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SECTION 3.5: DIFFERENTIALS and 

LINEARIZATION OF FUNCTIONS 
 

 

LEARNING OBJECTIVES 
 

• Use differential notation to express the approximate change in a function  

on a small interval. 
 

• Find linear approximations of function values. 
 

• Analyze how errors can be propagated through functional relationships. 
 

 

PART A: INTERPRETING SLOPE AS MARGINAL CHANGE 
 

Our story begins with lines. We know lines well, and we will use them to (locally) 

model graphs we don’t know as well. 
 

Interpretation of Slope m as Marginal Change 
 

For every unit increase in x along a line, y changes by m. 
 

• If m < 0 , then y drops in value. 
 

 
 

If run = 1 , then slope m =
rise

run
=
rise

1
= rise . 
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PART B: DIFFERENTIALS and CHANGES ALONG A LINE 

 

dx and dy are the differentials of x and y, respectively. 

They correspond to “small” changes in x and y along a tangent line. 

We associate dy with “rise” and dx with “run.” 
 

• If dy < 0, we move down along the line. 
 

• If dx < 0, we move left along the line. 

 

The following is key to this section: 
 

Rise Along a Line 
 

slope =
rise

run
, so: 

 

rise( ) = slope( ) run( )  

 m =
dy

dx
 as a quotient of differentials, so: 

 

dy = m dx  
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PART C: LINEARIZATION OF FUNCTIONS 
 

Remember the Principle of Local Linearity from Section 3.1. Assume that a 

function   f   is differentiable at x1 , which we will call the “seed.” Then, the  

tangent line to the graph of   f   at the point x
1
, f x

1( )( )  represents the function L, 

the best local linear approximation to   f   close to x1 . L models (or “linearizes”)   f   

locally on a small interval containing x1 .  
 

   
 

The slope of the tangent line is given by f x1( )  or, more generically, by f x( ) , so 

changes along the tangent line are related by the following formulas: 
 

dy = m dx

dy = f x( ) dx
 

 

• This formula, written in differential form, is used to relate dx and dy as variables. 
 

• In Leibniz notation, this can be written as dy =
dy

dx
dx , though those who see 

dy

dx
 

as an inseparable entity may object to the appearance of “cancellation.” 
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x  and y  are the increments of x and y, respectively. 

They represent actual changes in x and y along the graph of   f .  
 

• If x changes x  units from, say, x1  (“seed, old x”) to x1 + x  (“new x”),  

then y (or   f  ) changes y  units from f x1( )  to f x1( ) + y , or f x1 + x( ) . 
 

 

The “new” function value f x1 + x( ) = f x1( ) + y . 
 

       Informally, f new x( ) = f old x( ) + actual rise y( ) . 

 

L x1 + x( ) , our linear approximation of f x1 + x( ) , is given by:  
 

   
L x1 + x( ) = f x1( ) + dy

L x1 + x( ) = f x1( ) + f x1( ) dx[ ]
 

 

         Informally, L new x( ) = f old x( ) + tangent rise dy( )  

      L new x( ) = f old x( ) + slope[ ] run dx[ ]  
 

When finding L x1 + x( ) , we set dx = x , and then we hope that dy y .  

Then, L x1 + x( ) f x1 + x( ) . 
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PART D: EXAMPLES 
 

Example 1 (Linear Approximation of a Function Value) 
 

Find a linear approximation of 9.1  by using the value of 9 . 

Give the exact value of the linear approximation, and also give a decimal 

approximation rounded off to six significant digits. 
 

In other words: Let f x( ) = x . Find a linear approximation L 9.1( )  for 

f 9.1( )  if x changes from 9 to 9.1. 
 

§ Solution Method 1 (Using Differentials) 
 

•   f   is differentiable on 0,( ) , which includes both 9 and 9.1, so this 

method is appropriate. 
 

• We know that f 9( ) = 9 = 3 exactly, so 9 is a reasonable choice for the 

“seed” x1 . 
 

• Find f 9( ) , the slope of the tangent line at the “seed point” 9, 3( ) . 
 

f x( ) = x = x1/2

f x( ) =
1

2
x 1/2

=
1

2 x

f 9( ) =
1

2 9
=

1

2 3( )
=
1

6

 

 

• Find the run dx (or x ). 
       

  

run dx = "new x" "old x"

= 9.1 9

= 0.1
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• Find dy, the rise along the tangent line. 
 

  

rise dy = slope( ) run( )
= f 9( ) dx

=
1

6
0.1

=
1

60

 

 

• Find L 9.1( ) , our linear approximation of f 9.1( ) . 
 

       

L 9.1( ) = f 9( ) + dy

= 3+
1

60

=
181

60
exact value( )

3.01667

 

 

WARNING 1: Many students would forget to add f 9( )  and simply give dy 

as the approximation of 9.1 . This mistake can be avoided by observing 

that 9.1  should be very different from 
 

1

60
. 

 

• In fact, f 9.1( ) = 9.1 3.01662 , so our approximation was accurate to 

five significant digits. Also, the actual change in y is given by: 
 

     

y = f 9.1( ) f 9( )

= 9.1 9

3.01662 3

0.01662

 

 

This was approximated by dy =
1

60
0.01667 . 

