CHAPTER 3 REVIEW

SECTION 3.1: INTRODUCTION

Secant lines (related to the graph of y = f(x))

slope = average rate of change of y with respect to x on [a, a+h] or [a, b]

$$= \frac{f(a+h) - f(a)}{h} \quad \text{or} \quad \frac{f(b) - f(a)}{b-a}$$

If $h \approx 0$, this $\approx f'(a)$, if it exists.

Tangent lines

slope = instantaneous rate of change of y with respect to x at a

$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 if it exists. Use algebra to work through this!

(You may use our shortcuts unless you're told to use the limit definition.)

Slopes and equations of tangent lines

Rectilinear motion

Velocity = [Instantaneous] rate of change of position with respect to time. v(t) = s'(t)

SECTION 3.2: f'(x)

Limit definition of the derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 if it exists. Use algebra to work through this!

Key cases when the derivative is "DNE"

Where there is a...

$$(m_L = \text{left - hand derivative}; m_R = \text{right - hand derivative})$$

1) Discontinuity

 $m_L \neq m_R$ (Maybe one is $\pm \infty$, but not both.) 2) Corner

3) Vertical tangent line

 m_L is ∞ or $-\infty$, and m_R is ∞ or $-\infty$. m_L and m_R : one is ∞ ; the other is $-\infty$. 4) Cusp This is a special case of 3).

SECTIONS 3.2 and 3.3: SHORTCUTS FOR DIFFERENTIATION

c, m, b, and n are constants; f and g are functions of x.

	Derivative with respect to x	Comments
c	0	
mx + b	m	
χ^{n}	nx^{n-1}	Power Rule
cf	cf'	Constant factors "pop out"
f+g	f'+g'	Sum Rule
f-g	f'-g'	Difference Rule
fg	f'g + fg'	Product Rule ("Pointer Method")
f	gf'-fg'	Quotient Rule;
$\frac{s}{g}$	$\frac{\omega}{g^2}$	LoD(Hi) – HiD(Lo)
	Ü	the square of what's below

Solve f'(x) = 0. (Where are tangent lines horizontal?) Slopes and equations of tangent lines and normal lines

SECTION 3.4: TRIG

RADIAN mode!!!

Prove $D_r(\sin x) = \cos x$, and $D_r(\cos x) = -\sin x$ using all of these:

1) The limit definition of the derivative

$$2) \quad \lim_{h \to 0} \frac{\sin h}{h} = 1$$

3)
$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$$

Derive these using $D_x(\sin x) = \cos x$, $D_x(\cos x) = -\sin x$, the Quotient Rule, and/or the Reciprocal Rule:

$$D_x(\tan x) = \sec^2 x$$
 $D_x(\cot x) = -\csc^2 x$
 $D_x(\sec x) = \sec x \tan x$ $D_x(\csc x) = -\csc x \cot x$

Use the table above (in 3.2/3.3) and trig identities/formulas.

Solve f'(x) = 0 by solving a trig equation. (Where are tangent lines horizontal?) Slopes and equations of tangent lines and normal lines

SECTION 3.5: DIFFERENTIALS and LINEAR APPROXIMATIONS

$$f\left(\underbrace{x + \Delta x}_{=\text{new }x}\right) \approx \underbrace{f(x)}_{\text{Known exactly}} + \underbrace{dy}_{=(\text{slope})(\text{run}), \text{where run = new }x - \text{old }x = \text{change in }y \text{ along tangent line at }(x, f(x)); \text{"rise"}$$

SECTION 3.6: CHAIN RULE

Let's say u is a function of x.

$$\frac{dy}{dx} = \frac{dy}{du} \underbrace{\frac{du}{dx}}_{\text{toil}}$$

Generalized Power Rule

$$D_x u^n = (nu^{n-1}) \underbrace{(D_x u)}_{\text{tail}}$$

Generalized Trig Rules

$$D_{x}(\sin u) = (\cos u) \underbrace{D_{x} u}_{\text{tail}}$$

$$D_{x}(\sec u) = (\sec u \tan u) \underbrace{D_{x} u}_{\text{tail}}, \text{ etc.}$$

Think "Big Picture": Overall, do I have a power, or a trig function? Use techniques and deal with issues discussed on the previous page.

SECTION 3.7: IMPLICIT DIFFERENTIATION

Implicitly differentiate functions

Given an equation, find y'.

Slopes and equations of tangent lines and normal lines

SECTION 3.8: RELATED RATES

- 1) Read the problem.
- 2) Define variables, maybe through a general diagram (nothing specific to the instant of interest).
- 3) Identify what we are GIVEN throughout the process and what we have to FIND at the instant of interest.
- 4) Set up the key relevant formula.
- 5) Implicitly differentiate both sides of the formula in 4).
- 6) Plug in (substitute) values at the instant of interest.

Diagrams, the Pythagorean Theorem, and/or other formulas may help.

7) Solve for the desired rate (don't forget units).

Remember issues of unit compatibility and DEG vs. RAD.

- 8) State your conclusion using proper English.
- 9) Does your answer make sense?