SECTION 2.4: LIMITS AND INFINITY II

LEARNING OBJECTIVES

- Understand infinite limits at a point and relate them to vertical asymptotes of graphs.
- Be able to evaluate infinite limits at a point, particularly for rational functions expressed in simplified form, and use a short cut to find vertical asymptotes of their graphs.
- Be able to use informal Limit Form notation to analyze infinite limits at a point.

PART A: VERTICAL ASYMPTOTES ("VA"s) and
 INFINITE LIMITS AT A POINT

In Section 2.1, we discussed finite limits at a point a.
We saw (two-sided) limits where $\lim _{x \rightarrow a} f(x)=L(a, L \in \mathbb{R})$.
In Section 2.3, we discussed finite and infinite limits at (\pm) infinity .
We saw examples where $\lim _{x \rightarrow \infty} f(x)$ or $\lim _{x \rightarrow-\infty} f(x)$ is $L(L \in \mathbb{R}), \infty$, or $-\infty$.
Now, if $a \in \mathbb{R}$:
f has an infinite limit at a point $a \Leftrightarrow \lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a^{-}} f(x)$ is ∞ or $-\infty$.

- We read $\lim _{x \rightarrow a} f(x)=\infty$ as "the limit of $f(x)$ as x approaches a is infinity."
- See Footnote 1 for an alternate definition.

A vertical asymptote, which we will denote by "VA," is a vertical line that a graph approaches in an "explosive" sense. (See Section 2.1, Example 11.)

Using Infinite Limits at a Point to Find Vertical Asymptotes (VAs)

The graph of $y=f(x)$ has a vertical asymptote (VA) at $x=a(a \in \mathbb{R})$

$$
\Leftrightarrow \lim _{x \rightarrow a^{+}} f(x) \text { or } \lim _{x \rightarrow a^{-}} f(x) \text { is } \infty \text { or }-\infty .
$$

- That is, the graph has a VA at $x=a \Leftrightarrow$ there is an infinite limit there from one or both sides.

The number of VAs the graph has can be a nonnegative integer $(0,1,2, \ldots)$, or it can have infinitely many VAs (consider $f(x)=\tan x$).

- If f is rational, then the graph cannot have infinitely many VAs.
- If f is polynomial, then the graph has no VAs.

Note: The graph of $y=f(x)$ cannot cross over a VA, but it can cross over an HA (see Section 2.3, Example 6).

Example 1 (The Graph of the Reciprocal Function has an "Odd VA";

 Revisiting Section 2.3, Example 1)Let $f(x)=\frac{1}{x}$. Evaluate $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$, and show that the graph of $y=f(x)$ has a vertical asymptote (VA) at $x=0$.

§Solution

Let's use the numerical / tabular approach:

x	-1	$-\frac{1}{10}$	$-\frac{1}{100}$	$\rightarrow 0^{-}$	$0^{+} \leftarrow$	$\frac{1}{100}$	$\frac{1}{10}$	1
$f(x)=\frac{1}{x}$	-1	-10	-100	$\rightarrow-\infty$	$\infty \leftarrow$	100	10	1

- Apparently, as x approaches 0 from the right, $f(x)$ increases without bound. That is, $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
- Also, as x approaches 0 from the left, $f(x)$ decreases without bound.

That is, $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$.

- Either limit statement implies that the graph of $y=f(x)$ below has a vertical asymptote ("VA") at $x=0$, the y-axis.

- $\lim _{x \rightarrow 0} f(x)$ does not exist (DNE).
(See Footnote 2.) §

Example 1 gave us the most basic cases of the following Limit Forms.

$$
\left(\operatorname{Limit} \text { Form } \frac{1}{0^{+}}\right) \Rightarrow \infty, \text { and }\left(\operatorname{Limit} \text { Form } \frac{1}{0^{-}}\right) \Rightarrow-\infty
$$

- These Limit Forms can be rescaled, as described in Section 2.3, Part A.

"Odd and Even VAs"

Assume that the graph of $y=f(x)$ has a VA at $x=a$.
(The following terminology is informal and nonstandard.)

- If the two one-sided limits at $x=a$ are ∞ and $-\infty$, in either order, then the VA is an "odd VA."
- If those limits are both ∞ or both $-\infty$, then the VA is an "even VA."
- In Example 1, the y-axis was an "odd VA," partly due to the fact that f was an odd function. The graph of $y=f(x)$ "shot off" in different directions around the VA.
- In Example 2 below, the y-axis is an "even VA," partly due to the fact that g is an even function, where $g(x)=\frac{1}{x^{2}}$. The graph of $y=g(x)$ "shoots off" in the same direction around the VA.

Example 2 (A Graph With an "Even VA")

Evaluate $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}, \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}$, and $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$.

§Solution

Because $x^{2}>0$ for all $x \neq 0$, all three give: $\left(\operatorname{Limit}\right.$ Form $\left.\frac{1}{0^{+}}\right) \Rightarrow \infty$.
The graph of $y=\frac{1}{x^{2}}$ is below.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty, \text { and } \\
& \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty . \S
\end{aligned}
$$

PART B: EVALUATING INFINITE LIMITS FOR RATIONAL FUNCTIONS

Example 3 (Evaluating Infinite Limits at a Point for a Rational Function)

Let $f(x)=\frac{x+1}{x^{3}+4 x^{2}}$. Evaluate $\lim _{x \rightarrow-4^{+}} f(x), \lim _{x \rightarrow-4^{-}} f(x)$, and $\lim _{x \rightarrow-4} f(x)$.

§Solution

$$
\lim _{x \rightarrow-4}(x+1)=-4+1=-3, \text { and } \lim _{x \rightarrow-4}\left(x^{3}+4 x^{2}\right)=(-4)^{3}+4(-4)^{2}=0 .
$$

All three problems give the Limit Form $\frac{-3}{0}$. For each, we must know how the denominator approaches 0 . Since it is easier to analyze signs of products than of sums (for example, do we automatically know the sum of a and b if $a>0$ and $b<0$?), we will factor the denominator.

WARNING 1: Many students improperly use methods such as the "Division Method" and "DTS" from Section 2.3. Those methods are designed to evaluate "long-run" limits, not limits at a point.

$$
\begin{aligned}
\lim _{x \rightarrow-4^{+}} f(x) & =\lim _{x \rightarrow-4^{+}} \frac{x+1}{x^{3}+4 x^{2}} \\
& =\lim _{x \rightarrow-4^{+}} \frac{\overbrace{\rightarrow 16}^{x+1}}{\underbrace{x^{2}}_{\rightarrow 0^{+}}} \text {(Limit Form } \frac{-3}{0^{+}})
\end{aligned}
$$

WARNING 2: Write 0^{+}and 0^{-}as necessary. In the denominator: Remember that "positive times positive equals positive."

$$
=-\infty
$$

$$
\begin{aligned}
\lim _{x \rightarrow-4^{-}} f(x) & =\lim _{x \rightarrow-4^{-}} \frac{x+1}{x^{3}+4 x^{2}} \\
& =\lim _{x \rightarrow-4^{-}} \frac{\overbrace{x+1}^{\rightarrow-3}}{\underbrace{x^{2}}_{\rightarrow 16} \underbrace{(x+4)}_{\rightarrow 0^{-}}}\left(\text {Limit Form } \frac{-3}{0^{-}}\right)
\end{aligned}
$$

In the denominator: Remember that "positive times negative equals negative." $=\infty$

$$
\lim _{x \rightarrow-4} f(x) \text { does not exist (DNE). (See Footnote 2.) }
$$

The graph of $y=f(x)$ is below. Observe the "odd VA" at $x=-4$. (Why is there an HA at the x-axis?)

§

Finding VAs for Graphs of "Simplified" Rational Functions

Let $f(x)=\frac{N(x)}{D(x)}$, where $N(x)$ and $D(x)$ are nonzero polynomials in x with no real zeros in common; this is guaranteed (by the Factor Theorem from Precalculus) if they have no variable factors in common, up to constant multiples. Then,
The graph of $y=f(x)$ has a VA at $x=a \Leftrightarrow a$ is a real zero of $D(x)$.
Note: The numerator and the denominator of $\frac{x-\frac{1}{3}}{3 x-1}$ are common factors up to constant multiples (the denominator is 3 times the numerator); observe that $\frac{1}{3}$ is a real zero of both.

Example 4 (Finding VAs for the Graph of a "Simplified" Rational Function;

Revisiting Example 3)

Let $f(x)=\frac{x+1}{x^{3}+4 x^{2}}$. Find the equations of the vertical asymptotes (VAs) of the graph of $y=f(x)$. Justify using limits.

§ Solution

$f(x)=\frac{x+1}{x^{3}+4 x^{2}}=\frac{x+1}{x^{2}(x+4)}$, which is simplified. The VAs have equations $x=0$ and $x=-4$, corresponding to the real zeros of the denominator.

To justify the VA at $x=0$, show there is an infinite limit there. Either of the following will suffice:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} \frac{x+1}{x^{3}+4 x^{2}} \\
& =\lim _{x \rightarrow 0^{+}} \underbrace{\frac{\overbrace{x+1}^{x^{2}}}{(x+4)}}_{\rightarrow 0^{+}}\left(\text {Limit Form } \frac{1}{0^{+}}\right) \\
& =\infty \\
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \frac{x+1}{x^{3}+4 x^{2}} \\
& =\lim _{x \rightarrow 0^{-}} \underbrace{\frac{\underbrace{2}_{\rightarrow 4}}{x+1} \underbrace{(x+4)}_{\rightarrow 4}}_{\rightarrow 0^{+}}\left(\text {Limit Form } \frac{1}{0^{+}}\right) \\
& =\infty
\end{aligned}
$$

- Since 0 is a real zero of $D(x)$ with multiplicity 2 (an even number), there is an "even VA" at $x=0$.

To justify the VA at $x=-4$, show there is an infinite limit there, as we did in Example 3, by showing either $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$, or $\lim _{x \rightarrow-4^{-}} f(x)=\infty$.