 

The error is given by: dy y 0.01667 0.01662 0.00005 . 

(See Example 5 for details on relative error, or percent error.) 
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• Our approximation L 9.1( )  was an overestimate of f 9.1( ) , because the 

graph of   f   curves downward (it is “concave down”; see Chapter 4). 
 

 
 

• Differentials can be used to quickly find other linear approximations close 

to x = 9 . (The approximations may become unreliable for values of x far 

from 9.) 
 

Find a linear 

approximation of 

f 9 + x( )  

run 
 

dx = x  

rise 

dy =
1

6
dx  

Linear 

approximation, 

L 9 + x( )  

f 8.8( ) = 8.8  0.2 
1

30
0.03333 

L 8.8( ) = 3
1

30
2.96667

 

f 8.9( ) = 8.9  0.1 
1

60
0.01667  

L 8.9( ) = 3
1

60
2.98333

 

f 9.1( ) = 9.1  

(We just did this.) 
0.1 

1

60
0.01667  

L 9.1( ) = 3+
1

60
3.01667

 

f 9.2( ) = 9.2  0.2 
1

30
0.03333 

L 9.2( ) = 3+
1

30
3.03333

 

 

§ 

 

 

 

 

 

 

 

 



(Section 3.5: Differentials and Linearization of Functions)  3.5.8 

 

§ Solution Method 2 (Finding an Equation of the Tangent Line First: y = L(x)) 
 

• Although this method may seem easier to many students, it does not stress 

the idea of marginal change the way that Method 1 does. Your instructor 

may demand Method 1. 
 

• The tangent line at the “seed point” 9, 3( )  has slope f 9( ) =
1

6
, as we saw 

in Method 1. Its equation is given by: 
 

y y1 = m x x1( )

y 3 =
1

6
x 9( )

L x( ), or y = 3+
1

6
x 9( ), which takes the form with variable dx( ):

 

 

 L x( ) = f 9( ) + f 9( ) dx[ ]
dy

 

 

             Also, L x( ) = 3+
1

6
x 9( )  simplifies as: L x( ) =

1

6
x +

3

2
. 

 

• In particular, L 9.1( ) = 3+
1

6
9.1 9( ) or

1

6
9.1( ) +

3

2
3.01667 , as before. § 
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Example 2 (Linear Approximation of a Trigonometric Function Value) 
 

Find a linear approximation of tan 42°( )  by using the value of tan 45°( ) . 

Give the exact value of the linear approximation, and also give a decimal 

approximation rounded off to six significant digits. 
 

§ Solution Method 1 (Using Differentials) 
 

Let f x( ) = tan x . 
 

WARNING 2: Convert to radians. In this example, we need to compute 

the run dx using radians. If f x( )  or f x( )  were x tan x , for example, then 

we would also need to convert to radians when evaluating function values 

and derivatives. (Also, a Footnote in Section 3.6 will discuss why the 

differentiation rules for trigonometric functions given in Section 3.4 do not 

apply if x is measured in degrees.) 
 

• Converting to radians, 45° =
4

 and 42° =
7

30
. (As a practical matter,  

it turns out that we don’t have to do these conversions, as long as we know 

what the run dx is in radians.) We want to find a linear approximation 

L
7

30
 for f

7

30
 if x changes from 

4
 to 

7

30
. 

 

•   f   is differentiable on, among other intervals, 
2
,
2

, which includes 

both 
4

 and 
7

30
, so this method is appropriate. 

 

• We know that f
4

= tan
4

= 1  exactly. 

 

• Find f
4

, the slope of the tangent line at the “seed point” 
4
, 1 . 

 

f x( ) = tan x

f x( ) = sec2 x

f
4

= sec2
4

= 2
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• Find the run dx (or x ). It is usually easier to subtract the degree 

measures before converting to radians. Since it turns out dx < 0  here,  

we run left (as opposed to right) along the tangent line. 
 

     

run dx = "new x" "old x"

= 42° 45°

= 3°

= 3°( )
180°

Converting to radians( )

=
60

 

 

• Find dy, the rise along the tangent line. Actually, since it turns out dy < 0  

here, it really corresponds to a drop. 
 

  

rise dy = slope( ) run( )

= f
4

dx

= 2
60

=
30

 

 

• Find L
7

30
, our linear approximation of tan 42°( ) , or f

7

30
. 

 

        

L
7

30
= f

4
+ dy

= 1+
30

=
30

30
exact value( )

0.895280

 

 

• In fact, f
7

30
= tan 42°( ) 0.900404 . 
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• Our approximation L
7

30
 was an underestimate of f

7

30
.  

See the figures below. 

             § 
 

 

§ Solution Method 2 (Finding an Equation of the Tangent Line First: y = L(x)) 
 

• The tangent line at the “seed point” 
4
, 1  has slope f

4
= 2 , as we 

saw in Method 1. Its equation is given by: 
 

y y1 = m x x1( )

y 1= 2 x
4

L x( ), or y = 1+ 2 x
4

, which takes the form with variable dx( ):

 

 

         

 

L x( ) = f
4

+ f
4

dx[ ]

dy

. Simplified, L x( ) = 2x +
2

2
. 

