(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.1

SECTION 6.2: VOLUMES OF SOLIDS OF REVOLUTION: DISK / WASHER METHODS

LEARNING OBJECTIVES

- Find volumes of solids of revolution using Disk and Washer Methods.
- Prove formulas for volumes of cones, spheres, etc.

PART A: THE DISK METHOD (" $d x$ SCAN")

A solid of revolution is obtained by revolving a plane (flat) region, called a generating region, about an axis of revolution.

The Disk and Washer Methods can be used to find the volume of such a solid.

Example 1 (Finding a Volume Using the Disk Method: "dx Scan")

Sketch and shade in the generating region R bounded by the x-axis and the graphs of $y=x^{2}, x=1$, and $x=3$ in the usual $x y$-plane. Find the volume of the solid generated if R is revolved about the \boldsymbol{x}-axis. Lengths and distances are measured in meters.

§ Solution

Steps may be reordered or done simultaneously.
Step 1: Sketch and shade in R.

- Indicate the axis of revolution. Here, it is the \boldsymbol{x}-axis.
- Find the "corners" of R, which are intersection points.
- The point $(3,9)$ is the intersection point between the graphs of $y=x^{2}$ and $x=3$, because $(3,9)$ is the only solution of the system $\left\{\begin{array}{l}y=x^{2} \\ x=3\end{array}\right.$. When $x=3, y=x^{2}=(3)^{2}=9$.
-- Likewise, $(1,1)$ is the intersection point between the graphs of $y=x^{2}$ and $x=1$.

Step 2: Sketch the solid. (Optional.)
\(\left.$$
\begin{array}{|l|l|}\hline\end{array}
$$ \begin{array}{l}The solid's lateral surface (which

excludes the circular "lids" at the left

and right ends) resembles the outer

surface of a sideways volcano,

bullhorn, or lampshade.\end{array}\right\}\)| Fill the inside with gray cement and |
| :--- |
| attach orange lids at the left and right |
| ends. The cement forms the desired |
| solid. |

Step 3: Select $d x$ or $d y$ "scan."
When using the Disk or Washer Method, we need to use "toothpicks" that are perpendicular to the axis of revolution.

In this example, we have a horizontal axis, so use a " $d x$ scan."

Step 4: Rewrite equations (if necessary).
Consider the equations of the boundaries of R that have both x and y in them.

- For a " $d x$ scan," solve them for y in terms of x.
- For a " $d y$ scan," solve them for x in terms of y.

In this example, we are doing a " $d \boldsymbol{x}$ scan," so the equation $y=x^{2}$ is fine as-is. It is already solved for y in terms of \boldsymbol{x}.

Step 5: Find the area of [one face of] a cross section.

- Fix a representative, generic x-value in $(1,3)$.
(We could have said $[1,3]$ in this example.)
- Draw a "toothpick" across R at $x=$ (that x-value).
-• The "toothpick" is actually a thin rectangle; we will discuss this when we discuss theory later.
- When we revolve the "toothpick" about the x-axis, we obtain a "thin disk." Think of a coin.
-• Actually, we are revolving a thin rectangle and obtaining a disk with some thickness Δx.

Lie our "thin disk" (coin) down flat.

- Find the radius of [one face of] our "thin disk."
-• Look at the red and blue endpoints of our brown "toothpick" in the two previous figures. The radius is given by the y-coordinate of the top (red) point minus the y-coordinate of the bottom (blue) point.
-• TIP 1: Radius as a length. In this chapter, all lengths (including radii) will be determined by ...
... a difference in \boldsymbol{y}-coordinates (Think: "top - bottom"), or
\ldots a difference in \boldsymbol{x}-coordinates (Think: "right - left").
A length cannot be negative.

$$
\text { radius, } \begin{aligned}
r(x) & =y_{\text {top }}-y_{\text {botom }} \quad\left[\text { or: } y_{\text {top }}(x)-y_{\text {botom }}(\boldsymbol{x})\right] \\
& =\left(x^{2}\right)-(\mathbf{0}) \\
& =x^{2}
\end{aligned}
$$

-• TIP 2: Grouping symbols can help. Use grouping symbols if $y_{\text {bottom }}$ has more than one term.
-• WARNING 1: Don't just use r. We will later use r to represent a constant. To avoid confusion, use "radius" or something like $r(x)$ to represent a radius that potentially changes for different values of x (related to our " $d x$ scan"). There is less confusion with $y_{\text {top }}$ and $y_{\text {bottom }}$.