- Since -4 is a real zero of $D(x)$ with multiplicity 1 (an odd number), there is an "odd VA" at $x=-4$. \S

FOOTNOTES

1. Alternate definition of an infinite limit at a point. If we say that f has an infinite limit at a $\Leftrightarrow\left(\lim _{x \rightarrow a^{+}}|f(x)|=\infty\right.$ or $\left.\lim _{x \rightarrow a^{-}}|f(x)|=\infty\right)$, we then extend the idea of an "infinite limit" to examples such as the following:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x}, \quad \text { if } x \text { is a rational number }(x \in \mathbb{Q}) \\
-\frac{1}{x}, \text { if } x \text { is an irrational number }(x \notin \mathbb{Q} ; \text { really, } x \in \mathbb{R} \backslash \mathbb{Q})
\end{array}\right.
$$

as $x \rightarrow 0$. In this work, we will not use this definition.

2. Infinity and the real projective line.

- The affinely extended real number system, denoted by $\overline{\mathbb{R}}$ or $[-\infty, \infty]$, includes two points of infinity, one referred to as ∞ (or $+\infty$) and the other referred to as $-\infty$. (We are "adjoining" them to the real number system.) We obtain the two-point compactification of the real numbers. We never refer to ∞ and $-\infty$ as real numbers, though.
- In the projectively extended real number system, denoted by \mathbb{R}^{*}, ∞ and $-\infty$ are treated as the same (we collapse them together and identify them with one another as ∞), and we then obtain the one-point compactification of the real numbers, also known as the real projective
line. Then, $\frac{1}{0}=\infty$, the slope of a vertical line is $\infty, \lim _{x \rightarrow 0} \frac{1}{x}=\infty$, and $\lim _{x \rightarrow-4} \frac{x+1}{x^{2}+4 x}=\infty$.
- A point at infinity is sometimes added to the complex plane, and it typically corresponds to the "north pole" of a Riemann sphere that the complex plane is wrapped around.
- See "Projectively Extended Real Numbers" in MathWorld (web) and "Real projective line" in Wikipedia (web).

SECTION 2.5: THE INDETERMINATE FORMS $\frac{0}{0}$ AND $\frac{\infty}{\infty}$

LEARNING OBJECTIVES

- Understand what it means for a Limit Form to be indeterminate.
- Recognize indeterminate forms, and know what other Limit Forms yield.
- Learn techniques for resolving indeterminate forms when evaluating limits, including factoring, rationalizing numerators and denominators, and (in Chapter 10) L'Hôpital's Rule .

PART A: WHAT ARE INDETERMINATE FORMS?

An indeterminate form is a Limit Form that could yield a variety of real values; the limit might not exist. Further analysis is required to know what the limit is.

The seven "classic" indeterminate forms are:

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, \infty^{0}, 0^{0} \text {, and } 1^{\infty} .
$$

- Observe that the first six forms involve 0 and/or $(\pm) \infty$, while the seventh involves 1 and ∞.
In Section 2.3, Parts D and E, we encountered the indeterminate form $\frac{ \pm \infty}{ \pm \infty}$. This is simply written as $\frac{\infty}{\infty}$, since further analysis is required, anyway. (Sometimes, signs matter in the forms. For example, (Limit Form $\infty-\infty$) is indeterminate, while (Limit Form $\infty+\infty) \Rightarrow \infty$. See Part D.)

Example 1 (0/0 is an Indeterminate Form)
If $c \in \mathbb{R}$,

$$
\left.\begin{array}{rlrl}
\lim _{x \rightarrow 0} \frac{c x}{x}\left(\text { Limit Form } \frac{0}{0}\right) & =\lim _{x \rightarrow 0} c & & \\
& =c & & \text { We are taking a limit as } x \rightarrow 0, \text { so } \\
\text { the fact that } \frac{c x}{x} \text { is undefined at } x=0
\end{array}\right)
$$

c could be $2,-\pi$, etc. (Limit Form $\frac{0}{0}$) can yield any real number.

We already know that (Limit Form $\frac{0}{0}$) is indeterminate, but we can further show that it can yield nonexistent limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x}{x^{2}}\left(\text { Limit Form } \frac{0}{0}\right)=\lim _{x \rightarrow 0^{+}} \frac{1}{x}\left(\text { Limit Form } \frac{1}{0^{+}}\right)=\infty . \\
& \lim _{x \rightarrow 0^{-}} \frac{x}{x^{2}}\left(\text { Limit Form } \frac{0}{0}\right)=\lim _{x \rightarrow 0^{-}} \frac{1}{x}\left(\text { Limit Form } \frac{1}{0^{-}}\right)=-\infty . \\
& \lim _{x \rightarrow 0} \frac{x}{x^{2}}\left(\text { Limit Form } \frac{0}{0}\right)=\lim _{x \rightarrow 0} \frac{1}{x}, \text { which does not exist (DNE). }
\end{aligned}
$$

- We will use (Limit Form $\frac{0}{0}$) when we define derivatives in Chapter 3.
- In turn, L'Hôpital's Rule will use derivatives to resolve indeterminate forms, particularly $\frac{0}{0}$ and $\frac{\infty}{\infty}$. (See Chapter 10.) §

Example $2(\infty / \infty 0$ is an Indeterminate Form)

If $c \neq 0$,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{c x}{x}\left(\text { Limit Form } \frac{\infty}{\infty}\right) & =\lim _{x \rightarrow \infty} c \\
& =c
\end{aligned}
$$

c could be $2,-\pi$, etc. (Limit Form $\frac{\infty}{\infty}$) can yield any real number.
(In the Exercises, you will demonstrate how it can yield 0 and ∞.) §

Example 3 (1/0 is Not an Indeterminate Form)

$\left(\right.$ Limit Form $\left.\frac{1}{0}\right) \Rightarrow \infty,-\infty$, or "DNE." We know a lot! The form is not indeterminate, although we must know how the denominator approaches 0 . $\left(\right.$ Limit Form $\left.\frac{1}{0^{+}}\right) \Rightarrow \infty .\left(\right.$ Limit Form $\left.\frac{1}{0^{-}}\right) \Rightarrow-\infty . \lim _{x \rightarrow \infty} \frac{1}{\frac{\sin x}{x}}$ "DNE"; see Section 2.3, Example 6. §

PART B: RESOLVING THE $\frac{0}{0}$ FORM BY FACTORING AND CANCELING;

GRAPHS OF RATIONAL FUNCTIONS

Let $f(x)=\frac{N(x)}{D(x)}$, where $N(x)$ and $D(x)$ are nonzero polynomials in x.
We do not require simplified form, as we did in Section 2.4. If a is a real zero of both $N(x)$ and $D(x)$, then we can use the Factor Theorem from Precalculus to help us factor $N(x)$ and $D(x)$ and simplify $f(x)$.

Factor Theorem

a is a real zero of $D(x) \Leftrightarrow(x-a)$ is a factor of $D(x)$.

- This also applied to Section 2.4, but it now helps that the same goes for $N(x)$.

Example 4 (Factoring and Canceling/Dividing to Resolve a 0/0 Form)

Let $f(x)=\frac{x^{2}-1}{x^{2}-x}$. Evaluate: a) $\lim _{x \rightarrow 1} f(x)$ and b) $\lim _{x \rightarrow 0^{+}} f(x)$.

§ Solution to a)

The Limit Form is $\frac{0}{0}$:

$$
\begin{aligned}
& \lim _{x \rightarrow 1} N(x)=\lim _{x \rightarrow 1}\left(x^{2}-1\right)=(1)^{2}-1=0, \text { and } \\
& \lim _{x \rightarrow 1} D(x)=\lim _{x \rightarrow 1}\left(x^{2}-x\right)=(1)^{2}-(1)=0 .
\end{aligned}
$$

1 is a real zero of both $N(x)$ and $D(x)$, so $(x-1)$ is a common factor.
We will cancel $(x-1)$ factors and simplify $f(x)$ to resolve the $\frac{0}{0}$ form.
WARNING 1: Some instructors prefer "divide out" to "cancel."
TIP 1: It often saves time to begin by factoring and worry about Limit Forms later.

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x} \quad\left(\text { Limit Form } \frac{0}{0}\right) \\
& =\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x+1}{x} \\
& =\frac{(1)+1}{(1)} \\
& =2
\end{aligned}
$$

§

§ Solution to b)

The Limit Form is $\frac{-1}{0}$:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} N(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2}-1\right)=(0)^{2}-1=-1, \text { and } \\
& \lim _{x \rightarrow 0^{+}} D(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2}-x\right)=(0)^{2}-(0)=0
\end{aligned}
$$

Here, when we cancel $(x-1)$ factors and simplify $f(x)$, it is a matter of convenience. It takes work to see that $\lim _{x \rightarrow 0^{+}} D(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2}-x\right)=0^{-}$, and then $\left(\right.$ Limit Form $\left.\frac{-1}{0^{-}}\right) \Rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} \frac{x^{2}-1}{x^{2}-x} \quad\left(\text { Limit Form } \frac{-1}{0}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{(x+1)(x-1)}{x(x-1)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x+1}{x}\left(\text { Limit Form } \frac{1}{0^{+}}\right) \\
& =\infty
\end{aligned}
$$

The Graph of a Rational Function f at a Point a

The graph of $y=f(x)$ has one of the following at $x=a(a \in \mathbb{R})$:

1) The point $(a, f(a))$, if $f(a)$ is real $(a \in \operatorname{Dom}(f))$.

In 2) and 3) below,

- $(x-a)$ is a factor of the denominator, $D(x)$.
- That is, a is a real zero of $D(x)$, and $a \notin \operatorname{Dom}(f)$.

2) A VA, if simplifying $f(x)$ yields the Limit Form $\frac{c}{0}$ as $x \rightarrow a(c \neq 0)$.

- That is, there is at least one $(x-a)$ factor of $D(x)$ that cannot be canceled/divided out. It will still force the denominator towards 0 as $x \rightarrow a$.

3) A hole at the point (a, L), if $f(a)$ is undefined $(a \notin \operatorname{Dom}(f))$, but $\lim _{x \rightarrow a} f(x)=L \quad(L \in \mathbb{R})$.

- That is, $(x-a)$ is a factor of $D(x)$, but all such factors can be canceled/divided out by $(x-a)$ factor(s) in the numerator. Then, the denominator is no longer forced towards 0 .
- A hole can only occur if we start with the Limit Form $\frac{0}{0}$, because a denominator approaching 0 can only be prevented from "exploding" $f(x)$ if the numerator approaches 0 , as well. (If the numerator fails to prevent this, we get a VA.)

Example 5 (VAs and Holes on the Graph of a Rational Function;

Revisiting Example 4)

Let $f(x)=\frac{x^{2}-1}{x^{2}-x}$. Identify any vertical asymptotes (VAs) and holes on the graph of $y=f(x)$.