 

• In particular, L
7

30
= 1+ 2

7

30 4
= 1+ 2

60
0.895280 , or 

L
7

30
= 2

7

30
+
2

2
0.895280 , as before. § 
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PART E: APPLICATIONS 
 

Since a typical calculator has a square root button and a tangent button, the 

previous examples might not seem useful.  
 

The table on Page 3.5.7 demonstrates how differentials can be used to quickly find 

multiple approximations of function values on a small interval around the 

“seed.” 
 

Differentials can be used even if we do not have a formula for the function we are 

approximating, as we now demonstrate. 
 

Example 3 (Approximating Position Values in the Absence of Formulas) 
 

A car is moving on a coordinate line. Let y = s t( ) , the position of the car  

(in miles) t hours after noon. We are given that s 1( ) = 20 miles  and 

v 1( ) = s 1( ) = 50 mph . 
 

Find a linear 

approximation of 

s 1+ t( )  

run 
 

dt = t  

rise 
 

dy = 50 dt  

Linear approximation, 

L 1+ t( )  

s 0.8( )  0.2 10 
L 0.8( ) = 20 10

= 10 mi
 

s 0.9( )  0.1 5         
L 0.9( ) = 20 5

= 15 mi
 

s 1.1( )  0.1 5         
L 1.1( ) = 20 + 5

= 25 mi
 

s 1.2( )  0.2 10 
L 1.2( ) = 20 +10

= 30 mi
 

 

   (Axes are scaled differently.) § 
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PART F: MEASUREMENT ERROR and PROPAGATED ERROR 
 

Let x be the actual (or exact) length, weight, etc. that we are trying to measure. 
 

Let x  (or dx) be the measurement error. The error could be due to a poorly 

calibrated instrument or merely random chance.  
 

Example 4 (Measurement Error) 
 

The radius of a circle (unbeknownst to us) is 10.7 inches (the actual value), 

but we measure it as 10.5 inches (the measured value). Sources differ on 

the definition of measurement error. 
 

1) If we let measurement error =  (measured value) – (actual value), then the 

“seed” x = 10.7  inches, and x = 10.5 10.7 = 0.2  inches.  

This approach is more consistent with our usual notion of “error.” 
 

2) If we let measurement error =  (actual value) – (measured value), then the 

“seed” x = 10.5  inches, and x = 10.7 10.5 = 0.2  inches.  

We will adopt this approach, because we know the measured value but 

not the actual value in an exercise such as Example 5. This suggests that 

the measured value is more appropriate than the actual value as the 

“seed.” 
 

(See Footnote 1.) § 
 

If y = f x( )  for some function   f , then an error in measuring x may lead to 

propagated error in y, denoted by y . As before, we approximate y  by dy for 

convenience. 
 

Example 5 (Propagated Error) 
 

Let x be the radius of a circle, and let y be its area. Then, y, or  f x( ) = x2
. 

We measure the radius using an instrument that may be “off” by as much as 

0.5 inches; more precisely, it has a maximum possible absolute value of 

measurement error of 0.5 inches. We use the instrument to obtain a 

measured value of 10.5 inches. Estimate the maximum possible absolute 

value of the propagated error that we will obtain for the area of the circle. 

Use differentials and give an approximation written out to five significant 

digits. 
 

§ Solution 
 

dy = f x( ) dx

= 2 x dx
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We use the “seed” x1 = 10.5  inches, the measured value, for x. 
 

Let the run dx be the maximum possible absolute value of the 

measurement error, which is 0.5 inches. (Really, 0.5 in dx 0.5 in .) 
 

Then, dy , our approximation for the maximum possible absolute value of 

the propagated error in y, is given by: 
 

dy = 2 x dx

2 10.5( ) 0.5( )

32.987 in2
 

 

That is, we estimate that the propagated error in the area of the circle will 

be “off” by no more than 32.987 in2  in either direction (high or low). 
 

• Estimates of the area. If we take the measured value of 10.5 inches for the 

radius, we will obtain the following measured value for the area: 
 

y, or  f 10.5( ) = 10.5( )
2

346.361 in2
 

 

Since we estimate that we are “off” by no more than 32.987 in2 ,  

we estimate that the actual value of the area is between 313.374 in2  and 

379.348 in2 .  
 

Without differentials, we would say that the actual value of the area is 

between f 10.0( )  and f 11.0( ) , or between 314.159 in2  and 380.133 in2 . 

(The benefit of using differentials is more apparent when the function 

involved is more complicated.) 
 

• Relative error and percent error. Is 32.987 in2  “bad” or “good”?  

The relative error and the percent error give us some context to decide. 
 

