14.1: VECTORS IN 2 D
(A) Scalars
are real \#s
(B) Vectors
have magnitude and direction
Ex A vector \vec{v} (or boldfaced " v ")

$$
\begin{aligned}
& \vec{v}=\overrightarrow{P Q} \\
& P \text { (initial } p+.)
\end{aligned}
$$

Exs Displacement, Velocity, force 5 smph ,
$\|\vec{v}\|=$ magnitude, length, or norm of \vec{v}
Equal vectors:
Harry Potter
π_{r}^{π} (Position is irrelevant.)
(c) \mathbb{R}^{2}
(Cartesian/Rectangular , coordinate System)
$=\{(x, y) \mid x$ and y are real \#5 $\}$
the set
of all
aiders that
"I-space"

The position vector for A or \vec{a}
$=\left\langle a_{1}, a_{2}\right\rangle$
horiz. Vertical Sa are components brackets
many
 use instead of v_{2}.
\vec{a} is in $V_{2}=\{\langle x, y\rangle \mid x$ and y are real \#s $\}$
$\|\vec{a}\|=\left\|\left\langle a_{1}, a_{2}\right\rangle\right\|$

$$
=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

(1) from Myth. The, /Distance formula
(2) all ≥ 0 always
(D) Standard Unit Vectors in V_{2}

$$
\begin{aligned}
& \vec{i}=\langle 1,0\rangle \\
& \dot{j}=\langle 0,1\rangle \\
& \left\langle a_{1}, a_{2}\right\rangle=a_{2} \vec{i}+a_{2} \vec{j}
\end{aligned}
$$

Physics!

Ex $\langle 3,2\rangle=3 \vec{i}+2 \vec{j}$
Treasure Map

Basic Example of ...
(E) Vector Addition

$$
E x \underset{\sim}{\langle x} \underset{\rightarrow \vec{w}}{\langle 1,4\rangle}+\langle 2,3\rangle
$$

Add corresponding components.

$$
\begin{aligned}
& =\langle 1+2,4+3\rangle \\
& =\langle 3,7\rangle
\end{aligned}
$$

Triangle Law
"Head-to-tail"

Parallelogram Law
"Tail-to-tail"

$$
\vec{v}+\vec{w}=\text { resultant }
$$

Exs Net displacement Net force
(F) Scalar Multiples of \vec{v}

Ex $3\langle-1,2\rangle$
Multidy each component by 3.

$$
\begin{aligned}
& =\langle 3(-1), 3(2)\rangle \\
& =\langle-3,6\rangle
\end{aligned}
$$

c \vec{v}
'scalar can (1) rescale \vec{v}
(2) flip direction (if $c<0$)

- $\overrightarrow{0}=\langle 0,0\rangle \quad c=0$
has every direction

$$
c<0
$$

\Rightarrow opposite direction

$$
\|\vec{c}\|=|c|\|\vec{v}\|
$$

never negative
\vec{w} is parallel to $\vec{v}(\vec{w} \| \vec{v}) \Leftrightarrow \begin{gathered}\text { it and } \\ \text { only }\end{gathered}$
$\vec{w}=c \vec{v}$ for some scalar c (or $\vec{v}=\overrightarrow{0}$)
i.e, The rectors parallel to \vec{v} are the scalar multiples of $\vec{v}, \quad(\vec{v} \neq \gamma)$

Deft $\quad \frac{\vec{v}}{c}=\frac{1}{c} \vec{v} \quad(c \neq 0)$
Divide each component by c.

$$
\begin{aligned}
& \text { Def in } \vec{v}-\vec{w}=\vec{v}+(-\vec{w}) \\
& \text { Ex }\langle 3,2\rangle-\langle 5,1\rangle=\langle 3-5,2-1\rangle \\
&=\langle-2,1\rangle
\end{aligned}
$$

$$
\underset{\vec{w}}{\vec{v}} \underset{\vec{w} \vec{v}-\vec{w}}{\vec{w}+(w h a t ?)} \underset{\vec{v}-\vec{w}}{\left(\lambda^{2}\right)}
$$

(G) Ex

$$
\text { If } \begin{aligned}
& \vec{a}=\left\langle 2, \frac{1}{2}\right\rangle, \vec{b}=\langle-3,1\rangle \text {, find }\|4 \vec{a}+3 \vec{b}\| . \\
&\|4 \vec{a}+3 \vec{b}\|=\left\|4\left\langle 2, \frac{1}{2}\right\rangle+3\langle-3,1\rangle\right\| \\
&=\|\langle 8,2\rangle+\langle-9,3\rangle\| \\
&=\|\langle 8+(-9), 2+3\rangle\| \\
&=\|\langle-1,5\rangle\| \\
&=\sqrt{(-1)^{2}+(5)^{2}}
\end{aligned}
$$