§ Solution

In Example 4, we saw that: $f(x)=\frac{x^{2}-1}{x^{2}-x}=\frac{(x+1)(x-1)}{x(x-T)}=\frac{x+1}{x}(x \neq 1)$.
The real zeros of $x^{2}-x$ are 0 and 1 , so they correspond to VAs or holes.

- In 4a, we found that: $\lim _{x \rightarrow 1} f(x)=2$, even though $1 \notin \operatorname{Dom}(f)$, so the graph has a hole at the point $(1,2)$. As $x \rightarrow 1$, the factor $(x-1) \rightarrow 0$. When we simplify $f(x)$, we cancel (divide out) all of the $(x-1)$ factors in the denominator. The new denominator, x, no longer approaches $\mathbf{0}$, and the overall limit exists.
- In 4b, we found that: $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, so the graph has a VA at $x=0$ (the y-axis). When we simplify $f(x)$, we cannot cancel (divide out) the x factor in the denominator. As $x \rightarrow 0$, the new denominator, x, still approaches 0 .
The graph of $y=\frac{x^{2}-1}{x^{2}-x}\left(\right.$ or $y=\frac{x+1}{x}(x \neq 1)$, or $\left.y=1+\frac{1}{x}(x \neq 1)\right)$ is below.

Since 0 is a zero of the new denominator, x, with multiplicity 1 , the VA at $x=0$ is an "odd VA."

Why is there an HA at $y=1 ? \S$

PART C: RESOLVING THE $\frac{0}{0}$ FORM BY RATIONALIZING;

GRAPHS OF ALGEBRAIC FUNCTIONS

Graphs of algebraic functions can also have points, VAs, and holes. Unlike graphs of rational functions, they can also have "blank spaces" where there are no points for infinitely many real values of x.

Example 6 (Rationalizing a Numerator to Resolve a 0/0 Form)

Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x}$.

§Solution

Observe that $\sqrt{9-x}$ is real on a punctured neighborhood of 0 .
We assume $x \approx 0$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x}\left(\text { Limit Form } \frac{0}{0}\right) \\
= & \lim _{x \rightarrow 0}\left[\frac{(\sqrt{9-x}-3)}{x} \cdot \frac{(\sqrt{9-x}+3)}{(\sqrt{9-x}+3)}\right] \quad \text { (Rationalizing the numerator) } \\
= & \lim _{x \rightarrow 0} \frac{(\sqrt{9-x})^{2}-(3)^{2}}{x(\sqrt{9-x}+3)} \text { (WARNING 2: Write the entire) } \\
= & \lim _{x \rightarrow 0} \frac{(9-x)-9}{x(\sqrt{9-x}+3)}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{-(-1)}{\not x(\sqrt{9-x}+3)}
$$

$$
=\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}+3}
$$

$$
\begin{aligned}
& =\frac{-1}{\sqrt{9-(0)}+3} \\
& =-\frac{1}{6}
\end{aligned}
$$

$\lim _{x \rightarrow 0} f(x)=-\frac{1}{6}$, even though $0 \notin \operatorname{Dom}(f)$, where $f(x)=\frac{\sqrt{9-x}-3}{x}$.
Therefore, the graph of $y=f(x)$ has a hole at the point $\left(0,-\frac{1}{6}\right)$.
The graph of $y=f(x)$ is below. What is $\operatorname{Dom}(f)$?

PART D: LIMIT FORMS THAT ARE NOT INDETERMINATE

Cover up the "Yields" columns below and guess at the results of the Limit Forms $(c \in \mathbb{R})$. Experiment with sequences of numbers and with extreme numbers.
For example, for $\infty^{-\infty}$, or $\frac{1}{\infty^{\infty}}$, look at $(1000)^{-10,000}=\frac{1}{(1000)^{10,000}}$.

Fractions

Limit Form	Yields
$\frac{1}{\infty}$	0^{+}
$\frac{1}{0^{+}}$	∞
$\frac{\infty}{1}$	∞
$\frac{\infty}{0^{+}}$	∞
$\frac{0^{+}}{\infty}$	0^{+}

Sums, Differences, Products

Limit Form	Yields
$\infty+c$	∞
$-\infty+c$	$-\infty$
$\infty+\infty$	∞
$-\infty-\infty$	$-\infty$
$\infty \cdot 1$	∞
$\infty \cdot \infty$	∞

With Exponents

Limit Form	Yields
∞^{∞}	∞
$\infty^{-\infty}$	0^{+}
0^{∞}	0
2^{∞}	∞
$\left(\frac{1}{2}\right)^{\infty}$	0

SECTION 2.6: THE SQUEEZE (SANDWICH) THEOREM

LEARNING OBJECTIVES

- Understand and be able to rigorously apply the Squeeze (Sandwich) Theorem when evaluating limits at a point and "long-run" limits at (\pm) infinity.

PART A: APPLYING THE SQUEEZE (SANDWICH) THEOREM TO

 LIMITS AT A POINTWe will formally state the Squeeze (Sandwich) Theorem in Part B.
Example 1 below is one of many basic examples where we use the Squeeze (Sandwich) Theorem to show that $\lim _{x \rightarrow 0} f(x)=0$, where $f(x)$ is the product of a sine or cosine expression and a monomial of even degree.

- The idea is that "something approaching 0 " times "something bounded" (that is, trapped between two real numbers) will approach 0 . Informally,

$$
(\text { Limit Form } 0 \cdot \text { bounded }) \Rightarrow 0 .
$$

Example 1 (Applying the Squeeze (Sandwich) Theorem to a Limit at a Point)

Let $f(x)=x^{2} \cos \left(\frac{1}{x}\right)$. Prove that $\lim _{x \rightarrow 0} f(x)=0$.

§ Solution

- We first bound $\cos \left(\frac{1}{x}\right), \quad-1 \leq \cos \left(\frac{1}{x}\right) \leq 1 \quad(\forall x \neq 0) \Rightarrow$ which is real for all $x \neq 0$.
- Multiply all three parts by x^{2} so that the middle part becomes $f(x)$.

$$
-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2} \quad(\forall x \neq 0) \Rightarrow
$$

WARNING 1: We must observe

 that $x^{2}>0$ for all $x \neq 0$, or at least on a punctured neighborhood of $x=0$, so that we can multiply by x^{2} without reversing inequality symbols.- As $x \rightarrow 0$, the left and right parts approach 0 . Therefore,
$\lim _{x \rightarrow 0}\left(-x^{2}\right)=0$, and $\lim _{x \rightarrow 0} x^{2}=0$, so by the Squeeze (Sandwich) Theorem, the middle part, $f(x)$, is forced to approach $\mathbf{0}$, also. The middle part is "squeezed" or "sandwiched" between the left and right parts, so it must approach the same limit as the other two do.
$\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0$ by the Squeeze
Theorem.
Shorthand: As $x \rightarrow 0$,
$\underbrace{-x^{2}}_{\rightarrow 0} \leq \underbrace{x^{2} \cos \left(\frac{1}{x}\right)}_{\begin{array}{c}\text { Thereforo, } \rightarrow 0 \\ \text { by the STueze } \\ \text { Sandwich) Theorem }\end{array}} \leq \underbrace{x^{2}}_{\rightarrow 0}(\forall x \neq 0)$.

The graph of $y=x^{2} \cos \left(\frac{1}{x}\right)$, together with the squeezing graphs of $y=-x^{2}$ and $y=x^{2}$, is below.

(The axes are scaled differently.)

In Example 2 below, $f(x)$ is the product of a sine or cosine expression and a monomial of odd degree.

Example 2 (Handling Complications with Signs)

Let $f(x)=x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)$. Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} f(x)$.

§ Solution 1 (Using Absolute Value)

- We first bound $\sin \left(\frac{1}{\sqrt[3]{x}}\right)$,

$$
-1 \leq \sin \left(\frac{1}{\sqrt[3]{x}}\right) \leq 1 \quad(\forall x \neq 0) \Rightarrow
$$

which is real for all $x \neq 0$.

- WARNING 2: The problem with multiplying all three parts by x^{3} is that $x^{3}<0$ when $x<0$. The \leq inequality symbols would have to be reversed for $x<0$.

Instead, we use absolute value here. We could write

$$
0 \leq\left|\sin \left(\frac{1}{\sqrt[3]{x}}\right)\right| \leq 1 \quad(\forall x \neq 0)
$$

but we assume that absolute values are nonnegative.

- Multiply both sides of the inequality by $\left|x^{3}\right|$. We know

$$
\left|x^{3}\right|\left|\sin \left(\frac{1}{\sqrt[3]{x}}\right)\right| \leq\left|x^{3}\right| \quad(\forall x \neq 0) \Rightarrow
$$ $\left|x^{3}\right|>0 \quad(\forall x \neq 0)$.

- "The product of absolute values equals the absolute value of the product."

$$
\left|x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)\right| \leq\left|x^{3}\right| \quad(\forall x \neq 0) \Rightarrow
$$

- If, say, $|a| \leq 4$, then
$-4 \leq a \leq 4$. Similarly:

$$
-\left|x^{3}\right| \leq x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right) \leq\left|x^{3}\right| \quad(\forall x \neq 0) \Rightarrow
$$

- Now, apply the Squeeze (Sandwich) Theorem.

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(-\left|x^{3}\right|\right)=0, \text { and } \lim _{x \rightarrow 0}\left|x^{3}\right|=0, \text { so } \\
& \lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0 \text { by the Squeeze }
\end{aligned}
$$

Theorem.
Shorthand: As $x \rightarrow 0$,

$$
\underbrace{-\left|x^{3}\right|}_{\rightarrow 0} \leq \underbrace{x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)}_{\begin{array}{c}
\text { Therefore, } \rightarrow 0 \\
\text { by the Squeeze } \\
\text { (Sandwich) Theorem }
\end{array}} \leq \underbrace{\left|x^{3}\right|}_{\rightarrow 0}(\forall x \neq 0) \cdot \S
$$

§ Solution 2 (Split Into Cases: Analyze Right-Hand and Left-Hand Limits

Separately)

First, we analyze: $\lim _{x \rightarrow 0^{+}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)$.
Assume $x>0$, since we are taking a limit as $x \rightarrow 0^{+}$.