Relative error =
dy

y
really, 

maximum dy

measured y

32.987

346.361
0.095239,  or  9.5239% percent error( )

 

 

(If the measured area had been something like y = 1,000,000 in2 , then 

32.987 in2  probably wouldn’t be a big deal.) 
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• Actual propagated error. If the actual value of the radius is 10.7 inches, 

then the actual value of the area is f 10.7( ) = 10.7( )
2

359.681 in2 , and 

the actual propagated error is given by: 
 

y = f 10.7( ) f 10.5( )

= 10.7( )
2

10.5( )
2

13.320 in2
 

 

• Notation. If we let r =  the radius and A =  the area, then we obtain the 

more familiar formula A = r2 . Also, dA = 2 r dr . 
 

• Geometric approach. Observe that: 
 

dA =  (circumference of circle of radius r) (thickness of ring) 
 

This approximates A , the actual propagated error in the area. The figures 

below demonstrate why this approximation makes sense. 
 

Imagine cutting the shaded ring below along the dashed slit and 

straightening it out. We obtain a trapezoid that is approximately a rectangle 

with dimensions 2 r  and dr. The area of both shaded regions is A , and 

we approximate it by dA, where dA = 2 r dr . 
 

 
(not to scale) 
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(Axes are scaled differently.) § 

 

FOOTNOTES 
 

1. Defining measurement (or absolute) error. Definition 1) in Example 4 is used in Wolfram 

MathWorld, namely that measurement error = (measured value) – (actual value).  

Sometimes, absolute value is taken. See “Absolute Error,” Wolfram Mathworld, Web,  

25 July 2011, <http://mathworld.wolfram.com/AbsoluteError.html>. 

• Larson in his calculus text (9
th
 ed.) uses Definition 2):  

measurement error = (actual value) – (measured value). On top of the rationale given in 

Example 4, this is also more consistent with the notion of error when studying confidence 

intervals and regression analysis in statistics. 
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SECTION 3.6: CHAIN RULE 
 

 

LEARNING OBJECTIVES 
 

• Understand the Chain Rule and use it to differentiate composite functions. 
 

• Know when and how to apply the Generalized Power Rule and the  

Generalized Trigonometric Rules, which are based on the Chain Rule. 

 

PART A: THE IDEA OF THE CHAIN RULE 
 

Yul, Uma, and Xavier run in a race. Let y, u, and x represent their positions  

(in miles), respectively. 
 

• Assume that Yul always runs twice as fast as Uma. That is, 
dy

du
= 2 .  

(If Uma runs u  miles, then Yul runs y  miles, where y = 2 u .) 
 

• Assume that Uma always runs three times as fast as Xavier. That is, 
du

dx
= 3. 

 

• Therefore, Yul always runs six times as fast as Xavier. That is, 
dy

dx
= 6 . 

 

This is an example of the Chain Rule, which states that: 
dy

dx
=
dy

du

du

dx
. 

Here, 6 = 2 3 . 
 

WARNING 1: The Chain Rule is a calculus rule, not an algebraic rule, in that the 

“du”s should not be thought of as “canceling.” 
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We can think of y as a function of u, which, in turn, is a function of x. 

Call these functions   f   and g, respectively.  

Then, y is a composite function of x; this function is denoted by f g . 

 
• In multivariable calculus, you will see bushier trees and more complicated 

forms of the Chain Rule where you add products of derivatives along paths, 

extending what we have done above. 

TIP 1: The Chain Rule is used to differentiate composite functions such as 
 
f g .  

The derivative of a product of functions is not necessarily the product of the 

derivatives (see Section 3.3 on the Product Rule), but the derivative of a 

composition of functions is the product of the derivatives. (Composite functions 

were reviewed in Chapter 1.) 
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PART B: FORMS OF THE CHAIN RULE 
 
 

Chain Rule 
 

Let y = f u( )  and u = g x( ) , where   f   and g are differentiable “where we 

care.” Then, 
 

Form 1) 
dy

dx
=
dy

du

du

dx
 

 

Form 2) 
 
f g( ) x( ) = f u( ) g x( )  

 

Form 3) y = f u( ) u[ ]  
 

• Essentially, the derivative of a composite function is obtained by  

taking the derivative of the “outer function” at u times the derivative of  

the “inner function” at x. 
 

• Following How to Ace Calculus by Adams, Thompson, and Hass 

(Times, 1998), we will refer to the derivative of the inner function as the 

“tail.” In the forms above, the tail is denoted by 
du

dx
, g x( ) , and u . 

 

 

WARNING 2: Forgetting the “tail” is a very common error students make 

when applying the Chain Rule. 
 

• See Footnote 1 for a partial proof. 
 

• See Footnote 2 on a controversial form. 
 

Many differentiation rules, such as the Generalized Power Rule and the 

Generalized Trigonometric Rules we will introduce in this section, are based on 

the Chain Rule. 
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PART C: GENERALIZED POWER RULE 
 

The Power Rule of Differentiation, which we introduced in Part B of Section 3.2, 

can be used to find Dx x7( ) . However, it cannot be used to find Dx 3x2 + 4( )
7

 

without expanding the indicated seventh power, something we would rather not do. 
 

Example 1 (Using the Chain Rule to Motivate the Generalized Power Rule) 
 

Use the Chain Rule to find Dx 3x2 + 4( )
7

. 