- Find $A(x)$, the area of [one face of] our "thin disk."

$$
A(x)=\pi(\text { radius })^{2}=\pi\left(x^{2}\right)^{2}=\pi x^{4}
$$

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.5
Step 6: Set up the integral(s) for the volume of the solid.

- We perform a " $d x$ scan" from $x=1$ to $x=3$, our limits of integration. Different "toothpicks" corresponding to different x-values in $[1,3]$ generate different "thin disks" with different areas. Some sample "thin disks":

(Axes are scaled differently)
- Look at the "corner" points $(1,1)$ and $(3,9)$. The fact that their y-coordinates are 1 and 9 helps us with our sketch, but it doesn't help us later in the problem. A "dy scan" would have had more use for those \boldsymbol{y}-coordinates.
- Integrate the cross-sectional areas with respect to x (" $d x$ scan").

$$
\text { Volume, } V=\int_{1}^{3} A(x) d x=\int_{1}^{3} \pi x^{4} d x
$$

Step 7: Evaluate the integral(s) to find the volume of the solid.

$$
\text { Volume, } V=\pi\left[\frac{x^{5}}{5}\right]_{1}^{3}=\pi\left(\left[\frac{(3)^{5}}{5}\right]-\left[\frac{(1)^{5}}{5}\right]\right)=\frac{242 \pi}{5} \mathrm{~m}^{3}
$$

- WARNING 2: Units of volume. Remember that, if distances and lengths are measured in meters, then your unit of volume will be cubic meters, or $\mathrm{m}^{3} . \S$

See Footnote 1 for a generalization of Example $1 \ldots$ and what would happen if R were below the x-axis.

PART B: THE DISK METHOD (THEORY)

Let's approximate the generating region R from Example 1 by three rectangles of width Δx.

When a rectangle is revolved about the x-axis, we obtain a disk of thickness Δx. It resembles a hockey puck.

We approximate the volume of the solid from Example 1 by the sum of the volumes of the three disks.

Volume, $V \approx \sum_{i=1}^{n}\left(\right.$ Volume of the $i^{\text {th }}$ disk $) \quad(n=3$ for the above $)$

$$
\begin{aligned}
& \approx \sum_{i=1}^{n} \underbrace{\left(\text { Area of a circular base of the } i^{\text {th }} \text { disk }\right)}_{\text {in square meters }\left(\mathrm{m}^{2}\right)} \underbrace{\left(\text { Width of the } i^{\text {th }} \text { disk }\right)}_{\text {in cubic meters }\left(\mathrm{m}^{3}\right)} \\
& \approx \sum_{i=1}^{n} A\left(x_{i-1}\right) \Delta x\left(\sum_{i=1}^{n} \pi\left(x_{i-1}\right)^{4} \Delta x \text { forers the above }(\mathrm{m})\right.
\end{aligned}
$$

This is a "Left-Hand" scheme, as in the figures above.
We would use $\sum_{i=1}^{n} A\left(x_{i}\right) \Delta x$ for a "Right-Hand" scheme.

To get the exact volume, let $\Delta x \rightarrow 0$.
For regular partitions, this implies that $\|P\| \rightarrow 0$.

$$
\text { Volume, } \begin{aligned}
V= & \lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} A\left(x_{i-1}\right) \Delta x \\
= & \left(\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} \pi(x) d x\right. \\
& \left.\quad\left(x_{i-1}\right)^{4} \Delta x \text { for Example 1 }\right) \\
& \text { assuming } A \text { is a continuous function on }[a, b] .
\end{aligned}
$$

Δx is replaced by $d x$ in the integral.

PART C: THE DISK METHOD ("dy SCAN")

Example 2 (Finding a Volume Using the Disk Method: "dy Scan")

Sketch and shade in the generating region R bounded by the graphs of $y=x^{2}, y=1$, and $y=9$ in the usual $x y$-plane. Find the volume of the solid generated if R is revolved about the \boldsymbol{y}-axis. Lengths and distances are measured in meters.

