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SECTION 3.7: IMPLICIT DIFFERENTIATION 
 

LEARNING OBJECTIVES 
 

• Understand that an equation can “determine” many implicit functions. 
 

• Perform Implicit Differentiation and obtain templates of differentiation 
rules built on basic rules such as the Chain Rule. 

 

• Relate derivatives obtained from Implicit Differentiation to slopes of 
tangent lines to a graph, even if the graph fails the Vertical Line Test (VLT).  

 
PART A: EXPLICIT vs. IMPLICIT DEFINITIONS OF FUNCTIONS 
 

• The equation   y = x +1 defines y explicitly as a function of x. 
If   f x( ) = x +1, then   f   is the corresponding explicit function.  
 

• The equation   y − x = 1 defines y implicitly as a function of x. 

  y − x = 1 is equivalent to our first equation,   y = x +1. 
However, it is not solved for y. y is “buried in” the equation. 
If   f x( ) = x +1, then   f   is the corresponding implicit function. 
(Technically, if we restrict the domain of   f , we get other implicit functions.) 
 

• The equation   x
2 + y2 = 1  “determines” (a questionable term, but used by some 

sources) many implicit functions   f : if  y = f x( ) , then the equation is satisfied. 
 

•• The graph of   x
2 + y2 = 1  fails the Vertical Line Test (VLT), and solving 

for y yields   y = ± 1− x2 , in which y is not a well-defined function of x. 
 

•• However, any non-empty part of the graph that passes the VLT 
corresponds to an implicit function – examples are   f1 ,   f2 , and   f3  below. 

 

Graph of   x
2 + y2 = 1  

 
Graph of   y = f1 x( ), where   f1 x( ) = 1− x2   
Graph of   y = f2 x( ) , where   f2 x( ) = − 1− x2  

 

Graph of   y = f3 x( ) , where 

  

f3 x( ) = 1− x2 , 0.5≤ x ≤ 0.8

− 1− x2 , x ≤ 0.4

⎧
⎨
⎪

⎩⎪
 

 
 

•   x
2 + y2 = −1, whose graph is empty, determines no implicit functions. 
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PART B: IMPLICIT DIFFERENTIATION 
 

• We assume that the equations in this section determine at least one implicit 
function   f   that is differentiable “where needed.” Here,  y = f x( ) , but we can also 

have  h = s t( ) , etc. 
 

• Notation. We assume that 
 
′y = dy

dx
= Dx y . 

 

WARNING 1:  ′y . The  ′y  notation can be ambiguous if we have many 

variables, or if we are dealing with 
 
dy
dt

, say, instead of 
 

dy
dx

. In Section 3.8, 

we will often prefer Leibniz notation such as 
 
dy
dt

. 
 

• Templates (patterns). Implicit Differentiation can apply prior rules such as the 
Chain Rule to build new differentiation rules and templates. 
 
Example 1 (Using Implicit Differentiation for a “Constant Multiple” Template) 
 

  
Dx 7 y( ) = 7 ⋅Dx y( ), or 7

dy
dx

⎛
⎝⎜

⎞
⎠⎟

, or 7 ′y . 

y could be   sin x ,   x2 +1, etc. y is a kind of placeholder. (Imagine a kernel 
popping.) The derivative of 7 times “it” is 7 times the derivative of “it.”  

 
Example Set 2 (Implicit Differentiation) 
 

# Example Comments 
1   Dx 7 y( ) = 7 ′y  See Example 1. 

2   Dx y2( ) = 2y ′y  by Generalized Power Rule 

3   Dx y3( ) = 3y2 ′y  by Generalized Power Rule 

4 

  

Dx x3 y2( ) = Dx x3( )⎡
⎣

⎤
⎦ ⋅ y2⎡⎣ ⎤⎦ + x3⎡⎣ ⎤⎦ ⋅ Dx y2( )⎡

⎣
⎤
⎦

= 3x2⎡⎣ ⎤⎦ ⋅ y2⎡⎣ ⎤⎦ + x3⎡⎣ ⎤⎦ ⋅ 2y ′y⎡⎣ ⎤⎦
= 3x2 y2 + 2x3 y ′y

 
by Product, Gen. Power 

Rules 

5 

  