 

§ Solution 
 

Let y = 3x2 + 4( )
7
. We will treat y as a composite function of x. 

y = f g( ) x( ) = f g x( )( ) , where: 
 

u = g x( ) = 3x2 + 4  (g is the “inner function”) 

y = f u( ) = u7   ( f   is the “outer function”) 
 

Observe that 
dy

du
 and 

du

dx
 can be readily found using basic rules.  

We can then find 
dy

dx
 using the Chain Rule. 

 

dy

dx
=
dy

du

du

dx

= Du u7( ) Dx 3x2
+ 4( )

= 7u6 6x[ ]

Since u  was our creation, we must express u  in terms of x.( )

= 7 3x2
+ 4( )

6
6x[ ] See Example 2 for a short cut.( )

= 42x 3x2
+ 4( )

6

 

       

§ 
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Example 1 suggests the following short cut. 

 

Generalized Power Rule 
 

Let u be a function of x that is differentiable “where we care.” 

Let n be a real constant. 
 

 

Dx u
n( ) = nun 1( ) Dxu( )

"tail"

 

 

• Rationale. If y = un , then, by the Chain Rule,  
 

dy

dx
=
dy

du

du

dx

Dx u
n( ) = Du un( ) Dxu[ ]

= nun 1 Dxu[ ]

 

Example 2 (Using the Generalized Power Rule; Revisiting Example 1) 
 

Use the Generalized Power Rule to find Dx 3x2 + 4( )
7

. 

 

§ Solution 

Dx 3x2
+ 4( )

7
= 7 3x2

+ 4( )
6

Dx 3x2
+ 4( ) See Warning 3.( )

= 7 3x2
+ 4( )

6
6x[ ]

= 42x 3x2
+ 4( )

6

 

 

WARNING 3: Copy the base. The base u, which is 3x2 + 4( )  here,  

is copied under the exponent. Do not differentiate it until you get to the 

“tail.” 
 

WARNING 4: Remember the exponent. Many students forget to write the 

exponent, 6, because the base can take some time to write. You may want to 

write the exponent before writing out the base.  

 

WARNING 5: Identifying “tails.” The Dx  notation helps us keep track of  

“how far” to unravel tails. A tail may have a tail of its own. If we forget 

tails, we’re not going far enough. If we attach inappropriate tails (such as 

an additional “6” after the “6x” above), we’re going too far. § 
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Example 3 (Using the Generalized Power Rule in Conjunction with the Quotient 

Rule or the Product Rule) 
 

Find Dx

x3

2x 1
. 

 

§ Solution Method 1 (Using the Quotient Rule) 

Dx

x3

2x 1
=

Lo D Hi( ) Hi D Lo( )

Lo( )
2

, the square of what's below

=
2x 1( ) Dx x3( ) x3( ) Dx 2x 1( )

1/2( )
2x 1( )

2

=

2x 1( ) 3x2 x3( )
1
2

2x 1( )
1/2

Dx 2x 1( )

2x 1

=

2x 1( ) 3x2 x3( )
1
2

2x 1( )
1/2

2

2x 1
We could factor the numerator at this point.( )

=

2x 1( ) 3x2 x3

2x 1
2x 1

=

2x 1( ) 3x2 x3

2x 1

2x 1

2x 1

2x 1

 

 

WARNING 6: Distribute before canceling. Do not cancel in the 

numerators until we have distributed 2x 1  through the first numerator. 

   

=
2x 1( ) 3x2 x3

2x 1( )
3/2

=
6x3 3x2 x3

2x 1( )
3/2

=
5x3 3x2

2x 1( )
3/2 ,  or  

x2 5x 3( )

2x 1( )
3/2

 

§ 
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§ Solution Method 2 (Using the Product Rule) 
 

If we had forgotten the Quotient Rule, we could have rewritten: 

Dx

x3

2x 1
= Dx x3 2x 1( )

1/2
 and applied the Product Rule.  

We would then use the Generalized Power Rule to find Dx 2x 1( )
1/2

. 

The key drawback here is that we obtain two terms, and students may find 

it difficult to combine them into a single, simplified fraction. Observe: 
 

Dx

x3

2x 1
= Dx x3 2x 1( )

1/2
Rewriting( )

= Dx x3( ) 2x 1( )
1/2

+ x3( ) Dx 2x 1( )
1/2( )

by the Product Rule( )

= 3x2 2x 1( )
1/2

+ x3( )
1

2
2x 1( )

3/2
Dx 2x 1( )

by the Generalized Power Rule( )

= 3x2 2x 1( )
1/2

+ x3( )
1

2
2x 1( )

3/2
2

= 3x2 2x 1( )
1/2

+ x3( ) 2x 1( )
3/2( )

=
3x2

2x 1( )
1/2

x3

2x 1( )
3/2

=
3x2

2x 1( )
1/2

2x 1( )

2x 1( )

x3

2x 1( )
3/2

Build up the first fraction to obtain the LCD, 2x 1( )
3/2

.

