PART D: THE WASHER METHOD (" $d x$ SCAN")

Example 3 (Finding a Volume Using the Washer Method: "dx Scan")

Sketch and shade in the generating region R bounded by the graphs of $x+y^{3}=0$ and $x^{2}-y=0$ in the usual $x y$-plane. Find the volume of the solid generated if R is revolved about the \boldsymbol{x}-axis. Lengths and distances are measured in meters.

§ Solution

Steps may be reordered or done simultaneously. It would help to solve the given equations for \boldsymbol{x} or \boldsymbol{y}, but for which? Let's do Steps 3 and 4 first.

Step 3: Select $d x$ or $d y$ "scan."
When using the Disk or Washer Method, we need to use "toothpicks" that are perpendicular to the axis of revolution.

(See Part E for more on this.)
In this example, we have a horizontal axis, so use a " $d x$ scan."
Step 4: Rewrite equations (if necessary).
For a " $\boldsymbol{x} \boldsymbol{x}$ scan," we solve the given equations for y in terms of \boldsymbol{x}.

$$
\begin{aligned}
x+y^{3} & =0 \\
y^{3} & =-x \\
y & =\sqrt[3]{-x} \\
y & =-\sqrt[3]{x}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-y & =0 \\
y & =x^{2}
\end{aligned}
$$

The last step is justified, because the cube root function is odd.
(Back to) Step 1: Sketch and shade in R.

- Indicate the axis of revolution. Here, it is the \boldsymbol{x}-axis.
- Find the "corners" of R, which are intersection points.

Solve the system:

$$
\left\{\begin{array} { l }
{ x + y ^ { 3 } = 0 } \\
{ x ^ { 2 } - y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y=-\sqrt[3]{x} \\
y=x^{2}
\end{array} \quad(\text { Step } 4 \text { helps here. }) \Rightarrow\right.\right.
$$

$$
\begin{aligned}
-\sqrt[3]{x} & =x^{2} \\
(-\sqrt[3]{x})^{3} & =\left(x^{2}\right)^{3} \\
-x & =x^{6} \\
0 & =x^{6}+x \\
x^{6}+x & =0 \\
x\left(x^{5}+1\right) & =0
\end{aligned}
$$

Note: -1 has five complex fifth roots, but only one of them is real, namely the principal fifth root, -1 .
-• Find the corresponding \boldsymbol{y}-coordinates. We will use $y=x^{2}$, though we could have used $y=-\sqrt[3]{x}$.
$x=0 \Rightarrow y=x^{2}=(0)^{2}=0 \Rightarrow(0,0)$ is an intersection point.
$x=-1 \Rightarrow y=x^{2}=(-1)^{2}=1 \Rightarrow(-1,1)$ is an intersection point.
-- Technically, these solutions should be checked in the original system, but our sketch will help verify these.

Step 2: Sketch the solid. (Optional.)
See the previous figure. Imagine
gray cement trapped between ...

The variety of colors will help us visualize " $d x$ scanning."
(Ahead to) Step 5: Find the area of [one face of] a cross section.

- Fix a representative, generic x-value in $(-1,0)$.

Avoid $x=-1$ and $x=0$; they are not representative.

- Draw a "toothpick" across R at $x=$ (that x-value).
-• The "toothpick" is actually a thin rectangle.
- When we revolve the "toothpick" about the x-axis, we obtain a "thin washer." Think of a DVD.
-• Actually, we are revolving a thin rectangle and obtaining a washer with some thickness Δx.

Lie our "thin washer" (DVD) down flat.
For clarity, let's rotate the red and blue points.

$r_{\text {out }}$ is the outer radius,
the radius of the larger,
outer, red circle.

$r_{\text {in }}$ is the inner radius,
the radius of the smaller,
inner, blue circle.

- Find $r_{\text {out }}$ and $r_{\text {in }}$ for [one face of] our "thin washer."
-• Look at the red and blue endpoints of our brown "toothpick" in the middle of the previous page. Also look at the brown point on the axis of revolution (the x-axis). These three points lie on a straight line; the brown point is like a star and the other two points are like planets moving in circular (not elliptical - sorry, Kepler) orbits about the star. $r_{\text {out }}$ and $r_{\text {in }}$ are obtained by taking the differences of their \boldsymbol{y}-coordinates ... but which ones and how?
-• For both $r_{\text {out }}$ and $r_{\text {in }}$, we think: "top - bottom," although the "top" point is different for the $r_{\text {out }}$ and $r_{\text {in }}$ calculations.
- $r_{\text {out }}$ is given by the \boldsymbol{y}-coordinate of the red ("top") point minus the \boldsymbol{y}-coordinate of the brown ("bottom") point.

$$
\begin{aligned}
r_{\text {out }} & =y_{\text {top }}-y_{\text {botom }} \quad\left[\text { or: } r_{\text {out }}(x)=y_{\text {top }}(x)-y_{\text {botom }}(x)\right] \\
& =(-\sqrt[3]{x})-(0) \\
& =-\sqrt[3]{x}
\end{aligned}
$$

... Don't be surprised by the opposite sign. Since we only consider x-values in $[-1,0]$, the values of $-\sqrt[3]{x}$ are actually nonnegative as we perform our " $d x$ scan."

