus 

(web). Talman suggests:  

Let S be a subset of Dom f( ) ; that is, 
  
S Dom f( ) .   f   is continuous on S   

 a S ,  > 0 ,  > 0   x S  and x a <( ) f x( ) f a( ) < . 

• The definition essentially states that, for every number a in the set of interest, its function 

value is arbitrarily close to the function values of nearby x-values in the set. Note that we use 

 
f a( )  instead of L, which we used to represent 

  
lim
x a

f x( ) , because we need 

lim
x a

f x( ) = f a( )  (or possibly some one-sided variation) in order to have continuity on S. 

• This definition covers / subsumes our definitions of continuity on open intervals; closed 

intervals; half-open, half-closed intervals; and unions (collections) thereof. 

• One possible criticism against this definition is that it implies that the functions described in 

Footnote 4 are, in fact, continuous on the singleton set {0}. This conflicts with our definition 

of continuity at a point in Part A because of the issue of nonexistent limits. Perhaps we 

should require that   f   be defined on some interval of the form 
  

a, c)  with c > a  or the form 

  
c, a(  with c < a . 

• Crofoot argues for the following definition: f   is continuous on S if the restriction of   f   to S 

is continuous at each number in S. He acknowledges the use of one-sided continuity when 

dealing with closed intervals. 
 

4. An algebraic function that is not continuous on its domain. Let 
 
f x( ) = x + x . 

Dom f( ) = 0{ } , a singleton (a set consisting of a single element), but   f   is not continuous at 

0 (by Part A), because lim
x 0

f x( )  does not exist (DNE). The same is true for 
  
f x( ) = x2

. 
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5. Continuity and the limit properties in Section 2.2, Part A. Let a, K .  

If 
  
lim
x a

g x( ) = K , and   f   is continuous at K, then: 

   
lim
x a

f g( ) x( ) = lim
x a

f g x( )( ) = f lim
x a

g x( )( ) = f K( ) . Basically, continuity allows   f   to 

commute with a limit operator: lim
x a

f g x( )( ) = f lim
x a

g x( )( ) . Think: “The limit of a (blank) 

is the (blank) of the limit.” This relates to Property 5) on the limit of a power, Property 6) on 

the limit of a constant multiple, and Property 7) on the limit of a root in Section 2.2.  

For example,   f   could represent the squaring function. 

6. A function that is continuous at every irrational point and discontinuous at every 

rational point. See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.27. Also 

see Tom Vogel, http://www.math.tamu.edu/~tvogel/gallery/node6.html (web). If x is rational, 

where 
 
x =

a

b
 
 
a, b( ) ,   b > 0 , and the fraction is simplified, then let 

  
f x( ) =

1

b
. If x is 

irrational, let 
  
f x( ) = 0 . Vogel calls this the “ruler function,” appealing to the image of 

markings on a ruler. However, there does not exist a function that is continuous at every 

rational point and discontinuous at every irrational point. 

7. An everywhere continuous function that is nowhere monotonic (either increasing or 

decreasing). See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.29. There 

is no open interval on which the function described there is either increasing or decreasing. 
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