SECTION 2.4: LIMITS AND INFINITY II

LEARNING OBJECTIVES

- Understand infinite limits at a point and relate them to vertical asymptotes of graphs.
- Be able to evaluate infinite limits at a point, particularly for rational functions expressed in simplified form, and use a short cut to find vertical asymptotes of their graphs.
- Be able to use informal Limit Form notation to analyze infinite limits at a point.

PART A: VERTICAL ASYMPTOTES ("VA"s) and INFINITE LIMITS AT A POINT

In Section 2.1, we discussed finite limits at a point a.

We saw (two-sided) limits where $\lim_{x \to a} f(x) = L(a, L \in \mathbb{R})$.

In Section 2.3, we discussed finite and infinite limits at (\pm) infinity.

We saw examples where $\lim_{x \to \infty} f(x)$ or $\lim_{x \to -\infty} f(x)$ is $L(L \in \mathbb{R})$, ∞ , or $-\infty$.

Now, if $a \in \mathbb{R}$:

f has an <u>infinite limit at a point a</u> $\Leftrightarrow \lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ is ∞ or $-\infty$.

- We read $\lim_{x \to a} f(x) = \infty$ as "the limit of f(x) as x approaches a is infinity."
- See Footnote 1 for an alternate definition.

A <u>vertical asymptote</u>, which we will denote by "VA," is a vertical line that a graph **approaches in an "explosive" sense**. (See Section 2.1, Example 11.)

<u>Using Infinite Limits at a Point to Find Vertical Asymptotes (VAs)</u>

The graph of y = f(x) has a **vertical asymptote (VA)** at x = a $(a \in \mathbb{R})$

$$\Leftrightarrow \lim_{x \to a^+} f(x) \text{ or } \lim_{x \to a^-} f(x) \text{ is } \infty \text{ or } -\infty.$$

• That is, the graph has a VA at $x = a \Leftrightarrow$ there is an infinite limit there from one or both sides.

The **number of VAs** the graph has can be a nonnegative integer (0, 1, 2, ...), or it can have infinitely many VAs (consider $f(x) = \tan x$).

- If f is rational, then the graph cannot have infinitely many VAs.
- If f is **polynomial**, then the graph has **no VAs**.

Note: The graph of y = f(x) cannot cross over a VA, but it can cross over an HA (see Section 2.3, Example 6).

Example 1 (The Graph of the Reciprocal Function has an "Odd VA"; Revisiting Section 2.3, Example 1)

Let
$$f(x) = \frac{1}{x}$$
. Evaluate $\lim_{x \to 0^+} f(x)$ and $\lim_{x \to 0^-} f(x)$, and show that the graph of $y = f(x)$ has a vertical asymptote (VA) at $x = 0$.

§ Solution

Let's use the **numerical / tabular approach**:

x	-1	$-\frac{1}{10}$	$-\frac{1}{100}$	$\rightarrow 0^{-}$	0 ⁺ ←	$\frac{1}{100}$	$\frac{1}{10}$	1
$f\left(x\right) = \frac{1}{x}$	-1	-10	-100	\rightarrow $-\infty$	∞ ←	100	10	1

- Apparently, as x approaches 0 from the **right**, f(x) **increases without bound**. That is, $\lim_{x \to 0^+} f(x) = \infty$.
- Also, as x approaches 0 from the **left**, f(x) **decreases without bound**. That is, $\lim_{x \to 0^{-}} f(x) = -\infty$.
- Either limit statement implies that the graph of y = f(x) below has a vertical asymptote ("VA") at x = 0, the y-axis.

Example 1 gave us the most basic cases of the following Limit Forms.

$$\left(\text{Limit Form } \frac{1}{0^+}\right) \Rightarrow \infty, \text{ and } \left(\text{Limit Form } \frac{1}{0^-}\right) \Rightarrow -\infty$$

• These Limit Forms can be **rescaled**, as described in Section 2.3, Part A.

"Odd and Even VAs"

Assume that the graph of y = f(x) has a VA at x = a. (The following terminology is informal and nonstandard.)

- If the two one-sided limits at x = a are ∞ and $-\infty$, in either order, then the VA is an "odd VA."
- If those limits are **both** ∞ or **both** $-\infty$, then the VA is an "even VA."
- \bullet In Example 1, the y-axis was an "odd VA," partly due to the fact that fwas an odd function. The graph of y = f(x) "shot off" in **different** directions around the VA.
- In Example 2 below, the y-axis is an "even VA," partly due to the fact that g is an even function, where $g(x) = \frac{1}{x^2}$. The graph of y = g(x) "shoots off" in the **same** direction around the VA.

Example 2 (A Graph With an "Even VA")

Evaluate
$$\lim_{x \to 0^+} \frac{1}{x^2}$$
, $\lim_{x \to 0^-} \frac{1}{x^2}$, and $\lim_{x \to 0} \frac{1}{x^2}$.

§ Solution

Because $x^2 > 0$ for all $x \neq 0$, all three give: $\left\{ \text{Limit Form } \frac{1}{0^+} \right\} \Rightarrow \infty$.

The graph of $y = \frac{1}{r^2}$ is below.

$$\lim_{x \to 0^{+}} \frac{1}{x^{2}} = \infty, \lim_{x \to 0^{-}} \frac{1}{x^{2}} = \infty, \text{ and}$$

$$\lim_{x \to 0} \frac{1}{x^2} = \infty . \S$$

PART B: EVALUATING INFINITE LIMITS FOR RATIONAL FUNCTIONS

Example 3 (Evaluating Infinite Limits at a Point for a Rational Function)

Let
$$f(x) = \frac{x+1}{x^3 + 4x^2}$$
. Evaluate $\lim_{x \to -4^+} f(x)$, $\lim_{x \to -4^-} f(x)$, and $\lim_{x \to -4} f(x)$.

§ Solution

$$\lim_{x \to -4} (x+1) = -4 + 1 = -3, \text{ and } \lim_{x \to -4} (x^3 + 4x^2) = (-4)^3 + 4(-4)^2 = 0.$$

All three problems give the Limit Form $\frac{-3}{0}$. For each, we must know how the denominator approaches 0. Since it is easier to analyze **signs of products** than of sums (for example, do we automatically know the sum of a and b if a > 0 and b < 0?), we will **factor the denominator**.

<u>WARNING 1</u>: Many students **improperly use methods** such as the "Division Method" and "DTS" from Section 2.3. Those methods are designed to evaluate "**long-run**" limits, **not** limits at a point.

$$\lim_{x \to -4^{+}} f(x) = \lim_{x \to -4^{+}} \frac{x+1}{x^{3} + 4x^{2}}$$

$$= \lim_{x \to -4^{+}} \frac{\overbrace{x+1}^{-3}}{\underbrace{x^{2}}_{-16} \underbrace{(x+4)}_{-0+}} \quad \left(\text{Limit Form } \frac{-3}{0^{+}} \right)$$

WARNING 2: Write 0^+ and 0^- as necessary.

In the denominator: Remember that "positive times positive equals positive."

= -∞

$$\lim_{x \to -4^{-}} f(x) = \lim_{x \to -4^{-}} \frac{x+1}{x^{3} + 4x^{2}}$$

$$= \lim_{x \to -4^{-}} \frac{\sum_{x \to -4^{-}}^{-3} \frac{x+1}{x^{2} \cdot (x+4)}}{\sum_{x \to -4^{-}}^{-3} \frac{x+1}{\sqrt{16} \cdot (x+4)}} \quad \left(\text{Limit Form } \frac{-3}{0^{-}} \right)$$

In the denominator: Remember that "positive times negative equals negative."

 $\lim_{x \to -4} f(x)$ does not exist (DNE). (See Footnote 2.)

The graph of y = f(x) is below. Observe the "odd VA" at x = -4. (Why is there an HA at the x-axis?)

ş

Finding VAs for Graphs of "Simplified" Rational Functions

Let $f(x) = \frac{N(x)}{D(x)}$, where N(x) and D(x) are nonzero polynomials in x

with **no real zeros in common**; this is guaranteed (by the Factor Theorem from Precalculus) if they have **no variable factors in common**, up to constant multiples. Then,

The graph of y = f(x) has a **VA** at $x = a \iff a$ is a **real zero** of D(x).

Note: The numerator and the denominator of $\frac{x-\frac{1}{3}}{3x-1}$ are **common factors up to constant multiples** (the denominator is 3 times the numerator); observe that $\frac{1}{3}$ is a **real zero of both**.

Example 4 (Finding VAs for the Graph of a "Simplified" Rational Function; Revisiting Example 3)

Let $f(x) = \frac{x+1}{x^3 + 4x^2}$. Find the equations of the vertical asymptotes (VAs) of the graph of y = f(x). **Justify** using limits.

§ Solution

$$f(x) = \frac{x+1}{x^3 + 4x^2} = \frac{x+1}{x^2(x+4)}$$
, which is **simplified**. The **VAs** have **equations**

x = 0 and x = -4, corresponding to the **real zeros of the denominator**.

To **justify** the VA at x = 0, show there is an infinite limit there. **Either** of the following will suffice:

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x+1}{x^{3} + 4x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{x+1}{x^{2} + 1} \qquad \text{Limit Form } \frac{1}{0^{+}} \text{Li$$

= ∞

• Since 0 is a real zero of D(x) with **multiplicity** 2 (an **even** number), there is an "**even VA**" at x = 0.

To **justify** the VA at x = -4, show there is an infinite limit there, as we did in Example 3, by showing **either** $\lim_{x \to -4^+} f(x) = -\infty$, or $\lim_{x \to -4^-} f(x) = \infty$.

• Since -4 is a real zero of D(x) with **multiplicity** 1 (an **odd** number), there is an "**odd VA**" at x = -4. §

FOOTNOTES

1. Alternate definition of an infinite limit at a point. If we say that f has an infinite limit at a $\Leftrightarrow \left(\lim_{x \to a^+} \left| f(x) \right| = \infty \text{ or } \lim_{x \to a^-} \left| f(x) \right| = \infty \right)$, we then extend the idea of an "infinite limit" to examples such as the following:

$$f(x) = \begin{cases} \frac{1}{x}, & \text{if } x \text{ is a rational number } (x \in \mathbb{Q}) \\ -\frac{1}{x}, & \text{if } x \text{ is an irrational number } (x \notin \mathbb{Q}; \text{ really}, x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

as $x \to 0$. In this work, we will not use this definition.