Dx x + y( )4⎡
⎣⎢

⎤
⎦⎥
= 4 x + y( )3⎡

⎣⎢
⎤
⎦⎥
⋅ Dx x + y( )⎡⎣ ⎤⎦

= 4 x + y( )3
1+ ′y⎡⎣ ⎤⎦

 by Generalized Power Rule 

§ 
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Example 3 (Implicit Differentiation) 
 

  

Dx cos3 xy( )⎡⎣ ⎤⎦ = Dx cos xy( )⎡⎣ ⎤⎦
3( ) Rewriting( )

= 3 cos xy( )⎡⎣ ⎤⎦
2( ) ⋅ Dx cos xy( )⎡⎣ ⎤⎦( ) by Gen. Power Rule( )

= 3 cos xy( )⎡⎣ ⎤⎦
2( ) ⋅ −sin xy( )⎡⎣ ⎤⎦ ⋅ Dx xy( )⎡⎣ ⎤⎦

by Gen. Trig Rules( )
= 3 cos xy( )⎡⎣ ⎤⎦

2( ) ⋅ −sin xy( )⎡⎣ ⎤⎦ ⋅ Dx x( )⎡⎣ ⎤⎦ ⋅ y + x ⋅ Dx y( )⎡⎣ ⎤⎦( )
by Product Rule( )

= 3 cos xy( )⎡⎣ ⎤⎦
2( ) ⋅ −sin xy( )⎡⎣ ⎤⎦ ⋅ 1⋅ y + x ⋅ ′y( )

= −3 y + x ′y( ) cos2 xy( )⎡⎣ ⎤⎦sin xy( )

 

§ 
 

Example 4 (Using Implicit Differentiation to Find y’) 
 

Consider the given equation   x
2 − 2x + y2 + 6y = 15 . Assume that it 

“determines” implicit differentiable functions   f   such that   

� 

y = f x( ) . 

Find a general formula for  ′y , or 
 

dy
dx

. 
 

§ Solution 
 

 

• If we solve for y by using Completing the Square (CTS), we obtain: 

  y = −3± 25− x −1( )2
. (See Example 7.) 

 

• Instead, Implicit Differentiation may be easier.  
 
Step 1. Implicitly differentiate both sides of the given equation with respect 
to x. We expect the result to include  ′y . 
 

  

x2 − 2x + y2 + 6y = 15 ⇒

Dx x2 − 2x + y2 + 6y( ) = Dx 15( )  
 

WARNING 2: Write this last step. Otherwise, you are in danger of 
copying “15” instead of differentiating it! Very common error… 

 

             2x − 2+ 2y ′y + 6 ′y = 0  



(Section 3.7: Implicit Differentiation)  3.7.4 
 

Simplify by dividing both sides by 2. 
 

                  x −1+ y ′y + 3 ′y = 0  
 

Step 2. Isolate terms with  ′y  on one side. 
 

        y ′y + 3 ′y = 1− x  
 

Step 3. Factor out  ′y  on that side. 
 

        ′y y + 3( ) = 1− x  
 

Step 4. Solve for  ′y  by dividing both sides by the other factor. 
 

                 
  
′y = 1− x

y + 3
 

 
Note 1: If we had not divided by 2 earlier, we would have had 

  
′y = 2− 2x

2y + 6
, which must be simplified to, say, 

  
′y = 1− x

y + 3
. 

 
Note 2: Our formula for  ′y  includes y, itself! This allows us to 
analyze points on the graph of   x

2 − 2x + y2 + 6y = 15  with the same 
x-coordinate but different y-coordinates (like “tiebreakers”). § 
 

Example 5 (Evaluating y’; Revisiting Example 4) 
 

Find the slope of the tangent line to the graph of   x
2 − 2x + y2 + 6y = 15  

at the point  4,1( )  in the usual xy-plane. 
 

§ Solution 
 

Although it shouldn’t be necessary, we could check to ensure that the point 

 4,1( )  lies on the graph. We can plug in (substitute)   x = 4  and   y = 1 into the 

equation to see if  4,1( )  is a solution point: 
 

 

4( )2
− 2 4( ) + 1( )2

+ 6 1( ) =
?

15

15= 15 Checks( )
 

 

Therefore,  4,1( )  lies on the graph. (Let’s assume it’s not an endpoint.) 
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Our formula for  ′y  from Example 4 will be evaluated at  4,1( )  to find the 
slope of the tangent line at that point. Plug in (substitute)   x = 4  and   y = 1. 
 

