SECTION 3.7: IMPLICIT DIFFERENTIATION

LEARNING OBJECTIVES

- Understand that an equation can "determine" many implicit functions.
- Perform Implicit Differentiation and obtain templates of differentiation rules built on basic rules such as the Chain Rule.
- Relate derivatives obtained from Implicit Differentiation to slopes of tangent lines to a graph, even if the graph fails the Vertical Line Test (VLT).

PART A: EXPLICIT vs. IMPLICIT DEFINITIONS OF FUNCTIONS

- The equation $y=x+1$ defines y explicitly as a function of x.

If $f(x)=x+1$, then f is the corresponding explicit function.

- The equation $y-x=1$ defines y implicitly as a function of x.
$y-x=1$ is equivalent to our first equation, $y=x+1$.
However, it is not solved for $y . y$ is "buried in" the equation.
If $f(x)=x+1$, then f is the corresponding implicit function.
(Technically, if we restrict the domain of f, we get other implicit functions.)
- The equation $x^{2}+y^{2}=1$ "determines" (a questionable term, but used by some sources) many implicit functions f : if $y=f(x)$, then the equation is satisfied.
-• The graph of $x^{2}+y^{2}=1$ fails the Vertical Line Test (VLT), and solving for y yields $y= \pm \sqrt{1-x^{2}}$, in which y is not a well-defined function of x.
-• However, any non-empty part of the graph that passes the VLT corresponds to an implicit function - examples are f_{1}, f_{2}, and f_{3} below.

Graph of $x^{2}+y^{2}=1$
Graph of $y=f_{1}(x)$, where $f_{1}(x)=\sqrt{1-x^{2}}$
Graph of $y=f_{2}(x)$, where $f_{2}(x)=-\sqrt{1-x^{2}}$
Graph of $y=f_{3}(x)$, where $f_{3}(x)= \begin{cases}\sqrt{1-x^{2}}, & 0.5 \leq\|x\| \leq 0.8 \\ -\sqrt{1-x^{2}}, & \|x\| \leq 0.4\end{cases}$

- $x^{2}+y^{2}=-1$, whose graph is empty, determines no implicit functions.

PART B: IMPLICIT DIFFERENTIATION

- We assume that the equations in this section determine at least one implicit function f that is differentiable "where needed." Here, $y=f(x)$, but we can also have $h=s(t)$, etc.
- Notation. We assume that $y^{\prime}=\frac{d y}{d x}=D_{x} y$.

WARNING 1: y^{\prime}. The y^{\prime} notation can be ambiguous if we have many variables, or if we are dealing with $\frac{d y}{d t}$, say, instead of $\frac{d y}{d x}$. In Section 3.8, we will often prefer Leibniz notation such as $\frac{d y}{d t}$.

- Templates (patterns). Implicit Differentiation can apply prior rules such as the Chain Rule to build new differentiation rules and templates.

Example 1 (Using Implicit Differentiation for a "Constant Multiple" Template)

$$
D_{x}(7 y)=7 \cdot D_{x}(y), \text { or } 7\left(\frac{d y}{d x}\right), \text { or } 7 y^{\prime}
$$

y could be $\sin x, x^{2}+1$, etc. y is a kind of placeholder. (Imagine a kernel popping.) The derivative of 7 times "it" is 7 times the derivative of "it."

Example Set 2 (Implicit Differentiation)

\(\left.\begin{array}{|c|c|c|}\hline \# \& Example \& Comments

\hline 1 \& D_{x}(7 y)=7 y^{\prime} \& See Example 1.

\hline 2 \& D_{x}\left(y^{2}\right)=2 y y^{\prime} \& by Generalized Power Rule

\hline 3 \& D_{x}\left(y^{3}\right)=3 y^{2} y^{\prime} \& by Generalized Power Rule\end{array}\right]\)| | |
| :---: | :---: |
| 4 | $D_{x}\left(x^{3} y^{2}\right)=\left[D_{x}\left(x^{3}\right)\right] \cdot\left[y^{2}\right]+\left[x^{3}\right] \cdot\left[D_{x}\left(y^{2}\right)\right]$
 $=\left[3 x^{2}\right] \cdot\left[y^{2}\right]+\left[x^{3}\right] \cdot\left[2 y y^{\prime}\right]$
 $=3 x^{2} y^{2}+2 x^{3} y y^{\prime}$ |
| 5 | by Product, Gen. Power
 Rules |

