(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.22

PART E: DISK METHOD vs. WASHER METHOD

When using the Disk or Washer Method, we need to use "toothpicks" that are perpendicular to the axis of revolution.
Which method do we use?

- In a way, we are always using the Washer Method, since the

Disk Method is simply a special case of the Washer Method where $r_{i n}=0$.

- We use the DISK METHOD when all of our "toothpicks" extend all the way to the axis of revolution. We at least need that axis to form a boundary of the generating region. See Examples 1 and 2, where the generating regions R and S are flush against the axes of revolution, without gaps.

Horizontal Axis (for example, the \boldsymbol{x}-axis)	Vertical Axis (for example, the \boldsymbol{y}-axis)
Use toothpicks for a " $d x$ scan."	
Use toothpicks for a " $d y$ scan."	

The toothpicks may also lie on the other side of the axis; see the last comment in Footnote 1.

- If that is not the case, then we use the WASHER METHOD. See Examples 3 and 4, where there are gaps between the generating regions (\boldsymbol{R}) and the axes of revolution. These gaps lead to holes within our washers.
-• If $r_{\text {in }}=0$ sometimes, then we obtain some disks;
however, the Washer Method will still work.

| Horizontal Axis
 (for example, the \boldsymbol{x}-axis) |
| :---: | :---: |
| Use toothpicks for a " $d x$ scan." | | Vertical Axis |
| :---: |
| (for example, the \boldsymbol{y}-axis) |
| Use toothpicks for a " $d y$ scan." |

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.23

PART F: THE WASHER METHOD (" $d y$ SCAN"); "WEIRD" AXES OF REVOLUTION

We will informally define a "weird" axis as a horizontal or vertical axis of revolution that is neither the x-axis nor the y-axis.

Example 5 (Finding a Volume Using the Washer Method: "dy Scan" and a "Weird" Axis of Revolution)

Sketch and shade in the generating region R bounded by the graphs of $y=x^{2}, y=0$, and $x=3$ in Quadrant I of the usual $x y$-plane. Find the volume of the solid generated if R is revolved about the line $x=4$.
Lengths and distances are measured in meters.

§ Solution

Steps may be reordered or done simultaneously.
Step 1: Sketch and shade in R.

- Indicate the axis of revolution. Here, it is the vertical line $x=4$.
- Find the "corners" of R, which are intersection points.
-. The solution of the system $\left\{\begin{array}{l}y=x^{2} \\ x=3\end{array}\right.$ is (3,9). It turns out this intersection point's y-coordinate, 9 , will help us later.

	It helps that the axis of revolution does not pass through the interior of R

Step 2: Sketch the solid. (Optional.)

The variety of colors will help us visualize " $d y$ scanning."
There is no top "lid"; the top is open.

Step 3: Select $d x$ or $d y$ "scan."
When using the Disk or Washer Method, we need to use
"toothpicks" that are perpendicular to the axis of revolution.

Step 4: Rewrite equations (if necessary).
For a " $d \boldsymbol{y}$ scan," we solve given equations for x in terms of y.

$$
\begin{aligned}
y & =x^{2} \\
x^{2} & =y \\
x & = \pm \sqrt{y} \\
\text { Take } x & =\sqrt{y} \text { because our only concern is Quadrant I. }
\end{aligned}
$$

- TIP 3: Picking an equation to graph. It is easier for students to [partially] graph $y=x^{2}$ instead of $x=\sqrt{y}$, even though $x=\sqrt{y}$ is the equation we will use afterwards.

Step 5: Find the area of [one face of] a cross section.

- Fix a representative, generic y-value in $(0,9)$.

Draw a "toothpick" across R at $y=$ (that y-value).
-• The "toothpick" is actually a thin rectangle.

- When we revolve the "toothpick" about the axis of revolution, we obtain a "thin washer."
-• Actually, we are revolving a thin rectangle and obtaining a washer with some thickness Δy.
(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.26

- Find $r_{\text {out }}$ and $r_{\text {in }}$ for [one face of] our "thin washer."
-• Look at the red and blue endpoints of our brown "toothpick" and the brown point on the axis of revolution.
$r_{\text {out }}$ and $r_{\text {in }}$ are obtained by taking the differences of their \boldsymbol{x}-coordinates ... but which ones and how?
- For both $r_{\text {out }}$ and $r_{i n}$, we think: "right - left," although the "left" point is different for the $r_{\text {out }}$ and $r_{\text {in }}$ calculations.
- $r_{\text {out }}$ is given by the \boldsymbol{x}-coordinate of the brown ("right") point minus the \boldsymbol{x}-coordinate of the red ("outer, left") point.

$$
\begin{aligned}
r_{\text {out }} & =x_{\text {right }}-x_{\text {left }} \quad\left[\text { or: } r_{\text {out }}(y)=x_{\text {right }}(y)-x_{\text {left }}(y)\right] \\
& =(4)-(\sqrt{y}) \\
& =4-\sqrt{y}
\end{aligned}
$$