- We first bound $\sin \left(\frac{1}{\sqrt[3]{x}}\right), \quad-1 \leq \sin \left(\frac{1}{\sqrt[3]{x}}\right) \leq 1 \quad(\forall x>0) \Rightarrow$
which is real for all $x \neq 0$.
- Multiply all three parts by
x^{3} so that the middle part becomes $f(x)$. We know
$x^{3}>0$ for all $x>0$.
- Now, apply the Squeeze (Sandwich) Theorem.

$$
\lim _{x \rightarrow 0^{+}}\left(-x^{3}\right)=0, \text { and } \lim _{x \rightarrow 0^{+}} x^{3}=0, \text { so }
$$

$$
\lim _{x \rightarrow 0^{+}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0 \text { by the Squeeze }
$$

Theorem.
Shorthand: As $x \rightarrow 0^{+}$,

$$
\underbrace{-x^{3}}_{\rightarrow 0} \leq \underbrace{x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)}_{\begin{array}{c}
\text { Thereforo, } \rightarrow 0 \\
\text { by the } q \text { aueeze } \\
\text { (Sandwich) Theorem }
\end{array}} \leq \underbrace{x^{3}}_{\substack{\rightarrow 0}} \quad(\forall x>0) .
$$

Second, we analyze: $\lim _{x \rightarrow 0^{-}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)$.
Assume $x<0$, since we are taking a limit as $x \rightarrow 0^{-}$.

- We first bound $\sin \left(\frac{1}{\sqrt[3]{x}}\right), \quad-1 \leq \sin \left(\frac{1}{\sqrt[3]{x}}\right) \leq 1 \quad(\forall x<0) \Rightarrow$ which is real for all $x \neq 0$.
- Multiply all three parts by x^{3} so that the middle part $-x^{3} \geq x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right) \geq x^{3} \quad(\forall x<0) \Rightarrow$ becomes $f(x)$. We know $x^{3}<0$ for all $x<0$, so we reverse the \leq inequality symbols.
- Reversing the compound inequality will make it easier to read.
- Now, apply the Squeeze (Sandwich) Theorem.

$$
x^{3} \leq x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right) \leq-x^{3} \quad(\forall x<0) \Rightarrow
$$

$$
\lim _{x \rightarrow 0^{-}} x^{3}=0, \text { and } \lim _{x \rightarrow 0^{-}}\left(-x^{3}\right)=0 \text {, so }
$$

$$
\lim _{x \rightarrow 0^{-}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0 \text { by the Squeeze }
$$ Theorem.

Shorthand: As $x \rightarrow 0^{-}$,

$$
\underbrace{x^{3}}_{\rightarrow 0} \leq \underbrace{x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)}_{\begin{array}{c}
\text { Therefore, } \rightarrow 0 \\
\text { by the Squeeze } \\
\text { (Sandwich) Theorem }
\end{array}} \leq \underbrace{-x^{3}}_{\rightarrow 0} \quad(\forall x<0)
$$

Now, $\lim _{x \rightarrow 0^{+}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0$, and $\lim _{x \rightarrow 0^{-}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0$, so

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)=0 . \S
$$

Example 3 (Limits are Local)

Use $\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0} x^{6}=0$ to show that $\lim _{x \rightarrow 0} x^{4}=0$.

§ Solution

Let $I=(-1,1) \backslash\{0\} . I$ is a punctured neighborhood of 0 .
Shorthand: As $x \rightarrow 0$,

WARNING 3: The direction of the \leq inequality symbols may
confuse students. Observe that $\left(\frac{1}{2}\right)^{4}=\frac{1}{16},\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$, and $\frac{1}{16}<\frac{1}{4}$.
We conclude: $\lim _{x \rightarrow 0} x^{4}=0$.
We do not need the compound inequality to hold true for all nonzero values of x. We only need it to hold true on some punctured neighborhood of 0 so that we may apply the Squeeze (Sandwich) Theorem to the two-sided limit $\lim _{x \rightarrow 0} x^{4}$. This is because "Limits are Local."

As seen below, the graphs of $y=x^{6}$ and $y=x^{2}$ squeeze (from below and above, respectively) the graph of $y=x^{4}$ on I. In Chapter 6, we will be able to find the areas of the bounded regions.

PART B: THE SQUEEZE (SANDWICH) THEOREM

We will call B the "bottom" function and T the "top" function.
The Squeeze (Sandwich) Theorem
Let B and T be functions such that $B(x) \leq f(x) \leq T(x)$ on a punctured neighborhood of a.
If $\lim _{x \rightarrow a} B(x)=L$ and $\lim _{x \rightarrow a} T(x)=L(L \in \mathbb{R})$, then $\lim _{x \rightarrow a} f(x)=L$.

Variation for Right-Hand Limits at a Point

Let $B(x) \leq f(x) \leq T(x)$ on some right-neighborhood of a.
If $\lim _{x \rightarrow a^{+}} B(x)=L$ and $\lim _{x \rightarrow a^{+}} T(x)=L(L \in \mathbb{R})$, then $\lim _{x \rightarrow a^{+}} f(x)=L$.

Variation for Left-Hand Limits at a Point

Let $B(x) \leq f(x) \leq T(x)$ on some left-neighborhood of a.
If $\lim _{x \rightarrow a^{-}} B(x)=L$ and $\lim _{x \rightarrow a^{-}} T(x)=L(L \in \mathbb{R})$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.

PART C: VARIATIONS FOR "LONG-RUN" LIMITS

In the upcoming Example 4, $f(x)$ is the quotient of a sine or cosine expression and a polynomial.

- The idea is that "something bounded" divided by "something approaching $(\pm$)infinity" will approach 0 . Informally,

$$
\left(\text { Limit Form } \frac{\text { bounded }}{ \pm \infty}\right) \Rightarrow 0
$$

Example 4 (Applying the Squeeze (Sandwich) Theorem to a "Long-Run" Limit;

Revisiting Section 2.3, Example 6)

Evaluate: a) $\lim _{x \rightarrow \infty} f(x)$ and b) $\lim _{x \rightarrow-\infty} f(x)$, where $f(x)=\frac{\sin x}{x}$.

§ Solution to a)

Assume $x>0$, since we are taking a limit as $x \rightarrow \infty$.

- We first bound $\sin x$.

$$
\begin{aligned}
& -1 \leq \sin x \leq 1 \quad(\forall x>0) \Rightarrow \\
& -\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x} \quad(\forall x>0) \Rightarrow
\end{aligned}
$$

- Divide all three parts by x $(x>0)$ so that the middle part becomes $f(x)$.
- Now, apply the Squeeze (Sandwich) Theorem.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right)=0, \text { and } \lim _{x \rightarrow \infty} \frac{1}{x}=0, \text { so } \\
& \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 \text { by the Squeeze Theorem. }
\end{aligned}
$$

Shorthand: As $x \rightarrow \infty$,

$$
\underbrace{-\frac{1}{x}}_{\rightarrow 0} \leq \underbrace{\frac{\sin x}{x}}_{\substack{\text { Therefore, } \rightarrow 0 \\ \text { by the } \\ \text { (Sandueze } \\ \text { Sandich) Theorem }}} \leq \underbrace{\frac{1}{x}}_{\rightarrow 0}(\forall x>0) . \S
$$

§ Solution to b)

Assume $x<0$, since we are taking a limit as $x \rightarrow-\infty$.

- We first bound $\sin x$.
- Divide all three parts by x so that the middle part becomes $f(x)$. But $x<0$, so we must reverse the \leq inequality symbols.
- Reversing the compound inequality will make it easier to read.

$$
\begin{aligned}
& -1 \leq \sin x \leq 1 \quad(\forall x<0) \Rightarrow \\
& -\frac{1}{x} \geq \frac{\sin x}{x} \geq \frac{1}{x} \quad(\forall x<0) \Rightarrow
\end{aligned}
$$

$$
\frac{1}{x} \leq \frac{\sin x}{x} \leq-\frac{1}{x} \quad(\forall x<0) \Rightarrow
$$

(Section 2.6: The Squeeze (Sandwich) Theorem) 2.6.9.

- Now, apply the Squeeze (Sandwich) Theorem.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{1}{x}=0, \text { and } \lim _{x \rightarrow-\infty}\left(-\frac{1}{x}\right)=0, \text { so } \\
& \lim _{x \rightarrow-\infty} \frac{\sin x}{x}=0 \text { by the Squeeze Theorem. }
\end{aligned}
$$

Shorthand: As $x \rightarrow-\infty$,

$$
\underbrace{\frac{1}{x}}_{\substack{\rightarrow 0 \\
\rightarrow 0}} \leq \underbrace{\frac{\sin x}{x}}_{\begin{array}{c}
\text { Therefore, } \rightarrow 0 \\
\text { by the } \\
\text { (Sandueeze } \\
\text { Sandwich) Theorem }
\end{array}} \leq \underbrace{-\frac{1}{x}}_{\rightarrow 0}(\forall x<0)
$$

The graph of $y=\frac{\sin x}{x}$, together with the squeezing graphs of $y=-\frac{1}{x}$ and $y=\frac{1}{x}$, is below. We can now justify the HA at $y=0$ (the x-axis).

(The axes are scaled differently.) §

Variation for "Long-Run" Limits to the Right

Let $B(x) \leq f(x) \leq T(x)$ on some x-interval of the form $(c, \infty), c \in \mathbb{R}$.
If $\lim _{x \rightarrow \infty} B(x)=L$ and $\lim _{x \rightarrow \infty} T(x)=L(L \in \mathbb{R})$, then $\lim _{x \rightarrow \infty} f(x)=L$.

- In Example 4a, we used $c=0$. We need the compound inequality to hold
"forever" after some point \boldsymbol{c}.

Variation for "Long-Run" Limits to the Left

Let $B(x) \leq f(x) \leq T(x)$ on some x-interval of the form $(-\infty, c), c \in \mathbb{R}$.
If $\lim _{x \rightarrow-\infty} B(x)=L$ and $\lim _{x \rightarrow-\infty} T(x)=L(L \in \mathbb{R})$, then $\lim _{x \rightarrow-\infty} f(x)=L$.

SECTION 2.7: PRECISE DEFINITIONS OF LIMITS

LEARNING OBJECTIVES

- Know rigorous definitions of limits, and use them to rigorously prove limit statements.

PART A: THE "STATIC" APPROACH TO LIMITS

We will use the example $\lim _{x \rightarrow 4}\left(7-\frac{1}{2} x\right)=5$ in our quest to rigorously define what a limit at a point is. We consider $\lim _{x \rightarrow a} f(x)=L$, where $f(x)=7-\frac{1}{2} x, a=4$, and $L=5$. The graph of $y=f(x)$ is the line below.

