MATH 150 - CHAPTER 3 REVIEW

SECTION 3.1: INTRODUCTION

Secant lines (related to the graph of $y=f(x)$)

$$
\begin{aligned}
\text { slope } & =\text { average rate of change of } y \text { with respect to } x \text { on }[a, a+h] \text { or }[a, b] \\
& =\frac{f(a+h)-f(a)}{h} \text { or } \frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

If $h \approx 0$, this $\approx f^{\prime}(a)$, if it exists.

Tangent lines

$$
\begin{aligned}
\text { slope } & =\text { instantaneous rate of change of } y \text { with respect to } x \text { at } a \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { if it exists. Use algebra to work through this! } \\
& =f^{\prime}(a) \quad \text { (You may use our shortcuts unless you're told to use the limit definition.) }
\end{aligned}
$$

Slopes and equations of tangent lines

Rectilinear motion

Velocity $=$ [Instantaneous] rate of change of position with respect to time.
$v(t)=s^{\prime}(t)$

SECTION 3.2: $f^{\prime}(x)$

Limit definition of the derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { if it exists. Use algebra to work through this! }
$$

Key cases when the derivative is "DNE"
Where there is a...

$$
\left(m_{L}=\text { left }- \text { hand derivative; } m_{R}=\text { right }- \text { hand derivative }\right)
$$

1) Discontinuity
2) Corner
$m_{L} \neq m_{R}$ (Maybe one is $\pm \infty$, but not both.)
3) Vertical tangent line
m_{L} is ∞ or $-\infty$, and m_{R} is ∞ or $-\infty$.
4) Cusp m_{L} and m_{R} : one is ∞; the other is $-\infty$. This is a special case of 3).

SECTIONS 3.2 and 3.3: SHORTCUTS FOR DIFFERENTIATION

c, m, b, and n are constants; f and g are functions of x.

	Derivative with respect to \boldsymbol{x}	Comments
c	0	
$m x+b$	m	Power Rule
x^{n}	$n x^{n-1}$	Constant factors "pop out"
$c f$	$c f^{\prime}$	Sum Rule
$f+g$	$f^{\prime}+g^{\prime}$	Difference Rule
$f-g$	$f^{\prime}-g^{\prime}$	Product Rule ("Pointer Method")
$f g$	$f^{\prime} g+f g^{\prime}$	Quotient Rule;
$\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$	$\frac{\text { LoD(Hi) }-H i D(L o)}{}$	

Solve $f^{\prime}(x)=0$. (Where are tangent lines horizontal?)
Slopes and equations of tangent lines and normal lines

SECTION 3.4: TRIG

RADIAN mode!!!
Prove $D_{x}(\sin x)=\cos x$, and $D_{x}(\cos x)=-\sin x$ using all of these:

1) The limit definition of the derivative
2) $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
3) $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$

Derive these using $D_{x}(\sin x)=\cos x, D_{x}(\cos x)=-\sin x$, the Quotient Rule, and/or the Reciprocal Rule:

$$
\begin{array}{ll}
D_{x}(\tan x)=\sec ^{2} x & D_{x}(\cot x)=-\csc ^{2} x \\
D_{x}(\sec x)=\sec x \tan x & D_{x}(\csc x)=-\csc x \cot x
\end{array}
$$

Use the table above (in 3.2/3.3) and trig identities/formulas.
Solve $f^{\prime}(x)=0$ by solving a trig equation. (Where are tangent lines horizontal?)
Slopes and equations of tangent lines and normal lines

SECTION 3.5: DIFFERENTIALS and LINEAR APPROXIMATIONS

SECTION 3.6: CHAIN RULE

Let's say u is a function of x.

$$
\frac{d y}{d x}=\frac{d y}{d u} \underbrace{\frac{d u}{d x}}_{\text {tail }}
$$

Generalized Power Rule

$$
D_{x} u^{n}=\left(n u^{n-1}\right) \underbrace{\left(D_{x} u\right)}_{\text {tail }}
$$

Generalized Trig Rules

$$
\begin{aligned}
& D_{x}(\sin u)=(\cos u)(\underbrace{\left.D_{x} u\right)}_{\text {tail }} \\
& D_{x}(\sec u)=(\sec u \tan u) \underbrace{\left.D_{x} u\right)}_{\text {tail }}, \text { etc. }
\end{aligned}
$$

Think "Big Picture": Overall, do I have a power, or a trig function?
Use techniques and deal with issues discussed on the previous page.

SECTION 3.7: IMPLICIT DIFFERENTIATION

Implicitly differentiate functions
Given an equation, find y^{\prime}.
Slopes and equations of tangent lines and normal lines

SECTION 3.8: RELATED RATES

1) Read the problem
2) Diagram (general; nothing specific to the instant of interest)
3) Set up the key relevant formula
4) Know what is given and what must be found at the instant of interest
5) Implicitly differentiate the formula in 3)
6) Plug in values at the instant of interest

Diagrams, the Pythagorean Theorem and/or other formulas may help.
7) Solve for the desired rate (don't forget units)

Remember issues of unit compatibility and DEG vs. RAD.
8) State your conclusion using good English. (I'll tell you when you have to do this.)