(14) An Initial Point and a Terminal Point Determine a Vector

(I) The Unit Vector in the Direction of $\vec{v} \quad(\vec{v} \neq \overrightarrow{0})$

$$
\vec{u}=\frac{1}{\|v\|} \vec{v} \text { or } \frac{\vec{v}}{\|\vec{v}\|}
$$

Normalizing \bar{v}

(1) Ex
$P(1,-2) ; Q(-3,-1)$. Find the unit vector in the direction of \vec{Q}.
Solon

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle-3-1,-1-(-2)\rangle \quad \text { Think: " } Q-p^{\prime \prime} \\
& =\langle-4,1\rangle \\
\|\overrightarrow{P Q}\| & =\sqrt{(-4)^{2}+(1)^{2}} \\
& =\sqrt{17} \\
\vec{u} & =\frac{\overrightarrow{P Q}}{\|\vec{P}\|}=\frac{\langle-4,1\rangle}{\sqrt{17}}=\left\langle-\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right\rangle
\end{aligned}
$$

can rat'lize the denom.
(6) Finding Horiz., Vertical Components of a Vector in V_{2}

$\theta=$ direction angle for \vec{v}

Given $\|\vec{v}\|, \theta \Rightarrow$ find v_{1}, v_{2}

$$
\begin{aligned}
& \cos \theta=\frac{V_{1}}{\|\nabla\|} \\
& \sin \theta=\frac{v_{2}}{\|\vec{v}\|} \\
& v_{1}=\|\vec{v}\| \cos \theta \\
& v_{2}=\|\vec{v}\| \sin \theta \\
& \vec{v}=\langle\underbrace{\left\|_{\vec{v}}\right\|_{\cos } \theta}_{V_{1}}, \underbrace{\left\|_{\vec{v}}\right\|_{\sin } \theta}_{V_{2}}\rangle \\
& =\underset{\substack{\text { horiz. } \\
\text { comp. } \\
\text { of }}}{\substack{v}} \quad=\text { vertical }
\end{aligned}
$$

Up to 47

$$
\begin{aligned}
\vec{v} & =\langle\|\vec{v}\| \cos \theta,\|\vec{v}\| \sin \theta\rangle \\
& =\left\langle 20 \cos 30^{\circ}, 20 \sin 30^{\circ}\right) \\
& =\left\langle 20\left(\frac{\sqrt{3}}{2}\right), 20\left(\frac{1}{2}\right)\right\rangle \\
& =\langle 10 \sqrt{3}, 10\rangle
\end{aligned}
$$

Given $v_{1}, v_{2} \Rightarrow$ find $\|\vec{v}\|, \theta$

$$
\|v\|=\sqrt{v_{1}{ }^{2}+v_{2}^{2}}
$$

$\tan \theta=\frac{V_{2}}{V_{1}}$, Watch Quadrant!
(Dor III? I or IV?)
(L) Vector Properties 4.687$)^{\text {Sunhowsi }}$
$\vec{a}, \vec{b}, \vec{c}, \vec{o}$ are vectors in $V_{n}(n$ is a fixed natural $\#)$), c, d are scalars.

Like \#Sy
but with c,
notp. Ex Prove $c(\vec{a}-\vec{b})=\left(\vec{a}-c \vec{b}\right.$. (\vec{a}, \vec{b} in V_{2}, c scalar $)$
Let $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle \quad$ Trick: Boil thingr down to
$\vec{b}=\left\langle b_{1}, b_{2}\right\rangle \quad$ properties of real $\# s$; rebuild up.

$$
\begin{aligned}
c(\vec{a}-\vec{b}) & =c\left(\left\langle a_{1}, a_{2}\right\rangle-\left\langle b_{1}, b_{2}\right)\right) \\
& =c\left(\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle\right) \\
& =\left\langle c\left(a_{1}-b_{1},\right)^{2}, c\left(a_{2}-b_{2}\right)\right\rangle \\
& =\left\langle c a_{1}-c b_{1}, c a_{2}-c b_{2}\right\rangle \\
& =\left\langle c a_{1},\left(a_{2}\right\rangle-\left\langle c b_{1}, c b_{2}\right\rangle\right. \\
& =c\left\langle a_{1}, a_{2}\right\rangle-c\left\langle b_{1}, b_{2}\right\rangle \\
& =c \vec{a}-c \vec{b}
\end{aligned}
$$

QED (end of proof)
Quod Erat Demonstrandum

- 14.2: VECTORS IN 30
(A) $\mathbb{R}^{3}=\left\{\left(\begin{array}{l}\text { (using C Cartesian lords.) }\end{array}\right.\right.$
$=\{(x, y, z) \mid x, y$, and z are real \#s $\}$ "3-space"

(sticks out at yous

These coordinate axes are mutually
perpendicular (or orthogonal, or 1).
Beware of distortion! $30 \rightarrow 20$ paper

Coordinate planes

(Ra) $\mathbb{R}_{I_{x}}<\left(\begin{array}{l}x>0) \\ y>0\end{array} 4\right.$ quadrants

Ex Plot the point $P(1,2,3)$, and draw $\vec{v}=\langle 1,2,3\rangle$, a vector in V_{3}.