Note 1: We use the red point for $r_{\text {out }}$ because the red point is on the outer boundary of R relative to the axis of revolution (the red graph is further away from the x-axis than the blue graph is).

Note 2: The brown point lies on the axis of revolution and is used for both $r_{\text {out }}$ and $r_{\text {in }}$.

Note 3: Here, the red ("outer") point is a "top" point, and the brown point on the axis of revolution is a "bottom" point. In Example 4, their roles will switch.

- $r_{\text {in }}$ is given by the \boldsymbol{y}-coordinate of the blue ("top") point minus the \boldsymbol{y}-coordinate of the brown ("bottom") point.

$$
\begin{aligned}
r_{\text {in }} & =\boldsymbol{y}_{\text {top }}-y_{\text {bottom }} \quad\left[\text { or: } r_{\text {in }}(x)=\boldsymbol{y}_{\text {top }}(\boldsymbol{x})-\boldsymbol{y}_{\text {bottom }}(\boldsymbol{x})\right] \\
& =\left(\boldsymbol{x}^{2}\right)-(0) \\
& =x^{2}
\end{aligned}
$$

Note 1: We use the blue point for $r_{\text {in }}$ because the blue point is on the inner boundary of R relative to the axis of revolution (the blue graph is closer to the x-axis than the red graph is).

Note 2: Here, the blue ("inner") point is a "top" point, and the brown point on the axis of revolution is a "bottom" point. In Example 4, their roles will switch.

- Find $A(x)$, the area of [one face of] our "thin washer."

$$
\begin{aligned}
A(x)= & (\text { Area within large red circle })-(\text { Area within small blue circle }) \\
& \text { or }(\text { Big area })-(\text { Small area }) \\
& \text { or }(\text { Area of "whole" })-(\text { Area of "hole" }) \\
= & \pi r_{\text {out }}{ }^{2}-\pi r_{\text {in }}{ }^{2} \quad\left[\text { or: } \pi r_{\text {out }}{ }^{2}(x)-\pi r_{\text {in }}{ }^{2}(x)\right] \\
= & \pi(-\sqrt[3]{x})^{2}-\pi\left(x^{2}\right)^{2}
\end{aligned}
$$

Step 6: Set up the integral(s) for the volume of the solid.

- We perform a " $d x$ scan" from $x=-1$ to $x=0$. Different
"toothpicks" corresponding to different x-values in $(-1,0)$ generate different "thin washers" with different areas. Some sample "thin washers":

- Integrate the cross-sectional areas with respect to x (" $d x$ scan").
-• Instead of being given the limits of integration, we obtained them from the \boldsymbol{x}-coordinates of the intersection points we found in Step 1. We use the \boldsymbol{x}-coordinates because we are doing a " $d x$ scan."

$$
\text { Volume, } \begin{aligned}
V & =\int_{-1}^{0} A(x) d x \\
& =\int_{-1}^{0}\left[\pi r_{\text {out }}{ }^{2}(x)-\pi r_{\text {in }}{ }^{2}(x)\right] d x
\end{aligned}
$$

- WARNING 3: Squares. Although π may be factored out of the integrand and "popped out" of the integral, be careful not to misplace the squares. Books present the generic formula:

$$
V=\pi \int_{a}^{b}\left[r_{\text {out }}{ }^{2}(x)-r_{\text {in }}^{2}(x)\right] d x
$$

Many students miswrite this as:

$$
V=\pi \int_{a}^{b}\left[r_{\text {out }}(x)-r_{\text {in }}(x)\right]^{2} d x \quad(\mathbf{N O}!)
$$

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.19

$$
\text { Volume, } V=\int_{-1}^{0}\left[\pi(-\sqrt[3]{x})^{2}-\pi\left(x^{2}\right)^{2}\right] d x
$$

-• Setup. If you are asked to simply "set up" the integral(s) for the desired volume, then the above may be sufficient. Ask your instructor, you may need to simplify further.

