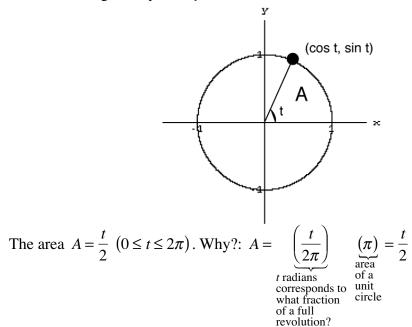
8.3: HYPERBOLIC FUNCTIONS

Circular functions (cos, sin)

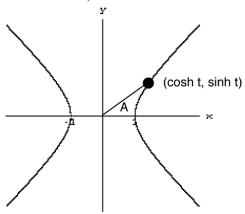
Let t be a parameter measured in radians; you will study parametrizations in Chapter 13 in Calc II. $(x = \cos t. \ y = \sin t. \text{ Remember}, \cos^2 t + \sin^2 t = 1.)$ As t varies, we sweep out the unit circle given by $x^2 + y^2 = 1$.



<u>Hyperbolic functions (cosh, sinh)</u>

Let t be a parameter measured in "hyperbolic radians."

Consider the "unit hyperbola" given by $x^2 - y^2 = 1$, or, in particular, just the right branch of it. $(x = \cosh t \ge 1)$. Remember, $\cosh^2 t - \sinh^2 t = 1$. In Chapter 13 in Calc II, you will study this parametrization.)



The area $A = \frac{t}{2}$, just as with the circular functions.

(If our point is below the *x*-axis, then *A* is a signed area.)

The <u>area</u> issues (not the angles) indicated above provide the connection between the circular and hyperbolic functions.