1.3: PREDICATES AND QUANTIFIERS

Ex Let \(P(x) \) denote the statement "\(x < 5 \)."

\(P \) is a predicate denoting the property "is less than 5."

\(P(x) \) is not a proposition, but it becomes a prop. (T/F) once we assign a value to \(x \).

\(P(x) \) is a propositional function that depends on the variable \(x \).

Ex In the case \(x = 4 \), "\(4 < 5 \)" is \(T \), so
\(P(4) \) is \(T \).

Ex In the case \(x = 5 \), "\(5 < 5 \)" is \(F \), so
\(P(5) \) is \(F \).

Ex 2 Let \(Q(x, y) \) denote "\(y = 3x + 1 \)."

Ex In the case \((x = 2, y = 7) \), "\(7 = 3(2) + 1 \)" is \(T \), so
\(Q(2, 7) \) is \(T \).
\(\forall \) is the "universal quantifier" (say "for all")

\[\forall x \, P(x) \] denotes the proposition

"\(P(x) \) is \(T \) for all values of \(x \),

in the universe of discourse,"

the domain of \(P \)
(we'll say "uod")

Some common "uod"s:

\[\mathbb{Z} \] is the set of all integers
\[\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \]

\[\mathbb{Z}^+ \] is the set of all positive integers.
\[\mathbb{Z}^+ = \{ 1, 2, 3, \ldots \} \]

\[\mathbb{R} \] is the set of all real #s.

Special case: Finite "uod"s

If the uod is a finite set, say \(\{ x_1, x_2, \ldots, x_n \} \), then

\[\forall x \, P(x) \iff P(x_1) \land P(x_2) \land \ldots \land P(x_n) \]

is \(T \) exactly when all these are \(T \).
Ex Let $P(x)$ be "x is an integer."

If the $\text{uo}_0 = \{1, 7, 15\}$, then $\forall x P(x)$ is T, because

\[P(1) \land P(7) \land P(15) \] is T.

If the $\text{uo}_0 = \{1, 7, \pi\}$, then $\forall x P(x)$ is F, because

\[P(1) \land P(7) \land P(\pi) \] is F.

one F

ruins it for
everybody

The uo_0 can be an infinite set.

Ex Let $P(x)$ be "$\exists x > x.$"

If the uo_0 is \mathbb{Z}^+, $\forall x P(x)$ is T.

If the uo_0 is \mathbb{Z}, $\forall x P(x)$ is F.

For example, $P(-1)$ is F. (-2 \neq -1).

$x = -1$ is called a counterexample.
\exists is the "existential quantifier" (say "there exists/is")

$\exists x \ P(x)$ denotes the proposition

"$P(x)$ is T for at least one element (x) in the uod."

Special case: Finite "uod"s

If the uod is $\{x_1, x_2, ..., x_n\}$, then

$$\exists x \ P(x) \iff P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$$

is T exactly when at least one is T

Ex Let $P(x)$ be "x is an integer."

If the uod = $\{1, \pi, e\}$, then $\exists x \ P(x)$ is T, because

$$P(1) \lor P(\pi) \lor P(e)$$ is T.

One T does it!

If the uod = $\{\sqrt{2}, \pi, e\}$, then $\exists x \ P(x)$ is F, because

$$P(\sqrt{2}) \lor P(\pi) \lor P(e)$$ is F.

All are F.
Ex Let $P(x)$ be "$x^2 = 16$.
Let the uod be \mathbb{Z}.

Then, $\exists x P(x)$ is T.
For example, $P(4)$ is T. $P(-4)$, also.

Ex Let $Q(x)$ be "$x^2 = 17$.
Let the uod be \mathbb{Z}.

There is no integer whose square is 17,
so $\exists x Q(x)$ is F.

Ex $P(x)$: "x is even", uod = \mathbb{Z}

$P(4)$ "4 is even" (T)
$\forall x P(x)$ "all integers are even" (F)
$\exists x P(x)$ "there is an even integer" (T)

In these cases, x is bound by a
value assignment or a quantifier.