=
3x2 2x 1( ) x3

2x 1( )
3/2

=
6x3 3x2 x3

2x 1( )
3/2

=
5x3 3x2

2x 1( )
3/2 ,  or  

x2 5x 3( )

2x 1( )
3/2 as in Method 1( )

 

§ 
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Example 4 (Using the Generalized Power Rule to Differentiate a Power of a 

Trigonometric Function) 

Let f ( ) = sec5 . Find f ( ) . 

§ Solution 

First, rewrite f ( ) : 
 

f ( ) = sec5

= sec( )
5
 

WARNING 7: Rewriting before differentiating. When differentiating a 

power of a trigonometric function, rewrite the power in this way.  

Students get very confused otherwise. Also, do not write sec 5  here;  

that is equivalent to sec 5( ) , not sec( )
5
. 

  

f ( ) = 5 sec( )
4

D sec( )

by the Generalized Power Rule( )

= 5 sec( )
4

sec tan[ ]

= 5 sec( )
5

tan

= 5sec5 tan

 

§ 

Example 5 (Using the Generalized Power Rule to Prove the Reciprocal Rule) 

Prove the Reciprocal Rule from Section 3.3: Dx

1

g x( )
=

g x( )

g x( )
2 . 

§ Solution 

Dx

1

g x( )
= Dx g x( )

1( )  

 

          WARNING 8: “ 1” here denotes a reciprocal, not a function inverse. 
 

       

= g x( )
2( ) g x( ) by the Generalized Power Rule( )

=
g x( )

g x( )
2

 

§ 



(Section 3.6: Chain Rule)  3.6.9 

 

PART D: GENERALIZED TRIGONOMETRIC RULES 
 

The Basic Trigonometric Rules of Differentiation, which we introduced in 

Section 3.4, can be used to find Dx sin x( ) . However, they cannot be used to find 

Dx sin x2( ) . 

 

Example 6 (Using the Chain Rule to Motivate the Generalized Trigonometric 

Rules) 
 

Use the Chain Rule to find Dx sin x2( ) . 

 

§ Solution 
 

Let y = sin x2( ) . We will treat y as a composite function of x. 

y = f g( ) x( ) = f g x( )( ) , where: 
 

u = g x( ) = x2   (g is the “inner function”) 

y = f u( ) = sinu   ( f   is the “outer function”) 
 

Observe that 
dy

du
 and 

du

dx
 can be readily found using basic rules.  

We can then find 
dy

dx
 using the Chain Rule. 

 

dy

dx
=
dy

du

du

dx

= Du sinu( ) Dx x2( )
= cosu[ ] 2x[ ]

Since u  was our creation, we must express u  in terms of x.( )

= cos x2( ) 2x[ ] See Example 7 for a short cut.( )

= 2x cos x2( )

 

       

§ 
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Example 6 suggests the following short cuts. 

 

Generalized Trigonometric Rules 
 

     Let u be a function of x that is differentiable “where we care” (see Footnote 4). 
 

 

Dx sinu( ) = cosu( ) Dxu( )
"tail"

    

 

Dx cosu( ) = sinu( ) Dxu( )
"tail"

 

Dx tanu( ) = sec2 u( ) Dxu( )
"tail"

    Dx cotu( ) = csc2 u( ) Dxu( )
"tail"

 

 

Dx secu( ) = secu tanu( ) Dxu( )
"tail"

    

 

Dx cscu( ) = cscu cotu( ) Dxu( )
"tail"

 

 

WARNING 9: In the bottom two rules, the “tail” is still written only once. 

The “tail” is the derivative of the common argument u. 
 

• Radians. See Footnote 3 on how these rules encourage us to use radians  

(as opposed to degrees) when differentiating trigonometric functions. 

Example 7 (Using the Generalized Trigonometric Rules; Revisiting Example 6) 
 

Use the Generalized Trigonometric Rules to find Dx sin x2( ) . 

 

§ Solution 

Dx sin x2( ) = cos x2( ) Dx x2( ) See Warning 10.( )

= cos x2( ) 2x[ ]

= 2x cos x2( )

 

 

WARNING 10: Copy the argument. The sine function’s argument u, 

which is x2( )  here, is copied as the cosine function’s argument. Do not 

differentiate it until you get to the “tail.” § 

TIP 2: Consistency with the Basic Trigonometric Rules. Observe:  
 

Dx sin x( ) = cos x[ ] Dx x( )

= cos x[ ] 1[ ]
= cos x

 

 

The “tail” is simply 1 when the argument (x here) is just the variable of 

differentiation, so we can ignore the tail in the Basic Trigonometric Rules. 
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Example 8 (Using the Generalized Trigonometric Rules) 
 

Let g( ) = sec 9 2( ) . Find g ( ) . 
 

§ Solution 

g ( ) = D sec 9 2( )

= sec 9 2( ) tan 9 2( ) D 9 2( )
 

 

(See Warning 9.) 

= sec 9 2( ) tan 9 2( ) 18 1[ ]

= 18 1( )sec 9 2( ) tan 9 2( )
 

§ 

Example 9 (Using the Generalized Power Rule, Followed by the Generalized 

Trigonometric Rules) 

Let f x( ) = cos5 7x( ) . Find f x( ) . 
 