The "dynamic" view of limits states that, as x "approaches" or "gets closer to" 4, $f(x)$ "approaches" or "gets closer to" 5. (See Section 2.1, Footnote 2.)

The precise approach takes on a more "static" view. The idea is that, if x is close to 4 , then $f(x)$ is close to 5 .

The Lottery Analogy

Imagine a lottery in which every $x \in \operatorname{Dom}(f)$ represents a player. However, we disqualify $x=a$ (here, $x=4$), because that person manages the lottery. (See Section 2.1, Part C.)

Each player is assigned a lottery number by the rule $f(x)=7-\frac{1}{2} x$.
The "exact" winning lottery number (the "target") turns out to be $L=5$.

When Does Player x Win?

In this lottery, more than one player can win, and it is sufficient for a player to be "close enough" to the "target" in order to win. In particular, Player x wins $(x \neq a) \Leftrightarrow$ the player's lottery number, $f(x)$, is strictly within ε units of L, where $\varepsilon>0$. The Greek letter ε ("epsilon") often represents a small positive quantity. Here, ε is a tolerance level that measures how liberal the lottery is in determining winners.

Symbolically:
Player x wins $(x \neq a) \Leftrightarrow L-\varepsilon<f(x)<L+\varepsilon$
Subtract L from all three parts.

$$
\begin{aligned}
& \Leftrightarrow-\varepsilon<f(x)-L<\varepsilon \\
&-1<r<1 \Leftrightarrow|r|<1 .
\end{aligned}
$$

Similarly:

$$
\Leftrightarrow|f(x)-L|<\varepsilon
$$

$|f(x)-L|$ is the distance (along the y-axis) between Player x 's lottery number, $f(x)$, and the "target" L.

Player x wins $(x \neq a) \Leftrightarrow$ this distance is less than ε.

Where Do We Look for Winners?

We only care about players that are "close" to $x=a$ (here, $x=4$), excluding a itself. These players x are strictly between 0 and δ units of a, where $\delta>0$. Like ε, the Greek letter δ ("delta") often represents a small positive quantity. δ is the half-width of a punctured $\boldsymbol{\delta}$-neighborhood of a. Symbolically:

Player x is "close" to $a \Leftrightarrow a-\delta<x<a+\delta(x \neq a)$
That is, $x \in(a-\delta, a+\delta) \backslash\{a\}$.
Subtract a from all three parts.

$$
\begin{aligned}
& \Leftrightarrow-\delta<x-a<\delta(x \neq a) \\
& \Leftrightarrow 0<|x-a|<\delta
\end{aligned}
$$

$|x-a|$ is the distance between Player x and a.
Player x is "close" to $\boldsymbol{a} \Leftrightarrow$ this distance is strictly between 0 and δ.

- If the distance is 0 , we have $x=a$, which is disqualified.

In the figure on the left, the value for δ is giving us a punctured $\boldsymbol{\delta}$-neighborhood of a in which everyone wins.

- In this sense, if x is close to a, then $f(x)$ is close to L.

Observe that any smaller positive value for δ could also have been chosen. (See the figure on the right. The dashed lines are not asymptotes; they indicate the boundaries of the open intervals and the puncture at $x=a$.)

How Does the "Static" Approach to Limits Relate to the "Dynamic" Approach?

Why is $\lim _{x \rightarrow 4}\left(7-\frac{1}{2} x\right)=5$? Because, regardless of how small we make the tolerance level ε and how tight we make the lottery for the players, there is a value for δ for which the corresponding punctured $\boldsymbol{\delta}$-neighborhood of $a=4$ is made up entirely of winners. That is, the corresponding "punctured box" (see the shaded boxes in the figures) traps the graph of $y=f(x)$ on the punctured δ-neighborhood.

As $\varepsilon \rightarrow 0^{+}$, we can choose values for δ in such a way that the corresponding shaded "punctured boxes" always trap the graph and zoom in, or collapse in, on the point $(4,5)$. (This would have been the case even if that point had been deleted from the graph.) In other words, there are always winners close to $a=4$.

- As x gets arbitrarily close to $a, f(x)$ gets arbitrarily close to L.

If $\varepsilon=1$, we can choose $\delta=2 . \quad$ If $\varepsilon=0.5$, we can choose $\delta=1$.

For this example, if ε is any positive real number, we can choose $\delta=2 \varepsilon$. Why is that?

- Graphically, we can exploit the fact that the slope of the line $y=7-\frac{1}{2} x$ is $-\frac{1}{2}$. Remember, slope $=\frac{\text { rise }}{\text { run }}$. Along the line, an x-run of 2 units corresponds to a y-drop of 1 unit.
- We will demonstrate this rigorously in Example 1.

PART B: THE PRECISE $\varepsilon-\delta$ DEFINITION OF A LIMIT AT A POINT

The Precise $\varepsilon-\delta$ Definition of a Limit at a Point

(Version 1)
For $a, L \in \mathbb{R}$, if a function f is defined on a punctured neighborhood of a,

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \Leftrightarrow \text { for every } \varepsilon>0 \text {, there exists a } \delta>0 \text { such that, } \\
& \text { if } 0<|x-a|<\delta \text { (that is, if } x \text { is "close" to } a \text {, excluding } a \text { itself), } \\
& \text { then }|f(x)-L|<\varepsilon \text { (that is, } f(x) \text { is "close" to } L \text {). }
\end{aligned}
$$

Variation Using Interval Form
We can replace $0<|x-a|<\delta$ with: $x \in(a-\delta, a+\delta) \backslash\{a\}$.
We can replace $|f(x)-L|<\varepsilon$ with: $f(x) \in(L-\varepsilon, L+\varepsilon)$.

The Precise $\varepsilon-\delta$ Definition of a Limit at a Point

(Version 2: More Symbolic)

For $a, L \in \mathbb{R}$, if a function f is defined on a punctured neighborhood of a,

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \Leftrightarrow \forall \varepsilon>0, \exists \delta>0 \text { э } \\
& (0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon) .
\end{aligned}
$$

Example 1 (Proving the Limit Statement from Part A)

Prove $\lim _{x \rightarrow 4}\left(7-\frac{1}{2} x\right)=5$ using a precise ε - δ definition of a limit at a point.

§ Solution

We have: $f(x)=7-\frac{1}{2} x, a=4$, and $L=5$.
We need to show:

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0 \ni(0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon) ; \text { i.e., } \\
& \forall \varepsilon>0, \exists \delta>0 \ni\left(0<|x-4|<\delta \Rightarrow\left|\left(7-\frac{1}{2} x\right)-(5)\right|<\varepsilon\right)
\end{aligned}
$$

Rewrite $|f(x)-L|$ in terms of $|x-a|$; here, $|x-4|$:

$$
\begin{aligned}
|f(x)-L| & =\left|\left(7-\frac{1}{2} x\right)-(5)\right| \\
& =\left|-\frac{1}{2} x+2\right|
\end{aligned}
$$

Factor out $-\frac{1}{2}$, the coefficient of x.
To divide the +2 term by $-\frac{1}{2}$, we multiply it by -2 and obtain -4 .

$$
\begin{aligned}
& =\left|-\frac{1}{2}(x-4)\right| \\
& =\left|-\frac{1}{2}\right||x-4|
\end{aligned}
$$

This is because, if m and n represent real quantities, then $|m n|=|m \| n|$.

$$
=\frac{1}{2}|x-4|
$$

We have: $|f(x)-L|=\frac{1}{2}|x-4|$; call this statement *.

Assuming ε is fixed $(\varepsilon>0)$, find an appropriate value for δ.
We will find a value for δ that corresponds to a punctured $\boldsymbol{\delta}$-neighborhood of $a=4$ in which everyone wins. This means that, for every player x in there:

$$
\begin{aligned}
&|f(x)-L|<\varepsilon \quad \Leftrightarrow \\
& \frac{1}{2}|x-4|<\varepsilon \quad(\text { by } *) \Leftrightarrow \\
&|x-4|<2 \varepsilon
\end{aligned}
$$

We choose $\delta=2 \varepsilon$. We will formally justify this choice in our verification step.

Observe that, since $\varepsilon>0$, then our $\delta>0$.
Verify that our choice for δ is appropriate.
We will show that, given ε and our choice for $\delta(\delta=2 \varepsilon)$,

$$
\begin{aligned}
& 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon \\
& 0<|x-a|<\delta \Rightarrow \\
& 0<|x-4|<\delta \Rightarrow \\
& 0<|x-4|<2 \varepsilon \Rightarrow \\
& 0<\frac{1}{2}|x-4|<\varepsilon \Rightarrow \\
&|f(x)-L|<\varepsilon \quad(\text { by } *)
\end{aligned}
$$

Note: It is true that: $0<|f(x)-L|<\varepsilon$, but the first inequality $(0<|f(x)-L|)$ does not help us.
Q.E.D.
("Quod erat demonstrandum" - Latin for "which was to be demonstrated / proven / shown." This is a formal end to a proof.) §

PART C: DEFINING ONE-SIDED LIMITS AT A POINT

The precise definition of $\lim _{x \rightarrow a} f(x)=L$ can be modified for left-hand and right-hand limits. The only changes are the \boldsymbol{x}-intervals where we look for winners. (See red type.) These x-intervals will no longer be symmetric about a.

- Therefore, we will use interval form instead of absolute value notation when describing these x-intervals.
- Also, we will let δ represent the entire width of an x-interval, not just half the width of a punctured x-interval.

The Precise ε - δ Definition of a Left-Hand Limit at a Point

For $a, L \in \mathbb{R}$, if a function f is defined on a left-neighborhood of a,

$$
\begin{aligned}
& \lim _{x \rightarrow a^{-}} f(x)=L \Leftrightarrow \forall \varepsilon>0, \exists \delta>0 \ni \\
& {[x \in(a-\delta, a) \Rightarrow|f(x)-L|<\varepsilon] .}
\end{aligned}
$$

The Precise ε - δ Definition of a Right-Hand Limit at a Point

For $a, L \in \mathbb{R}$, if a function f is defined on a right-neighborhood of a,

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=L \Leftrightarrow \forall \varepsilon>0, \exists \delta>0 \ni \\
& {[x \in(a, a+\delta) \Rightarrow|f(x)-L|<\varepsilon] .}
\end{aligned}
$$

Left-Hand Limit

Right-Hand Limit

PART D: DEFINING "LONG-RUN" LIMITS

The precise definition of $\lim _{x \rightarrow a} f(x)=L$ can also be modified for "long-run" limits. Again, the only changes are the \boldsymbol{x}-intervals where we look for winners. (See red type.) These x-intervals will be unbounded.