Note: Squares are forgiving with respect to order here. If we had mistakenly said that $r_{\text {out }}=\sqrt{y}-4$, then y-values in $[0,9]$ would have given us negative radii, which are technically forbidden. However, because squares of opposites are equal, $r_{\text {out }}{ }^{2}=(4-\sqrt{y})^{2}=(\sqrt{y}-4)^{2}$ and we can still get the correct volume. In this sense, using "left - right" instead of "right - left" will still lead to the correct volume, but an instructor may penalize us for "bad form."
-. $r_{\text {in }}$ is given by the \boldsymbol{x}-coordinate of the brown ("right") point minus the \boldsymbol{x}-coordinate of the blue ("inner, left") point.

$$
\begin{aligned}
r_{\text {in }} & =\boldsymbol{x}_{\text {right }}-\boldsymbol{x}_{\text {left }} \quad\left[\text { or: } r_{\text {in }}(y)=\boldsymbol{x}_{\text {right }}(\boldsymbol{y})-\boldsymbol{x}_{\text {left }}(\boldsymbol{y})\right] \\
& =(\mathbf{4})-(\mathbf{3}) \\
& =1
\end{aligned}
$$

Note: For $r_{\text {out }}$ and $r_{\text {in }}$ here, the "outer" and "inner" points are "left" points, and the brown point on the axis of revolution is a "right" point. In other problems, their roles will switch.

- Find $A(y)$, the area of [one face of] our "thin washer."

$$
\begin{aligned}
A(y) & =\pi r_{\text {out }}{ }^{2}-\pi r_{\text {in }}{ }^{2} \quad\left[\text { or: } \pi r_{\text {out }}{ }^{2}(y)-\pi r_{\text {in }}{ }^{2}(y)\right] \\
& =\pi(4-\sqrt{y})^{2}-\pi(1)^{2}
\end{aligned}
$$

Step 6: Set up the integral(s) for the volume of the solid.

- We perform a " $d y$ scan" from $y=0$ to $y=9$.

Some sample "thin washers":

- Integrate the cross-sectional areas with respect to y ("dy scan").
-• Instead of being given the upper limit of integration (9), we obtained it from the \boldsymbol{y}-coordinate of an intersection point we found in Step 1. We use \boldsymbol{y}-coordinates because we are doing a " $d y$ scan."

$$
\text { Volume, } \begin{aligned}
V & =\int_{0}^{9} A(y) d y \\
& =\int_{0}^{9}\left[\pi r_{\text {out }}{ }^{2}(y)-\pi r_{\text {in }}{ }^{2}(y)\right] d y \\
& =\int_{0}^{9}\left[\pi(4-\sqrt{y})^{2}-\pi(1)^{2}\right] d y
\end{aligned}
$$

-• Setup. Ask your instructor if you need to simplify further.
Step 7: Evaluate the integral(s) to find the volume of the solid.

$$
\text { Volume, } \begin{aligned}
V & =\int_{0}^{9}\left[\pi(4-\sqrt{y})^{2}-\pi(1)^{2}\right] d y \\
& =\pi \int_{0}^{9}\left[(4-\sqrt{y})^{2}-(1)^{2}\right] d y \\
& =\pi \int_{0}^{9}[(16-8 \sqrt{y}+y)-(1)] d y \\
& =\pi \int_{0}^{9}\left(15-8 y^{1 / 2}+y\right) d y \\
& =\pi\left[15 y-\frac{8 y^{3 / 2}}{3 / 2}+\frac{y^{2}}{2}\right]_{0}^{9} \\
& =\pi\left[15 y-\frac{16 y^{3 / 2}}{3}+\frac{y^{2}}{2}\right]_{0}^{9} \\
& =\pi\left(\left[15(9)-\frac{16(9)^{3 / 2}}{3}+\frac{(9)^{2}}{2}\right]-\left[15(0)-\frac{16(0)^{3 / 2}}{3}+\frac{(0)^{2}}{2}\right]\right) \\
& =\pi\left(\left[135-144+\frac{81}{2}\right]-[0]\right) \\
& =\frac{63 \pi}{2} \mathrm{~m}^{3}
\end{aligned}
$$

PART G: FAMOUS VOLUME FORMULAS

Example 6 (Finding the Volume of a Cone)

Use the Disk Method to find the volume of a right circular cone of altitude h and base radius r. (h and r are fixed but unknown constants.) Lengths and distances are measured in meters.

§ Partial Solution

- We obtain such a cone by revolving the triangular generating region R (see below) about the \boldsymbol{x}-axis. Other choices for R and the axis of revolution also work.
- We are revolving R about a horizontal axis, so the Disk Method requires a "dx scan."
- Observe that the axis of revolution does not pass through the interior of R.

- Find the function f such that $y=f(x)$ models the slanted line segment.