Step 7: Evaluate the integral(s) to find the volume of the solid.

$$
\text { Volume, } \begin{aligned}
V & =\int_{-1}^{0} \pi\left[(-\sqrt[3]{x})^{2}-\left(x^{2}\right)^{2}\right] d x \\
& =\pi \int_{-1}^{0}\left(x^{2 / 3}-x^{4}\right) d x \\
& =\pi\left[\frac{x^{5 / 3}}{5 / 3}-\frac{x^{5}}{5}\right]_{-1}^{0} \\
& =\pi\left[\frac{3 x^{5 / 3}}{5}-\frac{x^{5}}{5}\right]_{-1}^{0} \\
& =\pi\left(\left[\frac{3(0)^{5 / 3}}{5}-\frac{(0)^{5}}{5}\right]-\left[\frac{3(-1)^{5 / 3}}{5}-\frac{(-1)^{5}}{5}\right]\right) \\
& =\pi\left([0]-\left[-\frac{3}{5}+\frac{1}{5}\right]\right) \\
& =\frac{2 \pi}{5} \mathrm{~m}^{3}
\end{aligned}
$$

See Footnote 3 for a generalization of Example 3.
WARNING 4: Don't switch $r_{\text {out }}$ and $r_{\text {in }}$. If we had miswritten the volume integral as $V=\pi \int_{a}^{b}\left[r_{\text {in }}{ }^{2}(x)-r_{\text {out }}{ }^{2}(x)\right] d x \quad$ (NO!), we would have obtained $-\frac{2 \pi}{5} \mathrm{~m}^{3}$, the opposite of the correct answer. We cannot have negative volumes, so if you get one, check to see if you made this error.

Example 4 (Finding a Volume Using the Washer Method: "dx Scan";

 Revisiting Example 3)Sketch and shade in the generating region R bounded by the graphs of $y=\sqrt[3]{x}$ and $y=-x^{2}$ in the usual $x y$-plane. Find the volume of the solid generated if R is revolved about the \boldsymbol{x}-axis. Lengths and distances are measured in meters.

§ Partial Solution

It turns out that R is the reflection of the region from Example 3 about the \boldsymbol{x}-axis. The solid we obtain is the same as the one for Example 3.
Example 3 (before)

Example 4 (now)

As in Example 3,

- The red graph (this time, of $y=\sqrt[3]{x}$) is the "outer" graph relative to the axis of revolution, and
- The blue graph (this time, of $y=-x^{2}$) is the "inner" graph relative to the axis of revolution.

Also,

- The "outer," red graph generates the same "sideways bowl" we saw in Step 2 of Example 3.
- The "inner," blue graph generates the same "sideways funnel" we saw in Step 2 of Example 3.

Look at the aligned brown, blue, and red points for Example 4 (now). Here are differences from Example 3:

- The brown point on the axis of revolution will be our "top" point for $r_{\text {out }}$ and $r_{i n}$, not our "bottom" point (as was the case in Example 3).
- $r_{\text {out }}$ is given by the \boldsymbol{y}-coordinate of the brown ("top") point on the axis minus the \boldsymbol{y}-coordinate of the red ("bottom") point.

$$
\begin{aligned}
r_{\text {out }} & =y_{\text {top }}-y_{\text {bottom }} \quad\left[\text { or: } r_{\text {out }}(x)=y_{\text {top }}(x)-y_{\text {bottom }}(x)\right] \\
& =(0)-(\sqrt[3]{x}) \\
& =-\sqrt[3]{x}
\end{aligned}
$$

- $r_{i n}$ is given by the \boldsymbol{y}-coordinate of the brown ("top") point on the axis minus the \boldsymbol{y}-coordinate of the blue ("bottom") point.

$$
\begin{aligned}
r_{\text {in }} & =y_{\text {top }}-y_{\text {botom }} \quad\left[\text { or: } r_{\text {in }}(x)=y_{\text {top }}(x)-y_{\text {botom }}(x)\right] \\
& =(0)-\left(-x^{2}\right) \\
& =x^{2}
\end{aligned}
$$

In fact, we end up with the same area formula as for Example 3. $A(x)$, the area of [one face of] our "thin washer," is again given by:

$$
\begin{aligned}
A(x) & =\pi r_{\text {out }}{ }^{2}-\pi r_{\text {in }}{ }^{2} \quad\left[\text { or: } \pi r_{\text {out }}{ }^{2}(x)-\pi r_{\text {in }}{ }^{2}(x)\right] \\
& =\pi(-\sqrt[3]{x})^{2}-\pi\left(x^{2}\right)^{2}
\end{aligned}
$$

Squares are forgiving with respect to signs. If we had mistakenly said that $r_{\text {out }}=\sqrt[3]{x}$ and $r_{\text {in }}=-x^{2}$, then x-values in $[-1,0)$ would have given us negative radii, which are technically forbidden. However, because squares of opposites are equal,

$$
\pi(\sqrt[3]{x})^{2}-\pi\left(-x^{2}\right)^{2}=\pi(-\sqrt[3]{x})^{2}-\pi\left(x^{2}\right)^{2}=A(x)
$$

and we can still get the correct volume. In this sense, using "bottom - top" instead of "top - bottom" will still lead to the correct volume, but an instructor may penalize us for "bad form."

See Example 3 for the rest of the solution. \S