- Therefore, we will use interval form instead of absolute value notation when describing these x-intervals.
- Also, instead of using δ, we will use M (think "Million") and N (think "Negative million") to denote "points of no return."

The Precise ε - M Definition of $\lim _{x \rightarrow \infty} f(x)=L$

For $L \in \mathbb{R}$, if a function f is defined on some interval $(c, \infty), c \in \mathbb{R}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=L \Leftrightarrow \forall \varepsilon>0, \exists M \in \mathbb{R} \ni \\
& {[x>M \text {; that is, } x \in(M, \infty) \Rightarrow|f(x)-L|<\varepsilon] .}
\end{aligned}
$$

The Precise $\varepsilon-N$ Definition of $\lim _{x \rightarrow-\infty} f(x)=L$
For $L \in \mathbb{R}$, if a function f is defined on some interval $(-\infty, c), c \in \mathbb{R}$.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=L \Leftrightarrow \forall \varepsilon>0, \exists N \in \mathbb{R} \ni \\
& {[x<N \text {; that is, } x \in(-\infty, N) \Rightarrow|f(x)-L|<\varepsilon]}
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} f(x)=L ; \text { here, } f(x)=\frac{1}{x}+2
$$

$$
\lim _{x \rightarrow-\infty} f(x)=L ; \text { here, } f(x)=\frac{1}{x}+2
$$

How Does the "Static" Approach to "Long-Run" Limits Relate to the "Dynamic"

Approach?

Why is $\lim _{x \rightarrow \infty}\left(\frac{1}{x}+2\right)=2$? Because, regardless of how small we make the tolerance level ε and how tight we make the lottery for the players, there is a "point of no return" M after which all the players win. That is, the corresponding box (see the shaded boxes in the figures below) traps the graph of $y=f(x)$ for all $x>M$.

As $\varepsilon \rightarrow 0^{+}$, we can choose values for M in such a way that the corresponding shaded boxes always trap the graph and zoom in, or collapse in, on the HA $y=2$. In other words, there are always winners as $x \rightarrow \infty$.

If $\varepsilon=1$, we can choose $M=1$.

If $\varepsilon=0.5$, we can choose $M=2$.

For this example, if ε is any positive real number, we can choose $M=\frac{1}{\varepsilon}$.

PART E: DEFINING INFINITE LIMITS AT A POINT

Challenge to the reader:
Give precise " $M-\delta$ " and " $N-\delta$ " definitions of $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} f(x)=-\infty \quad(a \in \mathbb{R})$, where the function f is defined on a punctured neighborhood of a.

SECTION 2.8: CONTINUITY

LEARNING OBJECTIVES

- Understand and know the definitions of continuity at a point (in a one-sided and two-sided sense), on an open interval, on a closed interval, and variations thereof.
- Be able to identify discontinuities and classify them as removable, jump, or infinite.
- Know properties of continuity, and use them to analyze the continuity of rational, algebraic, and trigonometric functions and compositions thereof.
- Understand the Intermediate Value Theorem (IVT) and apply it to solutions of equations and real zeros of functions.

PART A: CONTINUITY AT A POINT

Informally, a function f with domain \mathbb{R} is everywhere continuous (on \mathbb{R}) \Leftrightarrow we can take a pencil and trace the graph of f between any two distinct points on the graph without having to lift up our pencil.

We will make this idea more precise by first defining continuity at a point a $(a \in \mathbb{R})$ and then continuity on intervals.

Continuity at a Point a

f is continuous at $x=a \Leftrightarrow$

1) $f(a)$ is defined (real); that is, $a \in \operatorname{Dom}(f)$,
2) $\lim _{x \rightarrow a} f(x)$ exists (is real), and
3) $\lim _{x \rightarrow a} f(x)=f(a)$.
f is discontinuous at $x=a \Leftrightarrow f$ is not continuous at $x=a$.

Comments

1) ensures that there is literally a point at $x=a$.
2) constrains the behavior of f immediately around $x=a$.
3) then ensures "safe passage" through the point $(a, f(a))$ on the graph of $y=f(x)$. Some sources just state 3) in the definition, since the form of 3) implies 1) and 2).

Example 1 (Continuity at a Point; Revisiting Section 2.1, Example 1)

Let $f(x)=3 x^{2}+x-1$. Show that f is continuous at $x=1$.

§Solution

1) $f(1)=3$, a real number $(1 \in \operatorname{Dom}(f))$
2) $\lim _{x \rightarrow 1} f(x)=3$, a real number, and
3) $\lim _{x \rightarrow 1} f(x)=f(1)$.

Therefore, f is continuous at $x=1$. The graph of $y=f(x)$ is below.

Note: The Basic Limit Theorem for
Rational Functions in Section 2.1 basically states that a rational function is continuous at any number in its domain. §

Example 2 (Discontinuities at a Point; Revisiting Section 2.2, Example 2)

Let $f(x)=\sqrt{x}$. Explain why f is discontinuous at $x=-1$ and $x=0$.

§Solution

- $f(-1)$ is not real
$(-1 \notin \operatorname{Dom}(f))$, so f is discontinuous at $x=-1$.
- $f(0)=0$, but $\lim _{x \rightarrow 0} \sqrt{x}$ does not exist (DNE), so f is discontinuous at $x=0$.

The graph of $y=f(x)$ is below.

Some sources do not even bother calling -1 and 0 "discontinuities" of f, since f is not even defined on a punctured neighborhood of $x=-1$ or of $x=0$. §

PART B: CLASSIFYING DISCONTINUITIES

We now consider cases where a function f is discontinuous at $x=a$, even though f is defined on a punctured neighborhood of $x=a$.

We will classify such discontinuities as removable, jump, or infinite. (See Footnotes 1 and 2 for another type of discontinuity.)

Removable Discontinuities

A function f has a removable discontinuity at $x=a \Leftrightarrow$

1) $\lim _{x \rightarrow a} f(x)$ exists (call this limit L), but
2) f is still discontinuous at $x=a$.

- Then, the graph of $y=f(x)$ has a hole at the point (a, L).

Example 3 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 7)

Let $g(x)=x+3,(x \neq 3)$. Classify the discontinuity at $x=3$.

§ Solution

g has a removable discontinuity at $x=3$, because:

1) $\lim _{x \rightarrow 3} g(x)=6$, but
2) g is still discontinuous at $x=3$;
here, $g(3)$ is undefined.

The graph of $y=g(x)$ below has a hole at the point $(3,6)$.

§

Example 4 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 8)

Let $h(x)=\left\{\begin{array}{ll}x+3, & x \neq 3 \\ 7, & x=3\end{array}\right.$. Classify the discontinuity at $x=3$.

§ Solution

h has a removable discontinuity at $x=3$, because:

1) $\lim _{x \rightarrow 3} h(x)=6$, but
2) h is still discontinuous at $x=3$;
here, $\lim _{x \rightarrow 3} h(x) \neq h(3)$, because $6 \neq 7$.

The graph of $y=h(x)$ also has a hole at the point $(3,6)$.

§

Why are These Discontinuities Called "Removable"?

The term "removable" is a bit of a misnomer here, since we have no business changing the function at hand.

The idea is that a removable discontinuity at a can be removed by (re)defining the function at a; the new function will then be continuous at a.

For example, if we were to define $g(3)=6$ in Example 3 and redefine $h(3)=6$ in Example 4, then we would remove the discontinuity at $x=3$ in both situations. We would obtain the graph below.

Jump Discontinuities

A function f has a jump discontinuity at $x=a \Leftrightarrow$

1) $\lim _{x \rightarrow a^{-}} f(x)$ exists, and (call this limit $\left.L_{1}\right)$
2) $\lim _{x \rightarrow a^{+}} f(x)$ exists, but (call this limit L_{2})
3) $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x) . \quad\left(L_{1} \neq L_{2}\right)$

- Therefore, $\lim _{x \rightarrow a} f(x)$ does not exist (DNE).
- It is irrelevant how $f(a)$ is defined, or if it is defined at all.

Example 5 (Jump Discontinuity at a Point; Revisiting Section 2.1, Example 14)

Let $f(x)=\frac{|x|}{x}=\left\{\begin{array}{ll}\frac{x}{x}=1, & \text { if } x>0 \\ \frac{-x}{x}=-1, & \text { if } x<0\end{array}\right.$. Classify the discontinuity at $x=0$.

§Solution

f has a jump discontinuity at $x=0$, because:

1) $\lim _{x \rightarrow 0^{-}} f(x)=-1$, and
2) $\lim _{x \rightarrow 0^{+}} f(x)=1$, but
3) $\lim _{x \rightarrow 0} f(x)$ does not exist
(DNE), because $-1 \neq 1$.
We cannot remove this discontinuity by defining $f(0)$.
§

The graph of $y=f(x)$ is below.

Infinite Discontinuities

A function f has an infinite discontinuity at $x=a \Leftrightarrow$

$$
\lim _{x \rightarrow a^{+}} f(x) \text { or } \lim _{x \rightarrow a^{-}} f(x) \text { is } \infty \text { or }-\infty .
$$

- That is, the graph of $y=f(x)$ has a VA at $x=a$.
- It is irrelevant how $f(a)$ is defined, or if it is defined at all.

Example 6 (Infinite Discontinuities at a Point; Revisiting Section 2.4, Exs. 1 and 2)
The functions described below have infinite discontinuities at $x=0$.
We will study $\ln x$ in Chapter 7 (see also the Precalculus notes, Section 3.2).

$$
f(x)=\frac{1}{x}
$$

$g(x)=\frac{1}{x^{2}}$

$$
h(x)=\ln x
$$

§

PART C: CONTINUITY ON AN OPEN INTERVAL

We can extend the concept of continuity in various ways.
(For the remainder for this section, assume $a<b$.)

Continuity on an Open Interval

A function f is continuous on the open interval $(a, b) \Leftrightarrow$
f is continuous at every number (point) in (a, b).