In general, a propositional function becomes a
proposition only when all the variables are bound.
MORE THAN 1 VARIABLE

Imagine a grid:

\[\begin{array}{c}
\forall x \forall y P(x,y) \text{ is } T & \iff & y \in \{0, \ldots, n\} \\
\forall x \forall y P(x,y) \text{ is } F & \iff & y \in \{0, \ldots, n\} \setminus \{k\}
\end{array} \]

- all combos make \(P \) true
- there is a counterexample that makes \(P \) false

Ex: \(P(x,y) \): \(xy = yx \)
 \(uod = \mathbb{R} \) for both \(x, y \)

Then, \(\forall x \forall y P(x,y) \) is \(T \).

(Multiplication is commutative for all pairs of real numbers.)

Ex: \(P(x,y) \): \(x - y = y - x \)
 \(uod = \mathbb{R} \) for both \(x, y \)

Then, \(\forall x \forall y P(x,y) \) is \(F \).

Counterexample: \(x = 1, y = 0 \)
\\
\(1 - 0 \neq 0 - 1 \)
(2) \(\exists x \exists y \, P(x,y) \) is T \iff \(\forall x \exists y \, P(x,y) \)

there is an example combo that makes \(P \) true

\[
\begin{array}{c}
\text{is F} \iff \exists y \forall x \, \neg P(x,y)
\end{array}
\]

all combos make \(P \) false

\[\text{Ex } P(x,y): "x-y=y-x"
\]
\[\text{uod}=\mathbb{R} \text{ for both } x, y\]

Then, \(\exists x \exists y \, P(x,y) \) is T.

For example, \((x=2, y=2) \):
\[
\frac{2-2=2-2}{2}\]

\[\text{Ex } P(x,y): "xy=\pi"
\]
\[\text{uod}=\mathbb{Z} \text{ for both } x, y\]

Then, \(\exists x \exists y \, P(x,y) \) is F.

(No two integers multiply to \(\pi \).)

\[\forall x \forall y \, P(x,y) \iff \forall y \forall x \, P(x,y)\]

\(\text{can switch} \)

\[\exists x \exists y \, P(x,y) \iff \exists y \exists x \, P(x,y)\]

\(\text{can switch} \)

\(\underline{\text{BUT order usually matters when mixing } \forall s, \exists s.} \)
3. $\forall x \exists y. P(x,y)$ is T \iff y

Each x can find a y that makes P true.

y is F \iff $\exists x$ who can't find a y.

Ex: $P(x,y)$: "y - x = 6"

$\text{uod} = \mathbb{R}$ for both x, y

Then, $\forall x \exists y. P(x,y)$ is T. Why?

Regardless of which real # x is...

\[
y - x = 6 \\
y = 6 + x \quad \text{(real #)}
\]

we can let y equal 6 + x, and P will be T.

Key: y can depend on x!!

Idea: $P(0,6)$ is T

$P(1,7)$ is T

$P(x,6+x)$ is T

for any real #
Ex $P(x, y): \"x/y = 1\"$
\[uod = \mathbb{R} \text{ for both } x, y \]

Then, $\forall x \exists y P(x, y)$ is F. Why?

$x = 0$ can’t “find” a y (real #)

to make P true.

Note: Graph of $x/y = 1$ (like our “grid”)

Ex $P(x, y): \"x/y = y\"$
\[uod = \mathbb{Z} \text{ for both } x, y \]

Then, $\forall x \exists y P(x, y)$ is F. Why?

If x is odd, it can’t find an integer y to make P true.

Key: Watch your “uod”s !!.