§ Solution 

First, rewrite f x( ) : 
 

f x( ) = cos5 7x( )

= cos 7x( )
5

See Warning 7.( )
 

 

Overall, we are differentiating a power, so we will first apply the 

Generalized Power Rule. 
 

f x( ) = 5 cos 7x( )
4( ) Dx cos 7x( )( ) See Warning 5 and Tip 3.( )

by the Generalized Power Rule( )

= 5 cos 7x( )
4( ) sin 7x( ) Dx 7x( )

by the Generalized Trigonometric Rules( )

= 5 cos 7x( )
4( ) sin 7x( ) 7[ ]

= 35 cos4 7x( )sin 7x( )

 

§ 
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TIP 3: Linear arguments. If a is a real constant, then Dx sin ax( ) = a cos ax( ) , 

Dx cos ax( ) = asin ax( ) , Dx sec ax( ) = asec ax( ) tan ax( ) , etc. In Example 9, 

we saw that: Dx cos 7x( ) = 7sin 7x( ) . These can be very useful short cuts. 
 

• More generally, Dx sin ax + b( ) = a cos ax + b( ) , and so forth; the “tail” is still 

the coefficient of x in the linear argument. 

Example 10 (Using the Generalized Power Rule, Followed by the Generalized 

Trigonometric Rules) 

Show that Dx tan
4 x( ) = 4 tan3 x( )sec2 x( ) . 

(Left to the reader.) The solution is similar to that in Example 9. 

Hint: First rewrite: Dx tan
4 x( ) = Dx tan x( )

4( ) . § 

Example 11 (Using the Generalized Trigonometric Rules, Followed by the 

Generalized Power Rule) 

Find Dx csc x2 +1( )
3( ) . 

§ Solution 

Overall, we are differentiating a trigonometric function, so we will first 

apply the Generalized Trigonometric Rules. 
 

Dx csc x2
+1( )

3( ) = csc x2
+1( )

3
cot x2

+1( )
3( ) Dx x2

+1( )
3( )

by the Generalized Trigonometric Rules( )

= csc x2
+1( )

3
cot x2

+1( )
3( ) 3 x2

+1( )
2

Dx x2
+1( )

by the Generalized Power Rule( )

= csc x2
+1( )

3
cot x2

+1( )
3( ) 3 x2

+1( )
2

2x[ ]

= 6x x2
+1( )

2
csc x2

+1( )
3

cot x2
+1( )

3

 

 

§ 
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PART E: EXAMPLES WITH TANGENT LINES 
 

Example 12 (Finding Horizontal Tangent Lines to a Polynomial Graph) 
 

Let f x( ) = x2 9( )
7
. Find the x-coordinates of all points on the graph of 

y = f x( )  where the tangent line is horizontal. 
 

§ Solution 
 

• We must find where the slope of the tangent line to the graph is 0. 

We must solve the equation: 
 

f x( ) = 0

Dx x2 9( )
7

= 0

7 x2 9( )
6

Dx x2 9( ) = 0 by the Generalized Power Rule( )

7 x2 9( )
6

2x[ ] = 0

14x x2 9( )
6
= 0

 

 

• The Generalized Power Rule is a great help here. The alternative? 

We could have expanded x2 9( )
7
 by the Binomial Theorem,  

differentiated the result term-by-term, and then factored the result as 

14x x2 9( )
6
 or as 14x x + 3( )

6
x 3( )

6
 … after quite a bit of work!  

 

• Instead of factoring further, we will apply the Zero Factor Property 

directly: 
 

x = 0    or    x2 9 = 0

x2
= 9

x = ± 3

 

 

The desired x-coordinates are: 3 , 0, and 3. 
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• Why does the graph of y = x2 9( )
7
 below make sense?  

 

•• Observe that   f   is an even function.  
 

•• f x( ) = x2 9( )
7
= x + 3( )

7
x 3( )

7
, which means that 3  and 3 are 

zeros of   f   of multiplicity 7 (see Chapter 2 of the Precalculus notes). 

As a result, the graph has x-intercepts at 3, 0( )  and 3, 0( ) , and the 

higher multiplicity indicates greater flatness around those points. 

Because the multiplicities are odd, the graph “cuts through” the  

x-axis at the x-intercepts, instead of “bouncing off” of the x-axis there. 
 

•• The y-intercept is extremely low, because 

f 0( ) = 9( )
7
= 4, 782,969 . 

 

• The red tangent lines below are truncated. 
 

 
 

(Axes are scaled differently.) 
 

§ 
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Example 13 (Finding Horizontal Tangent Lines to a Trigonometric Graph) 

Let f x( ) = x + cos 2x( ) . Find the x-coordinates of all points on the graph of 

y = f x( )  where the tangent line is horizontal. 

§ Solution 

• We must find where the slope of the tangent line to the graph is 0. 