- This extends to unbounded open intervals of the form $(a, \infty),(-\infty, b)$, and $(-\infty, \infty)$.
In Example 6, all three functions are continuous on the interval $(0, \infty)$.
The first two functions are also continuous on the interval $(-\infty, 0)$.
We will say that the "continuity intervals" of the first two functions are:
$(-\infty, 0),(0, \infty)$. However, this terminology is not standard.
- In Footnote 1, f has the singleton (one-element) set $\{0\}$ as a "degenerate continuity interval." See also Footnotes 2 and 3.
- Avoid using the union (\cup) symbol here. In Section 2.1, Example 10, f was continuous on $(-\infty, 0]$ and $(0,1)$, but not on $(-\infty, 1)$.

PART D: CONTINUITY ON OTHER INTERVALS; ONE-SIDED CONTINUITY

Continuity on a Closed Interval

A function f is continuous on the closed interval $[a, b] \Leftrightarrow$

1) f is defined on $[a, b]$,
2) f is continuous on (a, b),
3) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$, and
4) $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.
5) and 4) weaken the continuity requirements at the endpoints, a and b. Imagine taking limits as we "push outwards" towards the endpoints.

3) implies that f is continuous from the right at a.
4) implies that f is continuous from the left at b.

Example 7 (Continuity on a Closed Interval)

Let $f(x)=\sqrt{1-x^{2}}$. Show that f is continuous on the closed interval $[-1,1]$.

§ Solution

The graph of $y=f(x)$ is below.

$$
\begin{array}{rlrl}
y & =\sqrt{1-x^{2}} & \Leftrightarrow \\
y^{2} & =1-x^{2} & (y \geq 0) & \Leftrightarrow \\
x^{2}+y^{2} & =1 & & (y \geq 0)
\end{array}
$$

The graph is the upper half of the unit circle centered at the origin, including the points $(-1,0)$ and $(1,0)$.
f is continuous on $[-1,1]$, because:

1) f is defined on $[-1,1]$,
2) f is continuous on $(-1,1)$,
3) $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$, so f is continuous from the right at -1 , and
4) $\lim _{x \rightarrow 1^{-}} f(x)=f(1)$, so f is continuous from the left at 1 .

Note: $f(-1)=0$, and $f(1)=0$, but they need not be equal.
f has $[-1,1]$ as its sole "continuity interval." When giving "continuity intervals," we include brackets where appropriate, even though f is not continuous (in a two-sided sense) at -1 and at 1 (WARNING 1).

- Some sources would call $(-1,1)$ the continuity set of f; it is the set of all real numbers at which f is continuous. (See Footnotes 2 and 3.) §

Challenge to the Reader: Draw a graph where f is defined on $[a, b]$, and f is continuous on (a, b), but f is not continuous on the closed interval $[a, b]$.

Continuity on Half-Open, Half-Closed Intervals

f is continuous on an interval of the form $[a, b)$ or $[a, \infty) \Leftrightarrow$ f is continuous on (a, b) or (a, ∞), respectively, and it is continuous from the right at a.
f is continuous on an interval of the form $(a, b]$ or $(-\infty, b] \Leftrightarrow$ f is continuous on (a, b) or $(-\infty, b)$, respectively, and it is continuous from the left at b.

Example 8 (Continuity from the Right; Revisiting Example 2)

Let $f(x)=\sqrt{x}$.
f is continuous on $(0, \infty)$. The graph of $y=f(x)$ is below.

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x}=0=f(0), \text { so } f \text { is }
$$

continuous from the right at 0 .
The sole "continuity interval" of f is $[0, \infty)$.

Example 9 (Continuity from the Left)

Let $f(x)=\sqrt{-x}$.
f is continuous on $(-\infty, 0)$.
The graph of $y=f(x)$ is below.
$\lim _{x \rightarrow 0^{-}} \sqrt{-x}=0=f(0)$, so f is
continuous from the left at 0 .
The sole "continuity interval" of f is $(-\infty, 0]$.

PART E: CONTINUITY THEOREMS

Properties of Continuity / Algebra of Continuity Theorems

If f and g are functions that are continuous at $x=a$, then so are the functions:

- $f+g, f-g$, and $f g$.
- $\frac{f}{g}$, if $g(a) \neq 0$.
- f^{n}, if n is a positive integer exponent $\left(n \in \mathbb{Z}^{+}\right)$.
- $\sqrt[n]{f}$, if:
- (n is an odd positive integer), or
- (n is an even positive integer, and $f(a)>0$).

In Section 2.2, we showed how similar properties of limits justified the Basic Limit Theorem for Rational Functions. Similarly, the properties above, together with the fact that constant functions and the identity function (represented by $f(x)=x$) are everywhere continuous on \mathbb{R}, justify the following:

Continuity of Rational Functions

A rational function is continuous on its domain.

- That is, the "continuity interval(s)" of a rational function f are its domain interval(s).

In particular, polynomial functions are everywhere continuous (on \mathbb{R}).
Although this is typically true for algebraic functions in general, there are counterexamples (see Footnote 4).

Example 10 (Continuity of a Rational Function; Revisiting Example 6)

If $f(x)=\frac{1}{x}$, then $\operatorname{Dom}(f)=(-\infty, 0) \cup(0, \infty)$.
f is rational, so the "continuity intervals" of f are: $(-\infty, 0),(0, \infty) . \S$

When analyzing the continuity of functions that are not rational, we may need to check for one-sided continuity at endpoints of domain intervals.

Example 11 (Continuity of an Algebraic Function; Revisiting Chapter 1, Ex. 6)

Let $h(x)=\frac{\sqrt{x+3}}{x-10}$. What are the "continuity intervals" of h ?

§ Solution

In Chapter 1, we found that $\operatorname{Dom}(h)=[-3,10) \cup(10, \infty)$.
We will show that the "continuity intervals" are, in fact, the domain intervals, $[-3,10)$ and $(10, \infty)$.

By the Algebra of Continuity Theorems, we find that h is continuous on $(-3,10)$ and $(10, \infty)$.

Now, $\lim _{x \rightarrow-3^{+}} h(x)=0=h(-3)$, because $\left(\right.$ Limit Form $\left.\frac{\sqrt{0^{+}}}{-13}\right) \Rightarrow 0$.
Therefore, h is continuous from the right at $x=-3$, and its
"continuity intervals" are: $[-3,10)$ and $(10, \infty)$.
The graph of $y=h(x)$ is below.

Continuity of Composite Functions

If g is continuous at a, and f is continuous at $g(a)$, then $f \circ g$ is continuous at a.
(See Footnote 5.)
Continuity of Basic Trigonometric Functions
The six basic trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent) are continuous on their domain intervals.

Example 12 (Continuity of a Composite Function)

Let $h(x)=\sec \left(\frac{1}{x}\right)$. Where is h continuous?

§ Solution

Observe that $h(x)=(f \circ g)(x)=f(g(x))$, where:
the "inside" function is given by $g(x)=\frac{1}{x}$, and
the "outside" function f is given by $f(\theta)=\sec \theta$, where $\theta=\frac{1}{x}$.
g is continuous at all real numbers except $0(x \neq 0)$.
f is continuous on its domain intervals.

$$
\begin{aligned}
\sec \theta \text { is real } & \Leftrightarrow \cos \theta \neq 0, \text { and } x \neq 0 \\
& \Leftrightarrow \theta \neq \frac{\pi}{2}+\pi n(n \in \mathbb{Z}), \text { and } x \neq 0 \\
& \Leftrightarrow \frac{1}{x} \neq \frac{\pi}{2}+\pi n(n \in \mathbb{Z}), \text { and } x \neq 0
\end{aligned}
$$

We can replace both sides of the inequation with their reciprocals, because we exclude the case $x=0$, and both sides are never 0 .

$$
\Leftrightarrow x \neq \frac{1}{\frac{\pi}{2}+\pi n}(n \in \mathbb{Z}), \text { and } x \neq 0
$$

$$
\begin{aligned}
& \Leftrightarrow \quad x \neq \frac{1}{\left(\frac{\pi}{2}+\pi n\right)} \cdot \frac{2}{2}(n \in \mathbb{Z}), \text { and } x \neq 0 \\
& \Leftrightarrow \quad x \neq \frac{2}{\pi+2 \pi n}(n \in \mathbb{Z}), \text { and } x \neq 0
\end{aligned}
$$

h is continuous on:

$$
\begin{aligned}
& \left\{x \in \mathbb{R} \left\lvert\, x \neq \frac{2}{\pi+2 \pi n}(n \in \mathbb{Z})\right., \text { and } x \neq 0\right\} \text {, or } \\
& \left\{x \in \mathbb{R} \left\lvert\, x \neq \frac{2}{\pi(2 n+1)}(n \in \mathbb{Z})\right., \text { and } x \neq 0\right\} .
\end{aligned}
$$

§

PART F: THE INTERMEDIATE VALUE THEOREM (IVT)

Continuity of a function constrains its behavior in important (and useful) ways. Continuity is central to some key theorems in calculus. We will see the Extreme Value Theorem (EVT) in Chapter 4 and Mean Value Theorems (MVTs) in Chapters 4 and 5. We now discuss the Intermediate Value Theorem (IVT), which directly relates to the meaning of continuity. We will motivate it before stating it.

Example 13 (Motivating the IVT)

Let $f(x)=x^{2}$ on the x-interval $[0,2]$. The graph of $y=f(x)$ is below.

$$
\begin{aligned}
& f \text { is continuous on }[0,2], \\
& f(0)=0, \text { and } \\
& f(2)=4 .
\end{aligned}
$$

The IVT guarantees that every real number (d) between 0 and 4 is a value of (is taken on by) f at some x-value (c) in $[0,2] . \S$

The Intermediate Value Theorem (IVT): Informal Statement
If a function f is continuous on the closed interval $[a, b]$, then f takes on every real number between $f(a)$ and $f(b)$ on $[a, b]$.

The Intermediate Value Theorem (IVT): Precise Statement
Let $\min (f(a), f(b))$ be the lesser of $f(a)$ and $f(b)$;
if they are equal, then we take their common value.
Let $\max (f(a), f(b))$ be the greater of $f(a)$ and $f(b)$;
if they are equal, then we take their common value.
A function f is continuous on $[a, b] \Rightarrow$
$\forall d \in[\min (f(a), f(b)), \max (f(a), f(b))], \exists c \in[a, b] \ni f(c)=d$.

Example 14 (Applying the IVT to Solutions of Equations)

Prove that $x^{2}=3$ has a solution in $[0,2]$.