If $uod = \mathbb{R}$ for both x, y, then T:
any real x can pick y to be x (real).
How color? \[\exists x \forall y \; P(x, y) \text{ is } T \iff \exists y \quad \text{(Each } x \text{ can find)} \]

There is a "magic" \(x \) that will make \(P \) true, regardless of \(y \) (in \(y \)'s \(\text{mod} \)), \(x \) \(\iff \) there is no such \(\exists y \text{ that makes } P \text{ false.} \)

\[\exists x \; P(x, y) : \left(\frac{\ln x}{y} = 0 \right) \quad \text{uod} = IR^+ \text{ for both } x, y \]

Then, \(\exists x \forall y \; P(x, y) \text{ is } T. \text{ Why?} \]

Exclude \(y = 0 \text{ from consideration } \)

\(x = 1 \) is a "magic" real \(\# \) that always makes \(P \) true.

\[\exists x \; P(x, y) : \left(x + y = 3 \right) \quad \text{uod} = IR \text{ for both } x, y \]

Then, \(\exists x \forall y \; P(x, y) \text{ is } F. \text{ Why? } \]

There is no "magic \(x \)" that works with all real "\(y \)'s to make \(P \) true.
Order doesn't matter: $(x=1), (y=2)$

Order usually matters!

$(\text{Prop}_A) \forall x \exists y \ P(x, y)$

This is $T \iff y \begin{array}{|c|}
\hline
x \hline
\end{array}$

$(\text{Prop}_B) \exists y \forall x \ P(x, y)$

This is $T \iff y \begin{array}{|c|}
\hline
x \hline
\end{array}$

There is a magic y...

Note

If (Prop_A) is T, then (Prop_B) is not necessarily T.

If (Prop_B) is T, then (Prop_A) must be T.

Shorthand: $A \rightarrow B$

$B \rightarrow A$
Exercise (3 vars)

\[P(x, y, z); \quad "xy = z" \]
\[\text{unod } = \text{IR for } x, y, \text{ and } z \]

Then, \(\forall x \forall y \exists z \ P(x, y, z) \) is T. Why?

Each pair of real #s has a real product.

\[\exists x \exists y \in \text{R} \ (x \neq y, x > 0) \]

Also, \(\exists z \forall x \forall y \ P(x, y, z) \) is F. Why?

There is no "magic" real # \(z \) that is the product for every pair of real #s.

(See also Ex 24 on p. 32)

Negations

\[\neg \forall x \ P(x) \iff \exists x \ \neg P(x) \]

\(\text{truth: if } \neg P(x) \text{ is true, then } P(x) \text{ is false.} \)

\[\neg \exists x \ P(x) \iff \forall x \ \neg P(x) \]

\(\text{truth: if } \forall x \ P(x) \text{ is true, then } P(x) \text{ is true for all } x. \)

Trick: if \(\neg \) switches sides

\[\exists x \iff \forall x \ \neg \]
HW Tips

In 1.3 (book), skip Exs. 12, 13, 16-21.

#10) Let \(Q(x, y) \) be "x has been a contestant on y" where for x = the set of all students at your school and for y = the set of all quiz shows on TV. Express in terms of \(Q \), quantifiers, and connectives:

a) There is a student at your school who has been a contestant on a TV quiz show.

\[\exists x \exists y \ Q(x, y) \]

b) No student at your school has ever been a contestant on a TV quiz show.

\[\forall x \forall y \neg Q(x, y) \]

\[\forall x \exists y \neg Q(x, y) \]

\[\exists x \exists y \neg Q(x, y) \]

c) There is a student at your school who has been on Jeopardy and Whose Fortune.

\[\exists x (Q(x, \text{Jeopardy}) \land Q(x, \text{W.O.F.})) \]
d) Every TV quiz show has had a student from your school...

\[\forall y \exists x \ Q(x, y) \]

#11) \(L(x, y) \): "x loves y"

\[y \text{ loved } x \]
\[\text{(x, y have same uod)} \]
\[\text{all people in the world} \]

d) - f): different possible answers (7, \(\square \), since same uod)

For me (give vals)

1) Nobody loves everybody

Book: \(\forall x \forall y \neg L(x, y) \)

Me: \(\neg \exists x \forall y \ L(x, y) \)

e) There is somebody whom Lydia does not love.

Book: \(\exists x \neg L(\text{lydia}, x) \)

Me: \(\exists y \neg L(\text{lydia}, y) \)

f) There is somebody whom no one loves.

Book: \(\exists x \forall y \neg L(y, x) \)

Me: \(\exists y \forall x \neg L(x, y) \)

\[\exists y \forall x \neg L(x, y) \]