2. Infinity and the real projective line.

- The <u>affinely extended real number system</u>, denoted by \mathbb{R} or $\left[-\infty,\infty\right]$, includes two points of infinity, one referred to as ∞ (or $+\infty$) and the other referred to as $-\infty$. (We are "adjoining" them to the real number system.) We obtain the <u>two-point compactification of the real numbers</u>. We never refer to ∞ and $-\infty$ as real numbers, though.
- In the <u>projectively extended real number system</u>, denoted by \mathbb{R}^* , ∞ and $-\infty$ are treated as the same (we collapse them together and identify them with one another as ∞), and we then obtain the <u>one-point compactification of the real numbers</u>, also known as the <u>real projective</u>

line. Then,
$$\frac{1}{0} = \infty$$
, the slope of a vertical line is ∞ , $\lim_{x \to 0} \frac{1}{x} = \infty$, and $\lim_{x \to -4} \frac{x+1}{x^2+4x} = \infty$.

- A point at infinity is sometimes added to the complex plane, and it typically corresponds to the "north pole" of a Riemann sphere that the complex plane is wrapped around.
- See "Projectively Extended Real Numbers" in *MathWorld* (web) and "Real projective line" in *Wikipedia* (web).

SECTION 2.5: THE INDETERMINATE FORMS $\frac{0}{2}$ AND $\frac{\infty}{2}$

LEARNING OBJECTIVES

- Understand what it means for a Limit Form to be indeterminate.
- Recognize indeterminate forms, and know what other Limit Forms yield.
- Learn techniques for resolving indeterminate forms when evaluating limits, including factoring, rationalizing numerators and denominators, and (in Chapter 10) L'Hôpital's Rule.

PART A: WHAT ARE INDETERMINATE FORMS?

An indeterminate form is a Limit Form that could yield a variety of real values; the limit might not exist. Further analysis is required to know what the limit is.

The seven "classic" indeterminate forms are:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, ∞^0 , 0^0 , and 1^{∞} .

• Observe that the first six forms involve 0 and/or $(\pm)\infty$, while the seventh involves 1 and ∞ .

In Section 2.3, Parts D and E, we encountered the indeterminate form $\frac{\pm \infty}{1}$.

This is simply written as $\frac{\infty}{\infty}$, since **further analysis** is required, anyway.

(Sometimes, signs matter in the forms. For example, (Limit Form $\infty - \infty$) is indeterminate, while (Limit Form $\infty + \infty$) $\Rightarrow \infty$. See Part D.)

Example 1 (0/0 is an Indeterminate Form)

If $c \in \mathbb{R}$,

$$\lim_{x \to 0} \frac{cx}{x} \quad \left(\text{Limit Form } \frac{0}{0} \right) = \lim_{x \to 0} c$$

$$= c$$

 $\lim_{x \to 0} \frac{cx}{x} \quad \left(\text{Limit Form } \frac{0}{0} \right) = \lim_{x \to 0} c \quad \text{we are taking a$ **limit** $as } x \to 0, \text{ so}$ the fact that $\frac{cx}{x}$ is undefined at x = 0is irrelevant. (See Section 2.1, Part C.)

$$c$$
 could be 2, $-\pi$, etc. (Limit Form $\frac{0}{0}$) can yield **any real number**.

We already know that $\left(\text{Limit Form }\frac{0}{0}\right)$ is **indeterminate**, but we can further show that it can yield **nonexistent limits**:

$$\lim_{x \to 0^{+}} \frac{x}{x^{2}} \quad \left(\text{Limit Form } \frac{0}{0} \right) = \lim_{x \to 0^{+}} \frac{1}{x} \quad \left(\text{Limit Form } \frac{1}{0^{+}} \right) = \infty.$$

$$\lim_{x \to 0^{-}} \frac{x}{x^{2}} \quad \left(\text{Limit Form } \frac{0}{0} \right) = \lim_{x \to 0^{-}} \frac{1}{x} \quad \left(\text{Limit Form } \frac{1}{0^{-}} \right) = -\infty.$$

$$\lim_{x \to 0} \frac{x}{x^{2}} \quad \left(\text{Limit Form } \frac{0}{0} \right) = \lim_{x \to 0} \frac{1}{x}, \text{ which does not exist (DNE)}.$$

- We will use $\left(\text{Limit Form } \frac{0}{0}\right)$ when we define <u>derivatives</u> in Chapter 3.
- In turn, <u>L'Hôpital's Rule</u> will use **derivatives** to resolve indeterminate forms, particularly $\frac{0}{0}$ and $\frac{\infty}{\infty}$. (See Chapter 10.) §

Example 2 (∞/∞ is an Indeterminate Form)

If $c \neq 0$,

$$\lim_{x \to \infty} \frac{cx}{x} \quad \left(\text{Limit Form } \frac{\infty}{\infty} \right) = \lim_{x \to \infty} c$$

c could be 2, $-\pi$, etc. (Limit Form $\frac{\infty}{\infty}$) can yield **any real number**.

(In the Exercises, you will demonstrate how it can yield 0 and ∞ .) §

Example 3 (1/0 is Not an Indeterminate Form)

$$\left(\text{Limit Form } \frac{1}{0}\right) \Rightarrow \infty, -\infty, \text{ or "DNE." We know a lot! The form is not}$$

indeterminate, although we must know how the denominator approaches 0.

$$\left(\text{Limit Form } \frac{1}{0^{+}}\right) \Rightarrow \infty. \left(\text{Limit Form } \frac{1}{0^{-}}\right) \Rightarrow -\infty. \lim_{x \to \infty} \frac{1}{\frac{\sin x}{x}} \text{ "DNE"};$$

see Section 2.3, Example 6. §

PART B: RESOLVING THE $\frac{0}{0}$ FORM BY FACTORING AND CANCELING;

GRAPHS OF RATIONAL FUNCTIONS

Let $f(x) = \frac{N(x)}{D(x)}$, where N(x) and D(x) are nonzero polynomials in x.

We do **not** require simplified form, as we did in Section 2.4. If a is a **real zero** of **both** N(x) and D(x), then we can use the Factor Theorem from Precalculus to help us **factor** N(x) and D(x) and **simplify** f(x).

Factor Theorem

a is a **real zero** of $D(x) \Leftrightarrow (x-a)$ is a **factor** of D(x).

• This also applied to Section 2.4, but it now helps that the same goes for N(x).

Example 4 (Factoring and Canceling/Dividing to Resolve a 0/0 Form)

Let
$$f(x) = \frac{x^2 - 1}{x^2 - x}$$
. Evaluate: a) $\lim_{x \to 1} f(x)$ and b) $\lim_{x \to 0^+} f(x)$.

§ Solution to a)

The Limit Form is $\frac{0}{0}$:

$$\lim_{x \to 1} N(x) = \lim_{x \to 1} (x^2 - 1) = (1)^2 - 1 = 0, \text{ and}$$

$$\lim_{x \to 1} D(x) = \lim_{x \to 1} (x^2 - x) = (1)^2 - (1) = 0.$$

1 is a **real zero** of **both** N(x) and D(x), so (x-1) is a **common factor**.

We will **cancel** (x-1) factors and **simplify** f(x) to resolve the $\frac{0}{0}$ form.

WARNING 1: Some instructors prefer "divide out" to "cancel."

<u>TIP 1</u>: It often saves time to **begin by factoring** and worry about Limit Forms later.

(Section 2.5: The Indeterminate Forms 0/0 and ∞/∞) 2.5.4

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} \quad \left(\text{Limit Form } \frac{0}{0} \right)$$

$$= \lim_{x \to 1} \frac{(x+1)(x-1)}{x(x-1)}$$

$$= \lim_{x \to 1} \frac{x+1}{x}$$

$$= \frac{(1)+1}{(1)}$$

$$= 2$$

Ş

§ Solution to b)

The Limit Form is $\frac{-1}{0}$:

$$\lim_{x \to 0^{+}} N(x) = \lim_{x \to 0^{+}} (x^{2} - 1) = (0)^{2} - 1 = -1, \text{ and}$$

$$\lim_{x \to 0^{+}} D(x) = \lim_{x \to 0^{+}} (x^{2} - x) = (0)^{2} - (0) = 0.$$

Here, when we **cancel** (x-1) factors and **simplify** f(x), it is a matter of **convenience**. It takes work to see that $\lim_{x\to 0^+} D(x) = \lim_{x\to 0^+} (x^2 - x) = 0^-$,

and then
$$\left(\text{Limit Form } \frac{-1}{0^-}\right) \Rightarrow \infty$$
.

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x^{2} - 1}{x^{2} - x} \quad \left(\text{Limit Form } \frac{-1}{0} \right)$$

$$= \lim_{x \to 0^{+}} \frac{(x+1)(x-1)}{x(x-1)}$$

$$= \lim_{x \to 0^{+}} \frac{x+1}{x} \quad \left(\text{Limit Form } \frac{1}{0^{+}} \right)$$

$$= \infty$$

The Graph of a Rational Function f at a Point a

The graph of y = f(x) has **one** of the following at x = a $(a \in \mathbb{R})$:

1) The **point** (a, f(a)), if f(a) is real $(a \in Dom(f))$.

In 2) and 3) below,

- (x-a) is a **factor** of the denominator, D(x).
- That is, a is a **real zero** of D(x), and $a \notin Dom(f)$.
- 2) A VA, if simplifying f(x) yields the Limit Form $\frac{c}{0}$ as $x \to a$ $(c \ne 0)$.
 - That is, there is at least one (x-a) factor of D(x) that cannot be canceled/divided out. It will still force the denominator towards 0 as $x \to a$.
- 3) A **hole** at the point (a, L), if f(a) is undefined $(a \notin Dom(f))$, **but** $\lim_{x \to a} f(x) = L \ (L \in \mathbb{R})$.
 - That is, (x-a) is a **factor** of D(x), **but all such factors** can be **canceled/divided out** by (x-a) factor(s) in the numerator. Then, the denominator is **no longer forced** towards 0.
 - A hole can only occur if we start with the Limit Form $\frac{0}{0}$, because a **denominator** approaching 0 can only be **prevented** from "exploding" f(x) if the **numerator** approaches 0, as well. (If the numerator **fails** to prevent this, we get a **VA**.)

Example 5 (VAs and Holes on the Graph of a Rational Function; Revisiting Example 4)

Let $f(x) = \frac{x^2 - 1}{x^2 - x}$. Identify any **vertical asymptotes** (**VAs**) and **holes** on the graph of y = f(x).