§ Solution

Let $f(x)=x^{2}$. (We also let the desired function value, $d=3$.)
f is continuous on $[0,2]$,

$$
\begin{aligned}
& f(0)=0, \\
& f(2)=4, \text { and } \\
& 3 \in[0,4] .
\end{aligned}
$$

Therefore, by the IVT, $\exists c \in[0,2] \ni$ (such that) $f(c)=3$.
That is, $x^{2}=3$ has a solution (c) in $[0,2]$.
Q.E.D. §

In Example 14, $c=\sqrt{3}$ was our solution to $x^{2}=3$ in $[0,2] ; d=3$ here.

To verify the conclusion of the IVT in general, we can give a formula for c given any real number d in $[0,4]$, where $c \in[0,2]$ and $f(c)=d$.

Example 15 (Verifying the Conclusion of the IVT; Revisiting Examples 13 and 14)
Verify the conclusion of the IVT for $f(x)=x^{2}$ on the x-interval $[0,2]$.

§ Solution

f is continuous on $[0,2]$, so the IVT applies. $f(0)=0$, and $f(2)=4$.
Let $d \in[0,4]$, and let $c=\sqrt{d}$.

- The following justifies our formula for c :

$$
\begin{aligned}
f(c) & =d \text { and } c \in[0,2] \Leftrightarrow \\
c^{2} & =d \text { and } c \in[0,2] \Leftrightarrow \\
c & =\sqrt{d}, \text { a real number in }[0,2]
\end{aligned}
$$

WARNING 2: We do not write $c= \pm \sqrt{d}$, because either $d=0$, or a value for c would fall outside of $[0,2]$.

Observe: $0 \leq d \leq 4 \Rightarrow 0 \leq \sqrt{d} \leq 2$.
Then, $c \in[0,2]$, and $f(c)=c^{2}=(\sqrt{d})^{2}=d$.
Therefore, $\forall d \in[0,4], \exists c \in[0,2] \ni f(c)=d . \S$

Example 16 (c Might Not Be Unique)

Let $f(x)=\sin x$ on the x-interval $\left[0, \frac{5 \pi}{2}\right]$. The graph of $y=f(x)$ is below.

$f(0)=0$, and $f\left(\frac{5 \pi}{2}\right)=1$. Because f is continuous on $\left[0, \frac{5 \pi}{2}\right]$, the IVT guarantees that every real number d between 0 and 1 is taken on by f at some x-value c in $\left[0, \frac{5 \pi}{2}\right]$.

WARNING 3: Given an appropriate value for d, there might be more than one appropriate choice for c. The IVT does not forbid that.

WARNING 4: Also, there are real numbers outside of $[0,1]$ that are taken on by f on the x-interval $\left[0, \frac{5 \pi}{2}\right]$. The IVT does not forbid that, either. \S

PART G: THE BISECTION METHOD FOR APPROXIMATING A ZERO OF A FUNCTION

Our ability to solve equations is equivalent to our ability to find zeros of functions. For example, $f(x)=g(x) \Leftrightarrow f(x)-g(x)=0$; we can solve the first equation by finding the zeros of $h(x)$, where $h(x)=f(x)-g(x)$.

We may have to use computer algorithms to approximate zeros of functions if we can't find them exactly.

- While we do have (nastier) analogs of the Quadratic Formula for $3^{\text {rd }}$ - and $4^{\text {th }}$-degree polynomial functions, it has actually been proven that there is no similar formula for higher-degree polynomial functions.

The Bisection Method, which is the basis for some of these algorithms, uses the IVT to produce a sequence of smaller and smaller intervals that are guaranteed to contain a zero of a given function.

The Bisection Method for Approximating a Zero of a Continuous Function f

Let's say we want to approximate a zero of a function f.
Find x-values a_{1} and $b_{1}\left(a_{1}<b_{1}\right)$ such that $f\left(a_{1}\right)$ and $f\left(b_{1}\right)$ have opposite signs and f is continuous on $\left[a_{1}, b_{1}\right]$. (The method fails if such x-values cannot be found.)

According to the IVT, there must be a zero of f in $\left[a_{1}, b_{1}\right]$, which we call our "search interval."

For example, consider the graph of $y=f(x)$ below. Our search interval is apparently $[2,8]$.

If $f\left(a_{1}\right)$ or $f\left(b_{1}\right)$ were 0 , then we would have found a zero of f, and we could either stop or try to approximate another zero.

If neither is 0 , then we take the midpoint of the search interval and determine the sign of $f(x)$ there (in red below). We can then shrink the search interval (in purple below) and repeat the process. We call the Bisection Method an iterative method because of this repetition.

We stop when we find a zero, or until the search interval is small enough so that we are satisfied with taking its midpoint as our approximation.

A key drawback to numerical methods such as the Bisection Method is that, unless we manage to find n distinct real zeros of an $n^{\text {th }}$-degree polynomial $f(x)$, we may need other techniques to be sure that we have found all of the real zeros, if we are looking for all of them. §

Example 17 (Applying the Bisection Method; Revisiting Example 14)

We can approximate $\sqrt{3}$ by approximating the positive real solution of $x^{2}=3$, or the positive real zero of $h(x)$, where $h(x)=x^{2}-3$.

Search interval $[a, b]$	Sign of $h(a)$	Sign of $h(b)$	Midpoint	Sign of h there
$[0,2]$	-	+	1	-
$[1,2]$	-	+	1.5	-
$[1.5,2]$	-	+	1.75	+
$[1.5,1.75]$	-	+	1.625	-

etc. §
In Section 4.8, we will use Newton's Method for approximating zeros of a function, which tends to be more efficient. However, Newton's Method requires differentiability of a function, an idea we will develop in Chapter 3.

FOOTNOTES

1. A function with domain \mathbb{R} that is only continuous at 0 . (Revisiting Footnote 1 in

Section 2.1.) Let $f(x)=\left\{\begin{array}{l}0, \text { if } x \text { is a rational number }(x \in \mathbb{Q}) \\ x, \text { if } x \text { is an irrational number }(x \notin \mathbb{Q} ; \text { really, } x \in \mathbb{R} \backslash \mathbb{Q})\end{array}\right.$. f is continuous at $x=0$, because $f(0)=0$, and we can use the Squeeze (Sandwich) Theorem to prove that $\lim _{x \rightarrow 0} f(x)=0$, also. The discontinuities at the nonzero real numbers are not categorized as removable, jump, or infinite.
2. Continuity sets and a nowhere continuous function. See Cardinality of the Set of Real Functions With a Given Continuity Set by Jiaming Chen and Sam Smith. The $19^{\text {th }}$-century German mathematician Dirichlet came up with a nowhere continuous function, D :

$$
D(x)=\left\{\begin{array}{l}
0, \text { if } x \text { is a rational number }(x \in \mathbb{Q}) \\
1, \text { if } x \text { is an irrational number }(x \notin \mathbb{Q} ; \text { really, } x \in \mathbb{R} \backslash \mathbb{Q})
\end{array}\right.
$$

3. Continuity on a set. This is tricky to define! See "Continuity on a Set" by R. Bruce Crofoot, The College Mathematics Journal, Vol. 26, No. 1 (Jan. 1995) by the Mathematical Association of America (MAA). Also see Louis A. Talman, The Teacher's Guide to Calculus (web). Talman suggests:
Let S be a subset of $\operatorname{Dom}(f)$; that is, $S \subseteq \operatorname{Dom}(f) . f$ is continuous on $S \Leftrightarrow$ $\forall a \in S, \forall \varepsilon>0, \exists \delta>0$ э $[(x \in S$ and $|x-a|<\delta) \Rightarrow|f(x)-f(a)|<\varepsilon]$.

- The definition essentially states that, for every number a in the set of interest, its function value is arbitrarily close to the function values of nearby x-values in the set. Note that we use $f(a)$ instead of L, which we used to represent $\lim _{x \rightarrow a} f(x)$, because we need
$\lim _{x \rightarrow a} f(x)=f(a)$ (or possibly some one-sided variation) in order to have continuity on S.
- This definition covers / subsumes our definitions of continuity on open intervals; closed intervals; half-open, half-closed intervals; and unions (collections) thereof.
- One possible criticism against this definition is that it implies that the functions described in Footnote 4 are, in fact, continuous on the singleton set $\{0\}$. This conflicts with our definition of continuity at a point in Part A because of the issue of nonexistent limits. Perhaps we should require that f be defined on some interval of the form $[a, c)$ with $c>a$ or the form $(c, a]$ with $c<a$.
- Crofoot argues for the following definition: f is continuous on S if the restriction of f to S is continuous at each number in S. He acknowledges the use of one-sided continuity when dealing with closed intervals.

4. An algebraic function that is not continuous on its domain. Let $f(x)=\sqrt{x}+\sqrt{-x}$.
$\operatorname{Dom}(f)=\{0\}$, a singleton (a set consisting of a single element), but f is not continuous at 0 (by Part A), because $\lim _{x \rightarrow 0} f(x)$ does not exist (DNE). The same is true for $f(x)=\sqrt{-x^{2}}$.
5. Continuity and the limit properties in Section 2.2, Part A. Let $a, K \in \mathbb{R}$.

If $\lim _{x \rightarrow a} g(x)=K$, and f is continuous at K, then: $\lim _{x \rightarrow a}(f \circ g)(x)=\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(K)$. Basically, continuity allows f to commute with a limit operator: $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$. Think: "The limit of a (blank) is the (blank) of the limit." This relates to Property 5) on the limit of a power, Property 6) on the limit of a constant multiple, and Property 7) on the limit of a root in Section 2.2.
For example, f could represent the squaring function.
6. A function that is continuous at every irrational point and discontinuous at every rational point. See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.27. Also see Tom Vogel, http://www.math.tamu.edu/~tvogel/gallery/node6.html (web). If x is rational, where $x=\frac{a}{b}(a, b \in \mathbb{Z}), b>0$, and the fraction is simplified, then let $f(x)=\frac{1}{b}$. If x is irrational, let $f(x)=0$. Vogel calls this the "ruler function," appealing to the image of markings on a ruler. However, there does not exist a function that is continuous at every rational point and discontinuous at every irrational point.
7. An everywhere continuous function that is nowhere monotonic (either increasing or decreasing). See Gelbaum and Olmsted, Counterexamples in Analysis (Dover), p.29. There is no open interval on which the function described there is either increasing or decreasing.