Example 3 (Implicit Differentiation)

$$
\begin{aligned}
& D_{x}\left[\cos ^{3}(x y)\right]=D_{x}\left([\cos (x y)]^{3}\right) \quad(\text { Rewriting) } \\
&=\left(3[\cos (x y)]^{2}\right) \cdot\left(D_{x}[\cos (x y)]\right) \quad \text { (by Gen. Power Rule) } \\
&=\left(3[\cos (x y)]^{2}\right) \cdot[-\sin (x y)] \cdot\left[D_{x}(x y)\right] \\
& \quad(\text { by Gen. Trig Rules }) \\
&=\left(3[\cos (x y)]^{2}\right) \cdot[-\sin (x y)] \cdot\left(\left[D_{x}(x)\right] \cdot y+x \cdot\left[D_{x}(y)\right]\right) \\
&=\left(3[\cos (x y)]^{2}\right) \cdot[-\sin (x y)] \cdot\left(1 \cdot y+x \cdot y^{\prime}\right) \\
&=-3\left(y+x y^{\prime}\right)\left[\cos ^{2}(x y)\right] \sin (x y)
\end{aligned}
$$

\oint

Example 4 (Using Implicit Differentiation to Find y')

Consider the given equation $x^{2}-2 x+y^{2}+6 y=15$. Assume that it "determines" implicit differentiable functions f such that $y=f(x)$.
Find a general formula for y^{\prime}, or $\frac{d y}{d x}$.

§ Solution

- If we solve for y by using Completing the Square (CTS), we obtain:
$y=-3 \pm \sqrt{25-(x-1)^{2}}$. (See Example 7.)
- Instead, Implicit Differentiation may be easier.

Step 1. Implicitly differentiate both sides of the given equation with respect to x. We expect the result to include y^{\prime}.

$$
\begin{aligned}
x^{2}-2 x+y^{2}+6 y & =15 \Rightarrow \\
D_{x}\left(x^{2}-2 x+y^{2}+6 y\right) & =D_{x}(15)
\end{aligned}
$$

WARNING 2: Write this last step. Otherwise, you are in danger of copying " 15 " instead of differentiating it! Very common error...

$$
2 x-2+2 y y^{\prime}+6 y^{\prime}=0
$$

Simplify by dividing both sides by 2 .

$$
x-1+y y^{\prime}+3 y^{\prime}=0
$$

Step 2. Isolate terms with y^{\prime} on one side.

$$
y y^{\prime}+3 y^{\prime}=1-x
$$

Step 3. Factor out y^{\prime} on that side.

$$
y^{\prime}(y+3)=1-x
$$

Step 4. Solve for y^{\prime} by dividing both sides by the other factor.

$$
y^{\prime}=\frac{1-x}{y+3}
$$

Note 1: If we had not divided by 2 earlier, we would have had $y^{\prime}=\frac{2-2 x}{2 y+6}$, which must be simplified to, say, $y^{\prime}=\frac{1-x}{y+3}$.

Note 2: Our formula for y^{\prime} includes \boldsymbol{y}, itself! This allows us to analyze points on the graph of $x^{2}-2 x+y^{2}+6 y=15$ with the same x-coordinate but different \boldsymbol{y}-coordinates (like "tiebreakers"). \S

Example 5 (Evaluating y ${ }^{\prime}$; Revisiting Example 4)

Find the slope of the tangent line to the graph of $x^{2}-2 x+y^{2}+6 y=15$ at the point $(4,1)$ in the usual $x y$-plane.

§ Solution

Although it shouldn't be necessary, we could check to ensure that the point $(4,1)$ lies on the graph. We can plug in (substitute) $x=4$ and $y=1$ into the equation to see if $(4,1)$ is a solution point:

$$
\begin{aligned}
(4)^{2}-2(4)+(1)^{2}+6(1) & \stackrel{?}{=} 15 \\
15 & =15 \quad(\text { Checks })
\end{aligned}
$$

Therefore, $(4,1)$ lies on the graph. (Let's assume it's not an endpoint.)

Our formula for y^{\prime} from Example 4 will be evaluated at $(4,1)$ to find the slope of the tangent line at that point. Plug in (substitute) $x=4$ and $y=1$.

$$
\left[y^{\prime}\right]_{(4,1)}=\left[\frac{1-x}{y+3}\right]_{(4,1)}=\frac{1-(4)}{(1)+3}=-\frac{3}{4}
$$

The desired slope is $-\frac{3}{4}$.
WARNING 3: Know the difference. Substituting into the original equation is a check to see if the point is on the graph. Substituting into the \boldsymbol{y}^{\prime} formula gives us the slope.