  
′y⎡⎣ ⎤⎦ 4,1( ) = 1− x

y + 3
⎡

⎣
⎢

⎤

⎦
⎥

4,1( )
=

1− 4( )
1( ) + 3

= − 3
4

  

The desired slope is 
 
− 3

4
. 

 

WARNING 3: Know the difference. Substituting into the original 
equation is a check to see if the point is on the graph. Substituting 
into the  ′y  formula gives us the slope. 

 

Note 1: If we had a point, such as  0, 0( ) , that were not on the graph, then 

the corresponding derivative would be undefined (DNE): 
  

′y⎡⎣ ⎤⎦ 0, 0( ) DNE . 
 

Note 2: If we just want a single derivative value, then it is not necessary to 

have a general formula for  ′y , such as 
  
′y = 1− x

y + 3
. In Example 4, we could 

have plugged in (substituted)   x = 4  and   y = 1 soon after we implicitly 
differentiated both sides of the given equation. 

 

  

x2 − 2x + y2 + 6y = 15 ⇒

Dx x2 − 2x + y2 + 6y( ) = Dx 15( )
2x − 2+ 2y ′y + 6 ′y = 0

x −1+ y ′y + 3 ′y = 0 ⇒ at 4,1( )( )
4( )−1+ 1( ) ′y + 3 ′y = 0

3+ 4 ′y = 0
4 ′y = −3

′y⎡⎣ ⎤⎦ 4,1( ) = − 3
4

 

 

Note 3: Check for yourself that: 
 

  
′′y = Dx ′y( ) = Dx

1− x
y + 3

⎛
⎝⎜

⎞
⎠⎟
= −

y + 3( ) + 1− x( ) ′y

y + 3( )2 = −
y + 3( )2

+ 1− x( )2

y + 3( )3 . 

In the last step, we substituted 
  
′y = 1− x

y + 3
 and simplified. § 
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Example 6 (Evaluating y’; Revisiting Examples 4 and 5) 
 

Repeat Example 5 for the points  4, −7( )  and  1, 2( ) , which lie on the graph. 
 

§ Solution 
 

Point  4, −7( ) : 
  

′y⎡⎣ ⎤⎦ 4, −7( ) = 1− x
y + 3

⎡

⎣
⎢

⎤

⎦
⎥

4, −7( )
=

1− 4( )
−7( ) + 3

= 3
4

. 

 

Point  1, 2( ) :     

  
′y⎡⎣ ⎤⎦ 1, 2( ) = 1− x

y + 3
⎡

⎣
⎢

⎤

⎦
⎥

1, 2( )
=

1− 1( )
2( ) + 3

= 0 . § 

 
Example 7 (The Big Picture; Revisiting Examples 4-6) 
 

The graph of   x
2 − 2x + y2 + 6y = 15  is a circle. 

To see this, Complete the Square (CTS) to obtain the standard form 

  x − h( )2
+ y − k( )2

= r 2 , where   h, k( )  is the center and r   r > 0( )  is the radius. 
 

  

x2 − 2x + y2 + 6y = 15

x2 − 2x +1( ) + y2 + 6y + 9( ) = 15+1+ 9

x −1( )2
+ y + 3( )2

= 25

 

 

The graph is a circle with center   h, k( ) = 1, −3( )  and radius   r = 25 = 5 . 
 

The desired tangent-line slopes we obtained in Examples 5 and 6 are labeled. 
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• Slopes represented by  ′y , or 
 

dy
dx

, are “read” left-to-right. 

Don’t think about revolving along the entirety of the circle. 
 
• What points on the circle have y-coordinate  − 3 ? What is  ′y  there? 
What is true of the tangent lines there? 
 

• How does the formula 
  
′y = 1− x

y + 3  hint at the center of the circle? 

 
• Two implicit functions “determined” by the equation 

  x
2 − 2x + y2 + 6y = 15  are   f1  and   f2 , where: 

  f1 x( ) = −3+ 25− x −1( )2
, and 

  f2 x( ) = −3− 25− x −1( )2
. (See Examples 4 and 7.) 

 

       Graph of   y = f1 x( )          Graph of   y = f2 x( )  
 

   
 

  
′f1 4( ) = − 3

4
      

  
′f2 4( ) = 3

4
 

 

Our usual Lagrange notation can be used here. The y-coordinates need not 
be specified. § 