§ Solution

In Example 4, we saw that:
$$f(x) = \frac{x^2 - 1}{x^2 - x} = \frac{(x+1)(x-1)}{x(x-1)} = \frac{x+1}{x} (x \neq 1)$$
.

The **real zeros** of $x^2 - x$ are 0 and 1, so they correspond to **VAs or holes**.

- In 4a, we found that: $\lim_{x\to 1} f(x) = 2$, even though $1 \notin \text{Dom}(f)$, so the graph has a **hole** at the point (1,2). As $x\to 1$, the factor $(x-1)\to 0$. When we simplify f(x), we **cancel** (**divide out**) **all** of the (x-1) factors in the **denominator**. The new denominator, x, **no longer approaches 0**, and the overall limit **exists**.
- In 4b, we found that: $\lim_{x\to 0^+} f(x) = \infty$, so the graph has a **VA** at x=0 (the *y*-axis). When we simplify f(x), we **cannot cancel** (divide out) the *x* factor in the **denominator**. As $x\to 0$, the new denominator, *x*, **still approaches 0**.

The graph of
$$y = \frac{x^2 - 1}{x^2 - x}$$
 (or $y = \frac{x + 1}{x}$ ($x \ne 1$), or $y = 1 + \frac{1}{x}$ ($x \ne 1$) is below.

Since 0 is a zero of the new denominator, x, with multiplicity 1, the VA at x = 0 is an "odd VA."

Why is there an **HA** at y = 1? §

PART C: RESOLVING THE $\frac{0}{0}$ FORM BY RATIONALIZING;

GRAPHS OF ALGEBRAIC FUNCTIONS

Graphs of algebraic functions can also have points, VAs, and holes. Unlike graphs of rational functions, they can also have **"blank spaces"** where there are no points for infinitely many real values of x.

Example 6 (Rationalizing a Numerator to Resolve a 0/0 Form)

Evaluate
$$\lim_{x\to 0} \frac{\sqrt{9-x}-3}{x}$$
.

§ Solution

Observe that $\sqrt{9-x}$ is **real** on a punctured neighborhood of 0. We assume $x \approx 0$.

$$\lim_{x \to 0} \frac{\sqrt{9-x}-3}{x} \quad \left(\text{Limit Form } \frac{0}{0} \right)$$

$$= \lim_{x \to 0} \left[\frac{\left(\sqrt{9-x}-3\right)}{x} \cdot \frac{\left(\sqrt{9-x}+3\right)}{\left(\sqrt{9-x}+3\right)} \right] \quad \left(\text{Rationalizing the numerator} \right)$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{9-x}\right)^2 - \left(3\right)^2}{x\left(\sqrt{9-x}+3\right)} \quad \left(\frac{\text{WARNING 2: Write the entire denominator! It's not just } x. \right)$$

$$= \lim_{x \to 0} \frac{\left(9-x\right)-9}{x\left(\sqrt{9-x}+3\right)}$$

$$= \lim_{x \to 0} \frac{\frac{\left(-1\right)}{\sqrt{y-x}+3}}{x\left(\sqrt{y-x}+3\right)}$$

$$= \lim_{x \to 0} \frac{-1}{\sqrt{y-x}+3}$$

(Section 2.5: The Indeterminate Forms 0/0 and ∞/∞) 2.5.8.

$$= \frac{-1}{\sqrt{9 - (0)} + 3}$$
$$= -\frac{1}{6}$$

 $\lim_{x \to 0} f(x) = -\frac{1}{6}$, even though $0 \notin \text{Dom}(f)$, where $f(x) = \frac{\sqrt{9-x}-3}{x}$.

Therefore, the graph of y = f(x) has a **hole** at the point $\left(0, -\frac{1}{6}\right)$.

The graph of y = f(x) is below. What is Dom(f)?

PART D: LIMIT FORMS THAT ARE NOT INDETERMINATE

Cover up the "Yields" columns below and guess at the results of the Limit Forms $(c \in \mathbb{R})$. Experiment with sequences of numbers and with extreme numbers.

For example, for
$$\infty^{-\infty}$$
, or $\frac{1}{\infty^{\infty}}$, look at $(1000)^{-10,000} = \frac{1}{(1000)^{10,000}}$.

Fractions

1 / 0/0/////				
Limit Form	Yields			
$\frac{1}{\infty}$	0+			
$\frac{1}{0^+}$	8			
$\frac{\infty}{1}$	8			
$\frac{0^+}{\infty}$	8			
0+ ∞	0+			

Sums, Differences, Products

Limit Form	Yields		
∞+ <i>c</i>	8		
$-\infty + c$	8		
∞+∞	8		
	- 8		
∞ · 1	8		
$\infty \cdot \infty$	8		

With Exponents

Limit Form	Yields
88	8
8	0+
0_{∞}	0
2^{∞}	8
$\left(\frac{1}{2}\right)^{\infty}$	0

SECTION 2.6: THE SQUEEZE (SANDWICH) THEOREM

LEARNING OBJECTIVES

• Understand and be able to rigorously apply the Squeeze (Sandwich) Theorem when evaluating limits at a point and "long-run" limits at (\pm) infinity.

PART A: APPLYING THE SQUEEZE (SANDWICH) THEOREM TO LIMITS AT A POINT

We will **formally state** the Squeeze (Sandwich) Theorem in Part B.

Example 1 below is one of many basic examples where we use the Squeeze (Sandwich) Theorem to show that $\lim_{x\to 0} f(x) = 0$, where f(x) is the **product** of a **sine or cosine expression** and a **monomial of even degree**.

• The idea is that "something approaching 0" times "something <u>bounded</u>" (that is, trapped between two real numbers) will approach 0. Informally,

(Limit Form
$$0 \cdot \text{bounded}$$
) $\Rightarrow 0$.

Example 1 (Applying the Squeeze (Sandwich) Theorem to a Limit at a Point)

Let
$$f(x) = x^2 \cos\left(\frac{1}{x}\right)$$
. Prove that $\lim_{x \to 0} f(x) = 0$.

§ Solution

- We first **bound** $\cos\left(\frac{1}{x}\right)$, which is **real** for all $x \neq 0$.
- **Multiply** all three parts by x^2 so that the middle part becomes f(x).

WARNING 1: We **must** observe that $x^2 > 0$ for all $x \ne 0$, or at least on a **punctured neighborhood** of x = 0, so that we can multiply by x^2 **without reversing** inequality symbols.

$$-1 \le \cos\left(\frac{1}{x}\right) \le 1 \quad (\forall x \ne 0) \implies$$

$$-x^2 \le x^2 \cos\left(\frac{1}{x}\right) \le x^2 \quad \left(\forall x \ne 0\right) \implies$$

• As $x \rightarrow 0$, the **left and right parts approach 0**. Therefore, by the Squeeze (Sandwich) Theorem, the **middle part**, f(x), is **forced to approach 0**, also. The middle part is "squeezed" or "sandwiched" between the left and right parts, so it **must approach the same limit** as the other two do.

$$\lim_{x \to 0} (-x^2) = 0, \text{ and } \lim_{x \to 0} x^2 = 0, \text{ so}$$

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right) = 0 \text{ by the Squeeze}$$
Theorem.

Shorthand: As $x \to 0$,

$$\underbrace{-x^2}_{\to 0} \le x^2 \cos\left(\frac{1}{x}\right) \le x^2 \quad (\forall x \neq 0).$$
Therefore, $\to 0$
by the Squeeze
(Sandwich) Theorem

The graph of $y = x^2 \cos\left(\frac{1}{x}\right)$, together with the squeezing graphs of $y = -x^2$ and $y = x^2$, is below.

(The axes are scaled differently.)

S

In Example 2 below, f(x) is the **product** of a **sine or cosine expression** and a **monomial of odd degree**.

Example 2 (Handling Complications with Signs)

Let $f(x) = x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right)$. Use the Squeeze Theorem to find $\lim_{x \to 0} f(x)$.

§ Solution 1 (Using Absolute Value)

- We first **bound** $\sin\left(\frac{1}{\sqrt[3]{x}}\right)$, which is **real** for all $x \neq 0$.
- $-1 \le \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le 1 \quad \left(\forall x \ne 0\right) \implies$
- **WARNING 2:** The problem with multiplying all three parts by x^3 is that $x^3 < 0$ when x < 0. The \le inequality symbols would have to be **reversed** for x < 0.

$$\left| \sin \left(\frac{1}{\sqrt[3]{x}} \right) \right| \le 1 \quad \left(\forall x \ne 0 \right) \implies$$

Instead, we use **absolute value** here. We could write

$$0 \le \left| \sin \left(\frac{1}{\sqrt[3]{x}} \right) \right| \le 1 \quad (\forall x \ne 0),$$

but we assume that absolute values are **nonnegative**.

- **Multiply** both sides of the inequality by $|x^3|$. We know $|x^3| > 0 \quad (\forall x \neq 0)$.
- $\left| x^{3} \right| \left| \sin \left(\frac{1}{\sqrt[3]{x}} \right) \right| \le \left| x^{3} \right| \left(\forall x \ne 0 \right) \implies$
- "The **product** of absolute values equals the **absolute value** of the product."

$$\left| x^3 \sin \left(\frac{1}{\sqrt[3]{x}} \right) \right| \le \left| x^3 \right| \quad \left(\forall x \ne 0 \right) \implies$$

• If, say,
$$|a| \le 4$$
, then $-4 \le a \le 4$. Similarly:

$$-\left|x^{3}\right| \le x^{3} \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le \left|x^{3}\right| \quad \left(\forall x \ne 0\right) \implies$$

• Now, apply the **Squeeze** (Sandwich) Theorem.

$$\lim_{x \to 0} \left(- \left| x^3 \right| \right) = 0, \text{ and } \lim_{x \to 0} \left| x^3 \right| = 0, \text{ so}$$

$$\lim_{x \to 0} x^3 \sin \left(\frac{1}{\sqrt[3]{x}} \right) = 0 \text{ by the Squeeze}$$

Theorem.

Shorthand: As $x \to 0$,

$$\underbrace{-\left|x^{3}\right|}_{\to 0} \leq x^{3} \sin\left(\frac{1}{\sqrt[3]{x}}\right) \leq \underbrace{\left|x^{3}\right|}_{\to 0} \left(\forall x \neq 0\right). \S$$
Therefore, $\to 0$
by the Squeeze
(Sandwich) Theorem

§ Solution 2 (Split Into Cases: Analyze Right-Hand and Left-Hand Limits Separately)

First, we analyze: $\lim_{x \to 0^+} x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right)$.