§ Solution

Steps may be reordered or done simultaneously.
Step 1: Sketch and shade in (and then modify) R.

- Indicate the axis of revolution. Here, it is the \boldsymbol{y}-axis.
- Find the "corners" of R, which are intersection points.

The solutions of the system $\left\{\begin{array}{l}y=x^{2} \\ y=1\end{array}\right.$ are $(1,1)$ and $(-1,1)$.
The solutions of the system $\left\{\begin{array}{l}y=x^{2} \\ y=9\end{array}\right.$ are $(3,9)$ and $(-3,9)$.

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.8

- The axis of revolution passes through the interior of R, so we will need a new generating region we will call S. Fortunately, the symmetry of R about the axis allows us to simply take the right half of R as our S; we could have taken the left half, instead.
Think About It: What would you do in the absence of such symmetry?

Step 2: Sketch the solid. (Optional.)

The lateral surface of the solid resembles that of a curved cup. Fill the cup with gray cement and attach orange lids at the top and the bottom. The cement forms the desired solid.

Step 3: Select $d x$ or $d y$ "scan."
When using the Disk or Washer Method, we need to use "toothpicks" that are perpendicular to the axis of revolution.

In this example, we have a vertical axis, so use a "dy scan."

Step 4: Rewrite equations (if necessary).
We are doing a " $d y$ scan," so we must solve the equation $y=x^{2}$ for x in terms of \boldsymbol{y}.

$$
\begin{aligned}
y & =x^{2} \\
x^{2} & =y \\
x & = \pm \sqrt{y}
\end{aligned}
$$

Along the red graph in the figure below, $x \geq 0$, so we will only use the nonnegative root:

$$
x=\sqrt{y}
$$

Step 5: Find the area of [one face of] a cross section.

- Fix a representative, generic y-value in $(1,9)$.
(We could have said $[1,9]$ in this example.)
- Draw a "toothpick" across S at $y=$ (that y-value).
-• The "toothpick" is actually a thin rectangle.
- When we revolve the "toothpick" about the y-axis, we obtain a
"thin disk."
-• Actually, we are revolving a thin rectangle and obtaining a disk with some thickness Δy.
(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.10

- Find the radius of [one face of] our "thin disk."
-• Look at the red and blue endpoints of our brown "toothpick." The radius is given by the \boldsymbol{x}-coordinate of the right (red) point minus the x-coordinate of the left (blue) point.
-• See TIP 1: Radii will be determined by a difference in \boldsymbol{x}-coordinates (Think: "right - left").

$$
\text { radius, } \begin{aligned}
r(y) & =\boldsymbol{x}_{\text {right }}-\boldsymbol{x}_{\text {left }} \quad\left[\text { or } \boldsymbol{x}_{\text {right }}(y)-\boldsymbol{x}_{\text {left }}(\boldsymbol{y})\right] \\
& =(\sqrt{\boldsymbol{y}})-(\mathbf{0}) \\
& =\sqrt{y}
\end{aligned}
$$

- Find $A(x)$, the area of [one face of] our "thin disk."

$$
A(x)=\pi(\text { radius })^{2}=\pi(\sqrt{y})^{2}=\pi y
$$

Step 6: Set up the integral(s) for the volume of the solid.

- We perform a " $d y$ scan" from $y=1$ to $y=9$. Different "toothpicks" corresponding to different y-values in $(1,9)$ generate different "thin disks" with different areas. Some sample "thin disks":

- Integrate the cross-sectional areas with respect to y ("dy scan").

$$
\text { Volume, } V=\int_{1}^{9} A(y) d y=\int_{1}^{9} \pi y d y
$$

Step 7: Evaluate the integral(s) to find the volume of the solid.

$$
\text { Volume, } V=\pi\left[\frac{y^{2}}{2}\right]_{1}^{9}=\pi\left(\left[\frac{(9)^{2}}{2}\right]-\left[\frac{(1)^{2}}{2}\right]\right)=40 \pi \mathrm{~m}^{3}
$$

See Footnote 2 for a generalization of Example 2.