We must solve the equation: 
 

       

f x( ) = 0

Dx x + cos 2x( ) = 0

1+ sin 2x( ) Dx 2x( ) = 0 by Generalized Trigonometric Rules( )

1+ sin 2x( ) 2[ ] = 0

1 2sin 2x( ) = 0 See Tip 3 for a short cut.( )

2sin 2x( ) = 1

sin 2x( ) =
1

2

 

 

Use the substitution = 2x . 
 

           sin =
1

2
 

 

Our solutions for  are: 
 

 =
6
+ 2 n or =

5

6
+ 2 n n( )  

To find our solutions for x, replace  with 2x , and solve for x. 
 

2x =
6
+ 2 n             or 2x =

5

6
+ 2 n n( )

x =
1

2 6
+ n or      x =

1

2

5

6
+ n n( )

x =
12

+ n              or      x =
5

12
+ n n( )
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The desired x-coordinates are given by: 
 

x x =
12

+ n,    or   x =
5

12
+ n, n( ) . 

 

• Observe that there are infinitely many points on the graph where the 

tangent line is horizontal. 
 

• Why does the graph of y = x + cos 2x( )  below make sense? The “x” term 

leads to upward drift; the graph oscillates about the line y = x . 
 

• The red tangent lines below are truncated. 
 

 
 

§ 
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FOOTNOTES 
 

1. Partial proof of the Chain Rule. Assume that g is differentiable at a, and   f   is differentiable 

at g a( ) . Let b = g a( ) . More generally, let u = g x( ) . As an optional step, we can let 

 
p = f g . Then, 

 
p x( ) = f g( ) x( ) = f g x( )( ) . We will show that p, or 

 
f g , is differentiable 

at a, with 
 
p a( ) = f g( ) a( ) = f b( ) g a( ) . 

 

p a( ) = lim
x a

p x( ) p a( )

x a

= lim
x a

p x( ) p a( )

g x( ) g a( )

g x( ) g a( )

x a
, g x( ) g a( ) See Note 1 below.( )

= lim
x a

f g x( )( ) f g a( )( )
g x( ) g a( )

g x( ) g a( )

x a

= lim
x a

f g x( )( ) f g a( )( )
g x( ) g a( )

lim
x a

g x( ) g a( )

x a

= lim
u b

f u( ) f b( )

u b
lim
x a

g x( ) g a( )

x a
See Note 2 below.( )

= f b( ) g a( )

 

 

Note 1: We have a problem if g x( ) = g a( )  “near” x = a ; that is, the partial proof fails if 

g x( ) = g a( )  somewhere on every “punctured” open interval about x = a . The function in 

Footnote 4 exhibits this problem, where a = 0 . Larson gives a more general proof in 

Appendix A of his calculus text (9
th
 ed., p.A8). It is not for the faint of heart! 

 

Note 2: We assume that g is differentiable (and thus continuous) at a. Therefore, as x a , 

then u b , since lim
x a

u = lim
x a

g x( ) = g a( ) = b . 

 

2. A controversial form of the Chain Rule. Some sources give the Chain Rule as: 

 
f g( ) x( ) = f g x( )( ) g x( ) . However, some object to the use of the notation f g x( )( ) . 

 

3. Radians. The proofs in Section 3.4 showing that Dx sin x( ) = cos x  and Dx cos x( ) = sin x  

utilized the limit statement lim
h 0

sin h

h
= 1 , which was proven in Footnote 1 of Section 3.4 

under the assumption that h was measured in radians (or as “pure” real numbers).  

• Define the “sind” and “cosd” functions as follows: 

sind x( ) =  the sine of x degrees, and cosd x( ) =  the cosine of x degrees. 

Now, x degrees = x degrees( )
 [radians]

180 degrees
=

180
x [radians] . 

Therefore, sind x( ) = sin
180

x , and cosd x( ) = cos
180

x . 



(Section 3.6: Chain Rule)  3.6.18.
 

• Unfortunately, Dx sind x( )  is not simply cosd x( ) , as demonstrated below: 

 

Dx sind x( ) = Dx sin
180

x

= cos
180

x Dx 180
x by Generalized Trigonometric Rules( )

= cos
180

x
180

=
180

cos
180

x

=
180

cosd x( )

 

Therefore, we prefer the use of our original sine and cosine functions, together with radian 

measure. 

• See The Math Forum @ Drexel on the web: http://mathforum.org/, particularly 

http://mathforum.org/library/drmath/view/53779.html with Dr. Peterson. 

4. Applicability of the Chain Rule and short cuts. In Section 3.2, Footnote 7, we defined a 

piecewise-defined function   f   as follows: f x( ) =
x2 sin

1

x
, x 0

0, x = 0

. It turns out that 

f x( ) =
2x sin

1

x
cos

1

x
, x 0

0, x = 0

. The Product, Power, and Generalized Trigonometric 

Rules give us the top rule for f x( )  when x 0 . However, these rules do not apply when 

x = 0 , since it is not true that f x( ) = x2 sin
1

x
 when x = 0 ; in fact, we would have had a 

problem using these methods at x = 0  if there were no open interval containing x = 0  

throughout which the rule applied. Nevertheless, f 0( )  does exist! In Section 3.2,  

Footnote 7, we showed that f 0( ) = 0  using the Limit Definition of the Derivative. 
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