Assume x > 0, since we are taking a limit as $x \to 0^+$.

- We first **bound** $\sin\left(\frac{1}{\sqrt[3]{x}}\right)$,
- $-1 \le \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le 1 \quad \left(\forall x > 0\right) \implies$
- which is **real** for all $x \neq 0$.
- **Multiply** all three parts by x^3 so that the middle part becomes f(x). We know $x^3 > 0$ for all x > 0.
- $-x^3 \le x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le x^3 \quad \left(\forall x > 0\right) \implies$
- Now, apply the **Squeeze** (Sandwich) Theorem.

$$\lim_{x \to 0^+} \left(-x^3 \right) = 0, \text{ and } \lim_{x \to 0^+} x^3 = 0, \text{ so}$$

$$\lim_{x \to 0^+} x^3 \sin \left(\frac{1}{\sqrt[3]{x}} \right) = 0 \text{ by the Squeeze}$$

Theorem.

Shorthand: As $x \to 0^+$

$$\underbrace{-x^{3}}_{\to 0} \le \underbrace{x^{3} \sin\left(\frac{1}{\sqrt[3]{x}}\right)}_{\text{Therefore, } \to 0} \le \underbrace{x^{3}}_{\to 0} \quad (\forall x > 0).$$
Therefore, $\to 0$
by the Squeeze
(Sandwich) Theorem

Second, we analyze: $\lim_{x \to 0^{-}} x^{3} \sin \left(\frac{1}{\sqrt[3]{x}} \right)$.

Assume x < 0, since we are taking a limit as $x \to 0^-$.

- We first **bound** $\sin\left(\frac{1}{\sqrt[3]{x}}\right)$, which is **real** for all $x \neq 0$.
- $-1 \le \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le 1 \quad \left(\forall x < 0\right) \implies$
- **Multiply** all three parts by x^3 so that the middle part becomes f(x). We know $x^3 < 0$ for all x < 0, so we **reverse** the \leq inequality symbols.
- $-x^3 \ge x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right) \ge x^3 \quad \left(\forall x < 0\right) \implies$

- Reversing the compound inequality will make it easier to read.
- $x^{3} \le x^{3} \sin\left(\frac{1}{\sqrt[3]{x}}\right) \le -x^{3} \quad \left(\forall x < 0\right) \implies$

• Now, apply the **Squeeze** (Sandwich) Theorem.

$$\lim_{x \to 0^{-}} x^{3} = 0, \text{ and } \lim_{x \to 0^{-}} \left(-x^{3}\right) = 0, \text{ so}$$

$$\lim_{x \to 0^{-}} x^{3} \sin\left(\frac{1}{\sqrt[3]{x}}\right) = 0 \text{ by the Squeeze}$$

Theorem.

Shorthand: As $x \to 0^-$,

$$\underbrace{x^{3}}_{\to 0} \le \underbrace{x^{3} \sin \left(\frac{1}{\sqrt[3]{x}}\right)}_{\text{Therefore, } \to 0} \le \underbrace{-x^{3}}_{\to 0} \quad (\forall x < 0).$$
Therefore, $\to 0$
by the Squeeze
(Sandwich) Theorem

Now,
$$\lim_{x \to 0^+} x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right) = 0$$
, and $\lim_{x \to 0^-} x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right) = 0$, so $\lim_{x \to 0} x^3 \sin\left(\frac{1}{\sqrt[3]{x}}\right) = 0$. §

Example 3 (Limits are Local)

Use
$$\lim_{x\to 0} x^2 = 0$$
 and $\lim_{x\to 0} x^6 = 0$ to show that $\lim_{x\to 0} x^4 = 0$.

§ Solution

Let $I = (-1,1) \setminus \{0\}$. *I* is a **punctured neighborhood** of 0. Shorthand: As $x \to 0$,

$$\underbrace{x^6}_{\to 0} \leq \underbrace{x^4}_{\text{Therefore, } \to 0} \leq \underbrace{x^2}_{\to 0} \quad \left(\forall x \in I \right)$$
by the Squeeze
(Sandwich) Theorem

WARNING 3: The **direction** of the \leq inequality symbols may

confuse students. Observe that
$$\left(\frac{1}{2}\right)^4 = \frac{1}{16}$$
, $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$, and $\frac{1}{16} < \frac{1}{4}$.

We conclude: $\lim_{x\to 0} x^4 = 0$.

We do **not** need the compound inequality to hold true for **all** nonzero values of x. We only need it to hold true on some **punctured neighborhood** of 0 so that we may apply the Squeeze (Sandwich) Theorem to the **two-sided** limit $\lim_{x\to 0} x^4$. This is because "Limits are Local."

As seen below, the graphs of $y = x^6$ and $y = x^2$ squeeze (from below and above, respectively) the graph of $y = x^4$ on *I*. In Chapter 6, we will be able to find the **areas** of the bounded regions.

PART B: THE SQUEEZE (SANDWICH) THEOREM

We will call *B* the "bottom" function and *T* the "top" function.

The Squeeze (Sandwich) Theorem

Let B and T be functions such that $B(x) \le f(x) \le T(x)$ on a **punctured** neighborhood of a.

If
$$\lim_{x \to a} B(x) = L$$
 and $\lim_{x \to a} T(x) = L$ $(L \in \mathbb{R})$, then $\lim_{x \to a} f(x) = L$.

Variation for Right-Hand Limits at a Point

Let
$$B(x) \le f(x) \le T(x)$$
 on some **right-neighborhood** of a .

If
$$\lim_{x \to a^+} B(x) = L$$
 and $\lim_{x \to a^+} T(x) = L$ $(L \in \mathbb{R})$, then $\lim_{x \to a^+} f(x) = L$.

Variation for Left-Hand Limits at a Point

Let
$$B(x) \le f(x) \le T(x)$$
 on some **left-neighborhood** of a .

If
$$\lim_{x \to a^{-}} B(x) = L$$
 and $\lim_{x \to a^{-}} T(x) = L$ $(L \in \mathbb{R})$, then $\lim_{x \to a^{-}} f(x) = L$.

PART C: VARIATIONS FOR "LONG-RUN" LIMITS

In the upcoming Example 4, f(x) is the **quotient** of a **sine or cosine expression** and a **polynomial**.

• The idea is that "something bounded" divided by "something approaching (±) infinity" will approach 0. Informally,

$$\left(\text{Limit Form } \frac{\text{bounded}}{\pm \infty}\right) \Rightarrow 0.$$

Example 4 (Applying the Squeeze (Sandwich) Theorem to a "Long-Run" Limit; Revisiting Section 2.3, Example 6)

Evaluate: a)
$$\lim_{x \to \infty} f(x)$$
 and b) $\lim_{x \to -\infty} f(x)$, where $f(x) = \frac{\sin x}{x}$.

§ Solution to a)

Assume x > 0, since we are taking a limit as $x \to \infty$.

- We first **bound** $\sin x$.
- **Divide** all three parts by x (x > 0) so that the middle part becomes f(x).
- Now, apply the **Squeeze** (Sandwich) Theorem.

- $-1 \le \sin x \le 1 \quad (\forall x > 0) \implies$
- $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x} \quad (\forall x > 0) \implies$
- $\lim_{x \to \infty} \left(-\frac{1}{x} \right) = 0$, and $\lim_{x \to \infty} \frac{1}{x} = 0$, so

 $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ by the Squeeze Theorem.

Shorthand: As $x \to \infty$,

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x} \quad (\forall x > 0). \S$$
Therefore, $\to 0$ by the Squeeze (Sandwich) Theorem

§ Solution to b)

Assume x < 0, since we are taking a limit as $x \to -\infty$.

- We first **bound** $\sin x$.
- **Divide** all three parts by x so that the middle part becomes f(x). But x < 0, so we must **reverse** the \leq inequality symbols.
- Reversing the compound inequality will make it easier to read.

$$-1 \le \sin x \le 1 \quad (\forall x < 0) \implies$$

$$-\frac{1}{x} \ge \frac{\sin x}{x} \ge \frac{1}{x} \quad (\forall x < 0) \implies$$

$$\frac{1}{x} \le \frac{\sin x}{x} \le -\frac{1}{x} \quad (\forall x < 0) \implies$$

• Now, apply the **Squeeze** (Sandwich) Theorem.

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
, and $\lim_{x \to -\infty} \left(-\frac{1}{x} \right) = 0$, so

 $\lim_{x \to -\infty} \frac{\sin x}{x} = 0$ by the Squeeze Theorem.

Shorthand: As $x \to -\infty$,

$$\frac{1}{\underbrace{x}} \le \underbrace{\frac{\sin x}{x}}_{\text{Therefore, } \to 0} \le \underbrace{-\frac{1}{x}}_{\text{by the Squeeze}} (\forall x < 0)$$

$$\underbrace{(\forall x < 0)}_{\text{Squeeze}}$$
(Sandwich) Theorem

The graph of $y = \frac{\sin x}{x}$, together with the squeezing graphs of $y = -\frac{1}{x}$ and $y = \frac{1}{x}$, is below. We can now justify the **HA** at y = 0 (the x-axis).

(The axes are scaled differently.) §

Variation for "Long-Run" Limits to the Right

Let $B(x) \le f(x) \le T(x)$ on some x-interval of the form (c, ∞) , $c \in \mathbb{R}$. If $\lim_{x \to \infty} B(x) = L$ and $\lim_{x \to \infty} T(x) = L$ $(L \in \mathbb{R})$, then $\lim_{x \to \infty} f(x) = L$.

• In Example 4a, we used c = 0. We need the compound inequality to hold "forever" after some point c.

Variation for "Long-Run" Limits to the Left

Let $B(x) \le f(x) \le T(x)$ on some x-interval of the form $(-\infty, c)$, $c \in \mathbb{R}$. If $\lim_{x \to -\infty} B(x) = L$ and $\lim_{x \to -\infty} T(x) = L$ $(L \in \mathbb{R})$, then $\lim_{x \to -\infty} f(x) = L$.

SECTION 2.7: PRECISE DEFINITIONS OF LIMITS

LEARNING OBJECTIVES

• Know rigorous definitions of limits, and use them to rigorously prove limit statements.