Approach 1: Use Slope-Intercept Form of a Line [Segment].

$$
\begin{aligned}
& y=m x+b \\
& y=\left(\frac{\text { rise }}{\text { run }}\right) x+0 \\
& y=\frac{r}{h} x \quad(0 \leq x \leq h)
\end{aligned}
$$

The right-hand side defines $f(x)$.
(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.30 Approach 2: Use Side-Proportionality of Similar Triangles.

- We apply the Disk Method to find the volume (V) of the cone.

$$
V=\int_{0}^{h} \pi(\text { radius })^{2} d x=\int_{0}^{h} \pi\left(\frac{r}{h} x\right)^{2} d x
$$

The rest is left as an exercise for the reader.
WARNING 5: \boldsymbol{r} and \boldsymbol{h} are constants here. Treat them as you would 7 or π, say. §
(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.31

Example 7 (Finding the Volume of a Sphere)

Use the Disk Method to find the volume of a sphere of radius r. (r is a fixed but unknown constant.) Lengths and distances are measured in meters.

§ Partial Solution

- The desired volume is twice the volume of the hemisphere obtained by revolving the quarter-circular generating region R (see below) about the \boldsymbol{x}-axis. Other choices for R and the axis of revolution also work.
- We are revolving R about a horizontal axis, so the Disk Method requires a "dx scan."
- Observe that the axis of revolution does not pass through the interior of R.

- Find the function f such that $y=f(x)$ models the quarter-circle.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
y^{2} & =r^{2}-x^{2} \\
y & = \pm \sqrt{r^{2}-x^{2}} \\
\text { Take } y & =\sqrt{r^{2}-x^{2}}, 0 \leq x \leq r \text { (giving the indicated quarter-circle). }
\end{aligned}
$$

- We apply the Disk Method to find the volume (V) of the sphere.

$$
\begin{aligned}
& V=2(\text { Volume of hemisphere })=2 \int_{0}^{r} \pi(\text { radius })^{2} d x \\
& =2 \int_{0}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x
\end{aligned}
$$

The rest is left as an exercise for the reader.
WARNING 5: Don't forget the " 2 " above.
WARNING 6: r is a constant here. ξ

FOOTNOTES

1. Disk Method: Basic " $\boldsymbol{d} \boldsymbol{x}$ " case. Example 1 is basic, because:

- The generating region R is in the usual $x y$-plane.
- R is being revolved about the x-axis.
- R is bounded by the x-axis, vertical lines $x=a$ and $x=b$ such that $a<b$, and the graph of $y=f(x)$ for a function f.
- f is a continuous function on the x-interval $[a, b]$.
- It helps that f is a simple [polynomial] function.
- Since $a<b$, the volume of the resulting solid is given by: $V=\int_{a}^{b} \pi[f(x)]^{2} d x$ - f is nonnegative on $[a, b]$, but the formula works even if f is sometimes (or always) negative in value (due to the square). The radius of a "thin disk" would be $|f(x)|$.
In Example 1, observe that we would have obtained the same solid with the same volume if we had replaced $y=x^{2}$ with $y=-x^{2}$. This is because:
radius, $r(x)=y_{\text {top }}(x)-y_{\text {botom }}(x)=(0)-\left(-x^{2}\right)=x^{2}$ once again.

(See Footnote 1.)

(See Footnote 1.)

(See Footnote 2.)

2. Disk Method: Basic " $\boldsymbol{d} \boldsymbol{y}$ " case. Example 2 is basic for similar reasons.

- The generating region S is in the usual $x y$-plane.
- S is being revolved about the y-axis.
- S is bounded by the y-axis, horizontal lines $y=c$ and $y=d$, such that $c<d$, and the graph of $x=g(y)$ for a function g.
- g is a continuous function on the y-interval $[c, d]$.
- It helps that g is a simple function.
- Since $c<d$, the volume of the resulting solid is given by: $V=\int_{c}^{d} \pi[g(y)]^{2} d y$
(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) 6.2.33.

3. Washer Method: Basic " $d x$ " case. Example 3 is basic, because:

- The generating region R is in the usual $x y$-plane.
- R is being revolved about the x-axis.
- R is bounded by the graphs of $y=f(x)$ and $y=g(x)$ for functions f and g.

In other basic examples, R is also bounded by one or two vertical lines $x=a$ and/or $x=b$. In Example 3, instead of vertical lines, the intersection points of the graphs of $y=f(x)=-\sqrt[3]{x}$ and $y=g(x)=x^{2}$ provide values for a and b. Assume $a<b$.

- f and g are continuous functions on the x-interval $[a, b]$.
- $f(x) \geq g(x) \geq 0$ on $[a, b]$. Since the x-axis is the axis of revolution, this means that $y=f(x)$ is the "outer" graph and $y=g(x)$ is the "inner" graph. Also, $r_{\text {out }}(x)=f(x)$ and $r_{\text {in }}(x)=g(x)$.
- It helps that f and g are simple functions.
- Since $a<b$, the volume of the resulting solid is given by:

$$
V=\int_{a}^{b}\left(\pi[f(x)]^{2}-\pi[g(x)]^{2}\right) d x=\pi \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x \text { (See Warning 3.) }
$$