Note 1: If we had a point, such as $(0,0)$, that were not on the graph, then the corresponding derivative would be undefined (DNE): $\left[y^{\prime}\right]_{(0,0)}$ DNE.

Note 2: If we just want a single derivative value, then it is not necessary to have a general formula for y^{\prime}, such as $y^{\prime}=\frac{1-x}{y+3}$. In Example 4, we could have plugged in (substituted) $x=4$ and $y=1$ soon after we implicitly differentiated both sides of the given equation.

$$
\begin{aligned}
x^{2}-2 x+y^{2}+6 y & =15 \Rightarrow \\
D_{x}\left(x^{2}-2 x+y^{2}+6 y\right) & =D_{x}(15) \\
2 x-2+2 y y^{\prime}+6 y^{\prime} & =0 \\
x-1+y y^{\prime}+3 y^{\prime} & =0 \Rightarrow(\text { at }(4,1)) \\
(4)-1+(1) y^{\prime}+3 y^{\prime} & =0 \\
3+4 y^{\prime} & =0 \\
4 y^{\prime} & =-3 \\
{\left[y^{\prime}\right]_{(4,1)} } & =-\frac{3}{4}
\end{aligned}
$$

Note 3: Check for yourself that:

$$
y^{\prime \prime}=D_{x}\left(y^{\prime}\right)=D_{x}\left(\frac{1-x}{y+3}\right)=-\frac{(y+3)+(1-x) y^{\prime}}{(y+3)^{2}}=-\frac{(y+3)^{2}+(1-x)^{2}}{(y+3)^{3}} .
$$

In the last step, we substituted $y^{\prime}=\frac{1-x}{y+3}$ and simplified. \S

Example 6 (Evaluating y'; Revisiting Examples 4 and 5)

Repeat Example 5 for the points $(4,-7)$ and $(1,2)$, which lie on the graph.

§ Solution

Point $(4,-7):\left[y^{\prime}\right]_{(4,-7)}=\left[\frac{1-x}{y+3}\right]_{(4,-7)}=\frac{1-(4)}{(-7)+3}=\frac{3}{4}$.
$\operatorname{Point}(1,2): \quad\left[y^{\prime}\right]_{(1,2)}=\left[\frac{1-x}{y+3}\right]_{(1,2)}=\frac{1-(1)}{(2)+3}=0 . \S$

Example 7 (The Big Picture; Revisiting Examples 4-6)

The graph of $x^{2}-2 x+y^{2}+6 y=15$ is a circle.
To see this, Complete the Square (CTS) to obtain the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center and $r(r>0)$ is the radius.

$$
\begin{aligned}
x^{2}-2 x+y^{2}+6 y & =15 \\
\left(x^{2}-2 x+1\right)+\left(y^{2}+6 y+9\right) & =15+1+9 \\
(x-1)^{2}+(y+3)^{2} & =25
\end{aligned}
$$

The graph is a circle with center $(h, k)=(1,-3)$ and radius $r=\sqrt{25}=5$.
The desired tangent-line slopes we obtained in Examples 5 and 6 are labeled.

- Slopes represented by y^{\prime}, or $\frac{d y}{d x}$, are "read" left-to-right.

Don't think about revolving along the entirety of the circle.

- What points on the circle have \boldsymbol{y}-coordinate $\mathbf{- 3}$? What is y^{\prime} there?

What is true of the tangent lines there?

- How does the formula $y^{\prime}=\frac{1-x}{y+3}$ hint at the center of the circle?
- Two implicit functions "determined" by the equation
$x^{2}-2 x+y^{2}+6 y=15$ are f_{1} and f_{2}, where:
$f_{1}(x)=-3+\sqrt{25-(x-1)^{2}}$, and
$f_{2}(x)=-3-\sqrt{25-(x-1)^{2}}$. (See Examples 4 and 7.)

$$
\text { Graph of } y=f_{1}(x)
$$

$$
f_{1}^{\prime}(4)=-\frac{3}{4}
$$

Graph of $y=f_{2}(x)$

$f_{2}^{\prime}(4)=\frac{3}{4}$

Our usual Lagrange notation can be used here. The y-coordinates need not be specified. §