PART A: THE "STATIC" APPROACH TO LIMITS

We will use the example $\lim_{x\to 4} \left(7 - \frac{1}{2}x\right) = 5$ in our quest to **rigorously define** what

a **limit at a point** is. We consider $\lim_{x \to a} f(x) = L$, where $f(x) = 7 - \frac{1}{2}x$, a = 4, and L = 5. The graph of y = f(x) is the line below.

The "dynamic" view of limits states that, as x "approaches" or "gets closer to" 4, f(x) "approaches" or "gets closer to" 5. (See Section 2.1, Footnote 2.)

The precise approach takes on a more "static" view. The idea is that, if x is close to 4, then f(x) is close to 5.

The Lottery Analogy

Imagine a lottery in which every $x \in Dom(f)$ represents a player. However, we disqualify x = a (here, x = 4), because that person manages the lottery. (See Section 2.1, Part C.)

Each player is assigned a <u>lottery number</u> by the rule $f(x) = 7 - \frac{1}{2}x$.

The "exact" winning lottery number (the "target") turns out to be L = 5.

When Does Player x Win?

In this lottery, more than one player can win, and it is sufficient for a player to be "close enough" to the "target" in order to win. In particular, Player x wins $(x \ne a) \Leftrightarrow$ the player's lottery number, f(x), is strictly within ε units of L, where $\varepsilon > 0$. The Greek letter ε ("epsilon") often represents a small positive quantity. Here, ε is a tolerance level that measures how liberal the lottery is in determining winners.

Symbolically:

Player
$$x$$
 wins $(x \neq a) \iff L - \varepsilon < f(x) < L + \varepsilon$

Subtract *L* from all three parts.

$$\Leftrightarrow -\varepsilon < f(x) - L < \varepsilon$$

$$-1 < r < 1 \Leftrightarrow |r| < 1.$$
Similarly:

 $\Leftrightarrow \left| f(x) - L \right| < \varepsilon$

|f(x)-L| is the **distance** (along the *y*-axis) between Player *x*'s lottery number, f(x), and the "target" *L*.

Player x wins $(x \neq a) \Leftrightarrow$ this distance is less than ε .

Where Do We Look for Winners?

We only care about players that are "close" to x = a (here, x = 4), excluding a itself. These players x are strictly between 0 and δ units of a, where $\delta > 0$. Like ε , the Greek letter δ ("delta") often represents a **small positive** quantity. δ is the half-width of a punctured δ -neighborhood of a.

Symbolically:

Player
$$x$$
 is "close" to $a \Leftrightarrow a - \delta < x < a + \delta \ (x \neq a)$

That is, $x \in (a - \delta, a + \delta) \setminus \{a\}$.

Subtract a from all three parts.

$$\Leftrightarrow -\delta < x - a < \delta \ (x \neq a)$$

$$\Leftrightarrow 0 < |x - a| < \delta$$

|x-a| is the **distance** between Player x and a.

Player x is "close" to $a \Leftrightarrow$ this distance is strictly between 0 and δ .

• If the distance is 0, we have x = a, which is disqualified.

In the figure on the left, the value for δ is giving us a **punctured** δ -neighborhood of a in which everyone wins.

• In this sense, if x is close to a, then f(x) is close to L.

Observe that any **smaller** positive value for δ could also have been chosen. (See the figure on the right. The dashed lines are **not** asymptotes; they indicate the boundaries of the open intervals and the puncture at x = a.)

How Does the "Static" Approach to Limits Relate to the "Dynamic" Approach?

Why is
$$\lim_{x \to 4} \left(7 - \frac{1}{2} x \right) = 5$$
? Because, **regardless of how small** we make the

tolerance level ε and how tight we make the lottery for the players, **there is** a value for δ for which the corresponding **punctured** δ -**neighborhood** of a=4 is made up **entirely of winners**. That is, the corresponding "punctured box" (see the shaded boxes in the figures) **traps the graph** of y=f(x) on the punctured δ -neighborhood.

As $\varepsilon \to 0^+$, we can **choose values** for δ in such a way that the corresponding shaded "punctured boxes" **always trap the graph** and zoom in, or collapse in, on the **point** (4,5). (This would have been the case even if that point had been **deleted** from the graph.) In other words, **there are always winners close to** a = 4.

• As x gets arbitrarily close to a, f(x) gets arbitrarily close to L.

If $\varepsilon = 1$, we can choose $\delta = 2$.

If $\varepsilon = 0.5$, we can choose $\delta = 1$.

For this example, if ε is **any positive real number**, we can choose $\delta = 2\varepsilon$. Why is that?

- Graphically, we can exploit the fact that the **slope** of the line $y = 7 \frac{1}{2}x$ is $-\frac{1}{2}$. Remember, slope $= \frac{\text{rise}}{\text{run}}$. Along the line, an *x*-run of 2 units corresponds to a *y*-drop of 1 unit.
- We will demonstrate this rigorously in Example 1.

PART B: THE PRECISE ε - δ DEFINITION OF A LIMIT AT A POINT

The Precise ε - δ Definition of a Limit at a Point

(Version 1)

For $a, L \in \mathbb{R}$, if a function f is defined on a **punctured neighborhood** of a,

$$\lim_{x \to a} f(x) = L \iff \text{for every } \varepsilon > 0, \text{ there exists a } \delta > 0 \text{ such that,}$$

$$\text{if } 0 < |x - a| < \delta \text{ (that is, if } x \text{ is "close" to } a, \text{ excluding } a \text{ itself),}$$

$$\text{then } |f(x) - L| < \varepsilon \text{ (that is, } f(x) \text{ is "close" to } L).$$

Variation Using Interval Form

We can replace
$$0 < |x - a| < \delta$$
 with: $x \in (a - \delta, a + \delta) \setminus \{a\}$.
We can replace $|f(x) - L| < \varepsilon$ with: $f(x) \in (L - \varepsilon, L + \varepsilon)$.

The Precise ε - δ Definition of a Limit at a Point

(Version 2: More Symbolic)

For $a, L \in \mathbb{R}$, if a function f is defined on a **punctured neighborhood** of a,

$$\lim_{x \to a} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0 \ \ni$$

$$\left(0 < \left| x - a \right| < \delta \implies \left| f(x) - L \right| < \varepsilon \right).$$

Example 1 (Proving the Limit Statement from Part A)

Prove $\lim_{x \to 4} \left(7 - \frac{1}{2} x \right) = 5$ using a precise ε - δ definition of a limit at a point.

§ Solution

We have: $f(x) = 7 - \frac{1}{2}x$, a = 4, and L = 5.

We need to show:

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \ni \left(0 < \left| x - a \right| < \delta \ \Rightarrow \left| f(x) - L \right| < \varepsilon \right); \text{ i.e.,}$$

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \ni \left(0 < \left| x - 4 \right| < \delta \ \Rightarrow \left| \left(7 - \frac{1}{2}x\right) - \left(5\right) \right| < \varepsilon \right).$$

Rewrite |f(x)-L| in terms of |x-a|; here, |x-4|:

$$\left| f(x) - L \right| = \left| \left(7 - \frac{1}{2}x \right) - \left(5 \right) \right|$$
$$= \left| -\frac{1}{2}x + 2 \right|$$

Factor out $-\frac{1}{2}$, the coefficient of x.

To divide the +2 term by $-\frac{1}{2}$, we multiply it by -2 and obtain -4.

$$= \left| -\frac{1}{2} (x - 4) \right|$$
$$= \left| -\frac{1}{2} \left| x - 4 \right| \right|$$

This is because, if m and n represent real quantities, then |mn| = |m| |n|.

$$=\frac{1}{2}\left|x-4\right|$$

We have: $|f(x)-L| = \frac{1}{2}|x-4|$; call this statement *.

Assuming ε is fixed $(\varepsilon > 0)$, find an appropriate value for δ .

We will find a value for δ that corresponds to a **punctured** δ -neighborhood of a = 4 in which everyone wins. This means that, for every player x in there:

$$\left| f(x) - L \right| < \varepsilon \iff \frac{1}{2} \left| x - 4 \right| < \varepsilon \quad \text{(by *)} \iff \frac{1}{2} \left| x - 4 \right| < 2\varepsilon$$

We choose $\delta = 2\varepsilon$. We will formally justify this choice in our verification step.

Observe that, since $\varepsilon > 0$, then our $\delta > 0$.

Verify that our choice for δ is appropriate.

We will show that, given ε and our choice for δ ($\delta = 2\varepsilon$),

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

$$0 < |x - a| < \delta \implies$$

$$0 < |x - 4| < \delta \implies$$

$$0 < |x - 4| < 2\varepsilon \implies$$

$$0 < \frac{1}{2} |x - 4| < \varepsilon \implies$$

$$|f(x) - L| < \varepsilon \text{ (by *)}$$

Note: It is true that: $0 < |f(x) - L| < \varepsilon$, but the first inequality (0 < |f(x) - L|) does not help us.

Q.E.D.

("Quod erat demonstrandum" – Latin for "which was to be demonstrated / proven / shown." This is a formal end to a proof.) §

PART C: DEFINING ONE-SIDED LIMITS AT A POINT

The precise definition of $\lim_{x \to a} f(x) = L$ can be modified for **left-hand** and **right-hand** limits. The **only** changes are the *x*-intervals where we look for winners. (See red type.) These *x*-intervals will no longer be symmetric about *a*.

- Therefore, we will use **interval form** instead of absolute value notation when describing these *x*-intervals.
- Also, we will let δ represent the **entire width** of an *x*-interval, not just half the width of a punctured *x*-interval.

The Precise ε - δ Definition of a Left-Hand Limit at a Point

For $a, L \in \mathbb{R}$, if a function f is defined on a **left-neighborhood** of a,

$$\lim_{x \to a^{-}} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0 \ \ni$$
$$\left[x \in (a - \delta, a) \implies \middle| f(x) - L \middle| < \varepsilon \right].$$

The Precise ε - δ Definition of a Right-Hand Limit at a Point

For $a, L \in \mathbb{R}$, if a function f is defined on a **right-neighborhood** of a,

$$\lim_{x \to a^{+}} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0 \ \ni$$
$$\left[x \in (a, a + \delta) \implies \middle| f(x) - L \middle| < \varepsilon \right].$$

Left-Hand Limit

Right-Hand Limit

PART D: DEFINING "LONG-RUN" LIMITS

The precise definition of $\lim_{x\to a} f(x) = L$ can also be modified for "long-run"

limits. Again, the **only** changes are the *x*-intervals where we look for winners. (See red type.) These x-intervals will be unbounded.

- Therefore, we will use **interval form** instead of absolute value notation when describing these *x*-intervals.
- Also, instead of using δ , we will use M (think "Million") and N (think "Negative million") to denote "points of no return."

The Precise ε -M Definition of $\lim_{x \to \infty} f(x) = L$

For $L \in \mathbb{R}$, if a function f is defined on some interval (c, ∞) , $c \in \mathbb{R}$.

$$\lim_{x \to \infty} f(x) = L \iff \forall \varepsilon > 0, \ \exists M \in \mathbb{R} \ \ni$$
$$\left[x > M; \text{ that is, } x \in (M, \infty) \implies \left| f(x) - L \right| < \varepsilon \right].$$

The Precise ε -N Definition of $\lim_{x \to -\infty} f(x) = L$

For $L \in \mathbb{R}$, if a function f is defined on some interval $(-\infty, c)$, $c \in \mathbb{R}$.

$$\lim_{x \to -\infty} f(x) = L \iff \forall \varepsilon > 0, \ \exists N \in \mathbb{R} \quad \ni$$
$$\left[x < N; \text{ that is, } x \in (-\infty, N) \implies \left| f(x) - L \right| < \varepsilon \right].$$

$$\lim_{x \to \infty} f(x) = L; \text{ here, } f(x) = \frac{1}{x} + 2$$

$$\lim_{x \to \infty} f(x) = L; \text{ here, } f(x) = \frac{1}{x} + 2$$

$$\lim_{x \to -\infty} f(x) = L; \text{ here, } f(x) = \frac{1}{x} + 2$$

<u>How Does the "Static" Approach to "Long-Run" Limits Relate to the "Dynamic" Approach?</u>

Why is
$$\lim_{x\to\infty} \left(\frac{1}{x} + 2\right) = 2$$
? Because, **regardless of how small** we make the

tolerance level ε and how tight we make the lottery for the players, **there is** a "point of no return" M after which all the players win. That is, the corresponding box (see the shaded boxes in the figures below) **traps the graph** of y = f(x) for all x > M.

As $\varepsilon \to 0^+$, we can **choose values** for M in such a way that the corresponding shaded boxes **always trap the graph** and zoom in, or collapse in, on the **HA** y=2. In other words, **there are always winners as** $x\to\infty$.

If $\varepsilon = 1$, we can choose M = 1.

If $\varepsilon = 0.5$, we can choose M = 2.

For this example, if ε is **any positive real number**, we can choose $M = \frac{1}{\varepsilon}$.

PART E: DEFINING INFINITE LIMITS AT A POINT

Challenge to the reader:

Give precise "M- δ " and "N- δ " definitions of $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} f(x) = -\infty$ ($a \in \mathbb{R}$), where the function f is defined on a punctured neighborhood of a.

SECTION 2.8: CONTINUITY

LEARNING OBJECTIVES

- Understand and know the definitions of continuity at a point (in a one-sided and two-sided sense), on an open interval, on a closed interval, and variations thereof.
- Be able to identify discontinuities and classify them as removable, jump, or infinite.
- Know properties of continuity, and use them to analyze the continuity of rational, algebraic, and trigonometric functions and compositions thereof.
- Understand the Intermediate Value Theorem (IVT) and apply it to solutions of equations and real zeros of functions.

PART A: CONTINUITY AT A POINT

Informally, a function f with domain \mathbb{R} is <u>everywhere continuous</u> (on \mathbb{R}) \Leftrightarrow we can take a pencil and **trace** the graph of f between any two distinct points on the graph **without** having to lift up our pencil.

We will make this idea more precise by first defining continuity at a point a $(a \in \mathbb{R})$ and then continuity on intervals.

Continuity at a Point a

f is continuous at $x = a \iff$

- 1) f(a) is **defined (real)**; that is, $a \in Dom(f)$,
- 2) $\lim_{x \to a} f(x)$ exists (is real), and
- 3) $\lim_{x \to a} f(x) = f(a).$

f is discontinuous at $x = a \iff f$ is not continuous at x = a.

Comments

- 1) ensures that there is literally a **point** at x = a.
- 2) **constrains** the behavior of f **immediately around** x = a.
- 3) then ensures "safe passage" through the point (a, f(a)) on the graph of y = f(x). Some sources just state 3) in the definition, since the form of 3) implies 1) and 2).

Example 1 (Continuity at a Point; Revisiting Section 2.1, Example 1)

Let $f(x) = 3x^2 + x - 1$. Show that f is continuous at x = 1.

§ Solution

- 1) f(1) = 3, a real number $(1 \in Dom(f))$
- 2) $\lim_{x \to 1} f(x) = 3$, a real number, and
- 3) $\lim_{x \to 1} f(x) = f(1).$

Therefore, f is continuous at x = 1. The graph of y = f(x) is below.

Note: The **Basic Limit Theorem for Rational Functions** in Section 2.1
basically states that a **rational** function is **continuous** at any number in its **domain**. §

Example 2 (Discontinuities at a Point; Revisiting Section 2.2, Example 2)

Let $f(x) = \sqrt{x}$. Explain why f is discontinuous at x = -1 and x = 0.

§ Solution

- f(-1) is **not real** $(-1 \notin Dom(f))$, so f is **discontinuous** at x = -1.
- f(0) = 0, but $\lim_{x \to 0} \sqrt{x}$ does not exist (DNE), so fis discontinuous at x = 0.

The graph of y = f(x) is below.

Some sources do not even bother calling -1 and 0 "discontinuities" of f, since f is **not even defined** on a **punctured neighborhood** of x = -1 or of x = 0. §

PART B: CLASSIFYING DISCONTINUITIES

We now consider cases where a function f is **discontinuous** at x = a, even though f is defined on a punctured neighborhood of x = a.

We will **classify** such discontinuities as removable, jump, or infinite. (See Footnotes 1 and 2 for another type of discontinuity.)

Removable Discontinuities

A function f has a removable discontinuity at $x = a \Leftrightarrow$

- 1) $\lim_{x \to a} f(x)$ exists (call this limit L), but
- 2) f is still **discontinuous** at x = a.
- Then, the graph of y = f(x) has a **hole** at the point (a, L).

Example 3 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 7)

Let g(x) = x + 3, $(x \ne 3)$. Classify the discontinuity at x = 3.

§ Solution

g has a **removable discontinuity** at x = 3, because:

- 1) $\lim_{x \to 3} g(x) = 6$, but
- 2) g is still discontinuous at x = 3; here, g(3) is undefined.

The graph of y = g(x) below has a **hole** at the point (3, 6).

Example 4 (Removable Discontinuity at a Point; Revisiting Section 2.1, Ex. 8)

Let
$$h(x) = \begin{cases} x+3, & x \neq 3 \\ 7, & x = 3 \end{cases}$$
. Classify the discontinuity at $x = 3$.

§ Solution

h has a **removable discontinuity** at x = 3, because:

- 1) $\lim_{x \to 3} h(x) = 6$, but
- 2) h is still discontinuous at x = 3; here, $\lim_{x \to 3} h(x) \neq h(3)$, because $6 \neq 7$.

The graph of y = h(x) also has a **hole** at the point (3, 6).

S

Why are These Discontinuities Called "Removable"?

The term "removable" is a bit of a misnomer here, since we have no business changing the function at hand.

The idea is that a removable discontinuity at a can be removed by (re)defining the function at a; the new function will then be continuous at a.

For example, if we were to **define** g(3) = 6 in Example 3 and **redefine** h(3) = 6 in Example 4, then we would remove the discontinuity at x = 3 in both situations. We would obtain the graph below.

Jump Discontinuities

A function f has a jump discontinuity at $x = a \Leftrightarrow$

- 1) $\lim_{x \to a^{-}} f(x)$ exists, and (call this limit L_{1})
- 2) $\lim_{x \to a^{+}} f(x)$ exists, but (call this limit L_{2})
- 3) $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x). \qquad (L_1 \neq L_2)$
- Therefore, $\lim_{x \to a} f(x)$ does not exist (DNE).
- It is **irrelevant** how f(a) is defined, or if it is defined at all.

Example 5 (Jump Discontinuity at a Point; Revisiting Section 2.1, Example 14)

Let
$$f(x) = \frac{|x|}{x} = \begin{cases} \frac{x}{x} = 1, & \text{if } x > 0 \\ \frac{-x}{x} = -1, & \text{if } x < 0 \end{cases}$$
. Classify the discontinuity at $x = 0$.

§ Solution

f has a **jump discontinuity** at x = 0, because:

2)
$$\lim_{x \to 0^+} f(x) = 1$$
, but

3) $\lim_{x \to 0} f(x)$ does not exist (DNE), because $-1 \neq 1$.

We **cannot remove** this discontinuity by defining f(0).

The graph of y = f(x) is below.

<u>Infinite Discontinuities</u>

A function f has an <u>infinite discontinuity</u> at $x = a \Leftrightarrow$

$$\lim_{x \to a^+} f(x)$$
 or $\lim_{x \to a^-} f(x)$ is ∞ or $-\infty$.

- That is, the graph of y = f(x) has a **VA** at x = a.
- It is **irrelevant** how f(a) is defined, or if it is defined at all.

Example 6 (Infinite Discontinuities at a Point; Revisiting Section 2.4, Exs. 1 and 2)

The functions described below have **infinite discontinuities** at x = 0. We will study $\ln x$ in Chapter 7 (see also the Precalculus notes, Section 3.2).

$$f(x) = \frac{1}{x}$$

$$g\left(x\right) = \frac{1}{x^2}$$

$$h(x) = \ln x$$

PART C: CONTINUITY ON AN OPEN INTERVAL

We can extend the concept of continuity in various ways. (For the remainder for this section, assume a < b.)

Continuity on an Open Interval

A function f is continuous on the **open interval** $(a, b) \Leftrightarrow f$ is continuous at **every number (point)** in (a, b).

• This extends to **unbounded** open intervals of the form (a, ∞) , $(-\infty, b)$, and $(-\infty, \infty)$.

In Example 6, all three functions are continuous on the interval $(0, \infty)$.

The first two functions are also continuous on the interval $(-\infty, 0)$.

We will say that the "continuity intervals" of the first two functions are: $(-\infty, 0)$, $(0, \infty)$. However, this terminology is **not standard**.

- In Footnote 1, f has the singleton (one-element) set $\{0\}$ as a "degenerate continuity interval." See also Footnotes 2 and 3.
- Avoid using the union (\cup) symbol here. In Section 2.1, Example 10, f was continuous on $(-\infty, 0]$ and (0,1), but not on $(-\infty, 1)$.

PART D: CONTINUITY ON OTHER INTERVALS; ONE-SIDED CONTINUITY

Continuity on a Closed Interval

A function f is continuous on the **closed interval** $[a, b] \Leftrightarrow$

- 1) f is defined on [a, b],
- 2) f is continuous on (a, b),
- 3) $\lim_{x \to a^+} f(x) = f(a)$, and
- 4) $\lim_{x \to b^{-}} f(x) = f(b).$
- 3) and 4) **weaken** the continuity requirements at the **endpoints**, *a* and *b*. Imagine taking limits as we "**push outwards**" towards the endpoints.
- 3) implies that f is <u>continuous from the right</u> at a.
- 4) implies that f is <u>continuous from the left</u> at b.

Example 7 (Continuity on a Closed Interval)

Let $f(x) = \sqrt{1 - x^2}$. Show that f is continuous on the closed interval [-1, 1]. § Solution

The graph of y = f(x) is below.

$$y = \sqrt{1 - x^2} \qquad \Leftrightarrow$$

$$y^2 = 1 - x^2 \quad (y \ge 0) \quad \Leftrightarrow$$

$$x^2 + y^2 = 1 \quad (y \ge 0)$$

The graph is the upper half of the unit x circle centered at the origin, including the points (-1,0) and (1,0).

f is continuous on $\begin{bmatrix} -1,1 \end{bmatrix}$, because:

- 1) f is defined on [-1,1],
- 2) f is continuous on (-1,1),
- 3) $\lim_{x \to -1^+} f(x) = f(-1)$, so f is continuous from the **right** at -1, and
- 4) $\lim_{x \to 1^{-}} f(x) = f(1)$, so f is continuous from the **left** at 1.

Note: f(-1) = 0, and f(1) = 0, but they need not be equal.

f has $\begin{bmatrix} -1,1 \end{bmatrix}$ as its sole "**continuity interval.**" When giving "continuity intervals," we include brackets where appropriate, even though f is **not continuous** (in a two-sided sense) at -1 and at 1 (<u>WARNING 1</u>).

• Some sources would call (-1,1) the <u>continuity set</u> of f; it is the set of all real numbers at which f is continuous. (See Footnotes 2 and 3.) §

Challenge to the Reader: Draw a graph where f is defined on [a, b], and f is continuous on (a, b), but f is **not** continuous on the closed interval [a, b].

Continuity on Half-Open, Half-Closed Intervals

f is continuous on an interval of the form [a,b) or $[a,\infty) \Leftrightarrow f$ is continuous on (a,b) or (a,∞) , respectively, and it is continuous **from the right** at a.

f is continuous on an interval of the form (a, b] or $(-\infty, b] \Leftrightarrow f$ is continuous on (a, b) or $(-\infty, b)$, respectively, and it is continuous **from the left** at b.

Example 8 (Continuity from the Right; Revisiting Example 2)

Let
$$f(x) = \sqrt{x}$$
.

f is continuous on $(0, \infty)$.

 $\lim_{x \to 0^{+}} \sqrt{x} = 0 = f(0), \text{ so } f \text{ is}$ continuous **from the right** at 0.

The sole "continuity interval" of f is $[0, \infty)$.

The graph of y = f(x) is below.

Example 9 (Continuity from the Left)

Let
$$f(x) = \sqrt{-x}$$
.

f is continuous on $(-\infty, 0)$.

 $\lim_{x \to 0^{-}} \sqrt{-x} = 0 = f(0), \text{ so } f \text{ is}$ continuous **from the left** at 0.

The sole "continuity interval" of f is $(-\infty, 0]$.

The graph of y = f(x) is below.

PART E: CONTINUITY THEOREMS

Properties of Continuity / Algebra of Continuity Theorems

If f and g are functions that are continuous at x = a, then so are the functions:

- f + g, f g, and fg.
- $\frac{f}{g}$, if $g(a) \neq 0$.
- f^n , if n is a positive integer exponent $(n \in \mathbb{Z}^+)$.
- $\sqrt[n]{f}$, if:
 - (*n* is an **odd** positive integer), or
 - (*n* is an **even** positive integer, **and** f(a) > 0).

In Section 2.2, we showed how similar properties of **limits** justified the Basic Limit Theorem for Rational Functions. Similarly, the properties above, together with the fact that **constant** functions and the **identity** function (represented by f(x) = x) are **everywhere continuous** on \mathbb{R} , justify the following:

Continuity of Rational Functions

A rational function is continuous on its domain.

• That is, the "continuity interval(s)" of a rational function f are its domain interval(s).

In particular, **polynomial** functions are **everywhere continuous** (on \mathbb{R}).

Although this is typically true for **algebraic** functions in general, there are counterexamples (see Footnote 4).

Example 10 (Continuity of a Rational Function; Revisiting Example 6)

If
$$f(x) = \frac{1}{x}$$
, then $Dom(f) = (-\infty, 0) \cup (0, \infty)$.

f is **rational**, so the "**continuity intervals**" of f are: $(-\infty, 0)$, $(0, \infty)$.

When analyzing the continuity of functions that are **not rational**, we may need to check for **one-sided** continuity at **endpoints** of domain intervals.

Example 11 (Continuity of an Algebraic Function; Revisiting Chapter 1, Ex. 6)

Let
$$h(x) = \frac{\sqrt{x+3}}{x-10}$$
. What are the "**continuity intervals**" of h ?

§ Solution

In Chapter 1, we found that $Dom(h) = [-3, 10) \cup (10, \infty)$. We will show that the "**continuity intervals**" are, in fact, the **domain intervals**, [-3, 10) and $(10, \infty)$.

By the **Algebra of Continuity Theorems**, we find that h is continuous on (-3, 10) and $(10, \infty)$.

Now,
$$\lim_{x \to -3^+} h(x) = 0 = h(-3)$$
, because Limit Form $\frac{\sqrt{0^+}}{-13} \Rightarrow 0$.

Therefore, h is continuous **from the right** at x = -3, and its "continuity intervals" are: $\begin{bmatrix} -3, 10 \end{bmatrix}$ and $\begin{bmatrix} 10, \infty \end{bmatrix}$.

The graph of y = h(x) is below.

Continuity of Composite Functions

If g is continuous at a, and f is continuous at g(a), then $f \circ g$ is continuous at a.

(See Footnote 5.)

Continuity of Basic Trigonometric Functions

The six basic **trigonometric** functions (sine, cosine, tangent, cosecant, secant, and cotangent) are **continuous** on their **domain intervals**.

Example 12 (Continuity of a Composite Function)

Let
$$h(x) = \sec\left(\frac{1}{x}\right)$$
. Where is h continuous?

§ Solution

Observe that $h(x) = (f \circ g)(x) = f(g(x))$, where:

the "inside" function is given by $g(x) = \frac{1}{x}$, and

the "outside" function f is given by $f(\theta) = \sec \theta$, where $\theta = \frac{1}{x}$.

g is continuous at all real numbers **except** $0 \ (x \neq 0)$. f is continuous on its domain intervals.

sec
$$\theta$$
 is real \iff cos $\theta \neq 0$, and $x \neq 0$
 $\iff \theta \neq \frac{\pi}{2} + \pi n \ (n \in \mathbb{Z})$, and $x \neq 0$
 $\iff \frac{1}{x} \neq \frac{\pi}{2} + \pi n \ (n \in \mathbb{Z})$, and $x \neq 0$

We can replace both sides of the inequation with their **reciprocals**, because we exclude the case x = 0, and both sides are never 0.

$$\Leftrightarrow x \neq \frac{1}{\frac{\pi}{2} + \pi n} \ (n \in \mathbb{Z}), \text{ and } x \neq 0$$

$$\Leftrightarrow x \neq \frac{1}{\left(\frac{\pi}{2} + \pi n\right)} \cdot \frac{2}{2} \quad (n \in \mathbb{Z}), \text{ and } x \neq 0$$

$$\Leftrightarrow x \neq \frac{2}{\pi + 2\pi n} \quad (n \in \mathbb{Z}), \text{ and } x \neq 0$$

h is continuous on:

S

$$\left\{ x \in \mathbb{R} \middle| x \neq \frac{2}{\pi + 2\pi n} \ (n \in \mathbb{Z}), \text{ and } x \neq 0 \right\}, \text{ or}$$

$$\left\{ x \in \mathbb{R} \middle| x \neq \frac{2}{\pi (2n+1)} \ (n \in \mathbb{Z}), \text{ and } x \neq 0 \right\}.$$

PART F: THE INTERMEDIATE VALUE THEOREM (IVT)

Continuity of a function **constrains** its behavior in important (and useful) ways. Continuity is central to some key theorems in calculus. We will see the <u>Extreme Value Theorem (EVT)</u> in Chapter 4 and <u>Mean Value Theorems (MVTs)</u> in Chapters 4 and 5. We now discuss the <u>Intermediate Value Theorem (IVT)</u>, which directly relates to the **meaning** of continuity. We will motivate it before stating it.

Example 13 (Motivating the IVT)

Let $f(x) = x^2$ on the x-interval [0, 2]. The graph of y = f(x) is below.

f is **continuous** on
$$[0, 2]$$
,
 $f(0) = 0$, and
 $f(2) = 4$.

The **IVT** guarantees that **every** real number (*d*) **between** 0 and 4 is a value of (is taken on by) f at **some** x-value (c) in [0,2]. §

The Intermediate Value Theorem (IVT): Informal Statement

If a function f is **continuous** on the **closed** interval [a, b], then f takes on **every** real number **between** f(a) and f(b) on [a, b].

The Intermediate Value Theorem (IVT): Precise Statement

Let $\min(f(a), f(b))$ be the **lesser** of f(a) and f(b);

if they are equal, then we take their common value.

Let $\max(f(a), f(b))$ be the **greater** of f(a) and f(b);

if they are equal, then we take their common value.

A function f is **continuous** on $[a, b] \Rightarrow$

$$\forall d \in \left[\min(f(a), f(b)), \max(f(a), f(b))\right], \exists c \in [a, b] \ni f(c) = d.$$

Example 14 (Applying the IVT to Solutions of Equations)

Prove that $x^2 = 3$ has a **solution** in [0, 2].

§ Solution

Let $f(x) = x^2$. (We also let the desired **function value**, d = 3.)

f is **continuous** on [0, 2],

$$f(0) = 0,$$

$$f(2) = 4$$
, and

$$3 \in [0, 4].$$

Therefore, by the **IVT**, $\exists c \in [0, 2] \ni \text{ (such that) } f(c) = 3$.

That is, $x^2 = 3$ has a **solution** (c) in [0, 2].

Q.E.D. §

In Example 14, $c = \sqrt{3}$ was our solution to $x^2 = 3$ in [0, 2]; d = 3 here.

To **verify the conclusion of the IVT** in general, we can give a **formula** for c given **any** real number d in $\begin{bmatrix} 0, 4 \end{bmatrix}$, where $c \in \begin{bmatrix} 0, 2 \end{bmatrix}$ and f(c) = d.

Example 15 (Verifying the Conclusion of the IVT; Revisiting Examples 13 and 14)

Verify the conclusion of the IVT for $f(x) = x^2$ on the x-interval [0, 2].

§ Solution

f is **continuous** on $\begin{bmatrix} 0,2 \end{bmatrix}$, so the IVT applies. f(0) = 0, and f(2) = 4. Let $d \in \begin{bmatrix} 0,4 \end{bmatrix}$, and let $c = \sqrt{d}$.

• The following justifies our **formula** for c:

$$f(c) = d$$
 and $c \in [0, 2] \Leftrightarrow$
 $c^2 = d$ and $c \in [0, 2] \Leftrightarrow$
 $c = \sqrt{d}$, a real number in $[0, 2]$

WARNING 2: We do not write $c = \pm \sqrt{d}$, because either d = 0, or a value for c would fall outside of [0, 2].

Observe:
$$0 \le d \le 4 \implies 0 \le \sqrt{d} \le 2$$
.
Then, $c \in [0, 2]$, and $f(c) = c^2 = (\sqrt{d})^2 = d$.
Therefore, $\forall d \in [0, 4]$, $\exists c \in [0, 2] \ni f(c) = d$.

Example 16 (c Might Not Be Unique)

Let $f(x) = \sin x$ on the x-interval $\left[0, \frac{5\pi}{2}\right]$. The graph of y = f(x) is below.

f(0) = 0, and $f(\frac{5\pi}{2}) = 1$. Because f is **continuous** on $\left[0, \frac{5\pi}{2}\right]$, the IVT guarantees that **every** real number d **between** 0 and 1 is taken on by f at **some** x-value c in $\left[0, \frac{5\pi}{2}\right]$.

<u>WARNING 3</u>: Given an appropriate value for d, there **might be more than one** appropriate choice for c. The IVT does not forbid that.

WARNING 4: Also, there are real numbers **outside of** $\begin{bmatrix} 0,1 \end{bmatrix}$ that are taken on by f on the x-interval $\begin{bmatrix} 0,\frac{5\pi}{2} \end{bmatrix}$. The IVT does not forbid that, either. §

PART G: THE BISECTION METHOD FOR APPROXIMATING A ZERO OF A FUNCTION

Our ability to **solve equations** is equivalent to our ability to **find zeros** of functions. For example, $f(x) = g(x) \Leftrightarrow f(x) - g(x) = 0$; we can solve the first equation by finding the zeros of h(x), where h(x) = f(x) - g(x).

We may have to use computer algorithms to **approximate zeros** of functions if we can't find them exactly.

• While we do have (nastier) analogs of the Quadratic Formula for 3rd- and 4th-degree polynomial functions, it has actually been proven that there is **no similar formula** for higher-degree polynomial functions.

The <u>Bisection Method</u>, which is the basis for some of these algorithms, uses the **IVT** to produce a **sequence of smaller and smaller intervals** that are guaranteed to contain a **zero** of a given function.

The Bisection Method for Approximating a Zero of a Continuous Function f

Let's say we want to **approximate a zero** of a function f.

Find x-values a_1 and b_1 ($a_1 < b_1$) such that $f(a_1)$ and $f(b_1)$ have **opposite signs** and f is **continuous** on $[a_1, b_1]$. (The method fails if such x-values cannot be found.)

According to the **IVT**, there must be a **zero** of f in $[a_1, b_1]$, which we call our "**search interval.**"

For example, consider the graph of y = f(x) below. Our search interval is apparently [2, 8].

If $f(a_1)$ or $f(b_1)$ were 0, then we would have found a **zero** of f, and we could either stop or try to approximate another zero.

If neither is 0, then we take the **midpoint** of the search interval and determine the sign of f(x) there (in red below). We can then **shrink the search interval** (in purple below) and **repeat** the process. We call the Bisection Method an iterative method because of this repetition.

We stop when we **find a zero**, or until the search interval is **small enough** so that we are satisfied with taking its **midpoint** as our approximation.

A key drawback to <u>numerical methods</u> such as the Bisection Method is that, unless we manage to find n distinct real zeros of an nth-degree polynomial f(x), we may need other techniques to be sure that we have found **all** of the real zeros, if we are looking for all of them. §

Example 17 (Applying the Bisection Method; Revisiting Example 14)

We can approximate $\sqrt{3}$ by approximating the positive real **solution** of $x^2 = 3$, or the positive real **zero** of h(x), where $h(x) = x^2 - 3$.

Search interval $[a,b]$	Sign of $h(a)$	Sign of $h(b)$	Midpoint	Sign of <i>h</i> there
[0,2]	_	+	1	_
[<mark>1</mark> , 2]	_	+	1.5	_
$\left[1.5,2\right]$	_	+	1.75	+
[1.5, 1.75]	_	+	1.625	_

etc. §

In Section 4.8, we will use <u>Newton's Method</u> for approximating zeros of a function, which tends to be more efficient. However, Newton's Method requires **differentiability** of a function, an idea we will develop in Chapter 3.

FOOTNOTES

1. A function with domain \mathbb{R} that is only continuous at 0. (Revisiting Footnote 1 in Section 2.1.) Let $f(x) = \begin{cases} 0, & \text{if } x \text{ is a rational number } (x \in \mathbb{Q}) \\ x, & \text{if } x \text{ is an irrational number } (x \notin \mathbb{Q}; \text{ really, } x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$.

f is continuous at x = 0, because f(0) = 0, and we can use the Squeeze (Sandwich)

Theorem to prove that $\lim_{x\to 0} f(x) = 0$, also. The discontinuities at the nonzero real numbers are not categorized as removable, jump, or infinite.

2. Continuity sets and a nowhere continuous function. See Cardinality of the Set of Real Functions With a Given Continuity Set by Jiaming Chen and Sam Smith. The 19th-century German mathematician Dirichlet came up with a nowhere continuous function, D:

$$D(x) = \begin{cases} 0, & \text{if } x \text{ is a rational number } (x \in \mathbb{Q}) \\ 1, & \text{if } x \text{ is an irrational number } (x \notin \mathbb{Q}; \text{ really, } x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

3. Continuity on a set. This is tricky to define! See "Continuity on a Set" by R. Bruce Crofoot, The College Mathematics Journal, Vol. 26, No. 1 (Jan. 1995) by the Mathematical Association of America (MAA). Also see Louis A. Talman, The Teacher's Guide to Calculus (web). Talman suggests:

Let S be a subset of Dom(f); that is, $S \subseteq Dom(f)$. f is continuous on $S \Leftrightarrow$

$$\forall a \in S, \ \forall \varepsilon > 0, \ \exists \delta > 0 \ \ni \left[\left(x \in S \text{ and } \left| x - a \right| < \delta \right) \ \Rightarrow \left| f(x) - f(a) \right| < \varepsilon \right].$$

• The definition essentially states that, for every number a in the set of interest, its function value is arbitrarily close to the function values of nearby x-values in the set. Note that we use f(a) instead of L, which we used to represent $\lim_{x \to a} f(x)$, because we need $\lim_{x \to a} f(x) = f(a)$ (or possibly some one-sided variation) in order to have continuity on S.

- This definition covers / subsumes our definitions of continuity on open intervals; closed intervals; half-open, half-closed intervals; and unions (collections) thereof.
- One possible criticism against this definition is that it implies that the functions described in Footnote 4 are, in fact, continuous on the singleton set {0}. This conflicts with our definition of continuity at a point in Part A because of the issue of nonexistent limits. Perhaps we should require that f be defined on some interval of the form a, c with c > a or the form (c, a] with c < a.
- Crofoot argues for the following definition: f is continuous on S if the restriction of f to S is continuous at each number in S. He acknowledges the use of one-sided continuity when dealing with closed intervals.
- **4.** An algebraic function that is not continuous on its domain. Let $f(x) = \sqrt{x} + \sqrt{-x}$.

 $Dom(f) = \{0\}$, a singleton (a set consisting of a single element), but f is not continuous at

0 (by Part A), because
$$\lim_{x\to 0} f(x)$$
 does not exist (DNE). The same is true for $f(x) = \sqrt{-x^2}$.

5. Continuity and the limit properties in Section 2.2, Part A. Let $a, K \in \mathbb{R}$.

If $\lim_{x \to a} g(x) = K$, and f is continuous at K, then:

$$\lim_{x \to a} (f \circ g)(x) = \lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(K).$$
 Basically, continuity allows f to

commute with a limit operator:
$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$
. Think: "The limit of a (blank)

is the (blank) of the limit." This relates to Property 5) on the limit of a power, Property 6) on the limit of a constant multiple, and Property 7) on the limit of a root in Section 2.2. For example, f could represent the squaring function.

- **6.** A function that is continuous at every irrational point and discontinuous at every rational point. See Gelbaum and Olmsted, *Counterexamples in Analysis* (Dover), p.27. Also see Tom Vogel, http://www.math.tamu.edu/~tvogel/gallery/node6.html (web). If x is rational, where $x = \frac{a}{b}$ ($a, b \in \mathbb{Z}$), b > 0, and the fraction is simplified, then let $f(x) = \frac{1}{b}$. If x is irrational, let f(x) = 0. Vogel calls this the "ruler function," appealing to the image of markings on a ruler. However, there does not exist a function that is continuous at every rational point and discontinuous at every irrational point.
- 7. An everywhere continuous function that is nowhere monotonic (either increasing or decreasing). See Gelbaum and Olmsted, *Counterexamples in Analysis* (Dover), p.29. There is no open interval on which the function described there is either increasing or decreasing.