(B) Standard Unit Vectors in V2

$$
\begin{array}{lc}
\begin{array}{l}
\vec{i}=\langle 1,0,0\rangle \\
\vec{j}=\langle 0,1,0\rangle \\
\vec{k}=\langle 0,0,1\rangle \\
\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}
\end{array} \\
\begin{array}{l}
\text { Ex } \\
\underline{i}\langle 2,-3,-1\rangle=- \\
\end{array} \quad \text { Physics! }
\end{array}
$$

(C) $\overrightarrow{P_{1} P_{2}}$

$$
\begin{array}{l}
P_{1}\left(x, y y_{1}, z_{1}\right) ; P_{2}\left(x_{2}, y_{2}, z_{2}\right) \\
\vec{P}_{1} \vec{P}_{2}
\end{array}=\langle\underbrace{x_{2}-x_{1}}_{\begin{array}{c}
\Delta x \\
\text { uppercase } \\
\text { updelat } \\
\text { change in) }
\end{array}}, \underbrace{y_{2}-y_{1}}_{\Delta y}, \underbrace{z_{2}-z_{1}}_{\Delta z}\rangle)
$$

Find d

Apply By th. The. twice!

$$
\begin{aligned}
d^{2} & =\frac{c^{2}}{x^{2}}+(\Delta z)^{2} \\
& =(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2} \quad\left(0 k_{i}+\Delta x\left(0, e \epsilon_{1}\right)\right. \\
d & =\sqrt{(\Delta x)^{2}+(a)^{2}+(\Delta z)^{2}} \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

Special Case

$$
\begin{aligned}
\|\vec{a}\| & =\left\|\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right\| \\
& =\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
\end{aligned}
$$

The midpoint of $\overline{P_{1} P_{2}}$ is $(\underbrace{\frac{x_{1}+x_{2}}{2}}_{\substack{\text { are rage } \\ \text { of } x \text {-cords. }}}, \underbrace{\frac{y_{1}+y_{2}}{2}}_{y}, \underbrace{\frac{z_{1}+z_{2}}{2}}_{z})$

Ex Let l be the line passing through $P_{1}(4,0,-2)$ and $P_{2}(2,5,7)$.
Find two unit vectors $\frac{\text { parallel to this line. }}{\text { "il" }}$
Sol'n
Find $\vec{P}_{1} \vec{P}_{2}$ (or $\vec{P}_{2} \vec{P}_{1}$), a vector $\| l$.

$$
\begin{aligned}
\overrightarrow{p_{1} p_{2}} & =\langle 2-4, s-0,7-(-2)\rangle \\
& =\langle-2,5,9\rangle
\end{aligned}
$$

Find the unit vector in the direction of $\vec{P}_{1} \vec{P}_{2}$. Normalize $\overrightarrow{P_{1} P_{2}}$.

$$
\begin{aligned}
\left\|\overrightarrow{P_{1} P_{2}}\right\| & =\sqrt{(-2)^{2}+(5)^{2}+(9)^{2}} \\
& =\sqrt{110} \\
\vec{u}_{1} & =\frac{\overrightarrow{P_{1} P_{2}}}{\left\|P_{1} P_{2}\right\|} \\
& =\frac{\langle-2,5,9\rangle}{\sqrt{110}} \quad \text { real }, \frac{1}{\sqrt{110}}\langle-2,5,9\rangle \\
& =\left\langle-\frac{2}{\sqrt{110}}, \frac{5}{\sqrt{110}}, \frac{9}{\sqrt{110}}\right\rangle
\end{aligned}
$$

Find the opposite unit vector.

$$
\begin{aligned}
\vec{u}_{2} & =-\vec{u}_{1} \\
& =\left|\left\langle\frac{2}{\sqrt{110}},-\frac{5}{\sqrt{110}},-\frac{9}{\sqrt{110}}\right\rangle\right|
\end{aligned}
$$

(D) The Graph of an Equation
consists of all points whose coords. satisfy the equation.
$\mathbb{R}^{\prime} \rightarrow \mathbb{R}^{2}$
$x=2$

- ${ }^{0} /^{-x}$ sweep ! fo maxis to get

Graph
\mathbb{R}^{2}

$$
x+y=1
$$

($\mathbb{R}^{2} \quad x=2$

($\mathbb{R}^{3} z=2$

\mathbb{R}^{3}

$$
x+y=1
$$

Not the whee graph!

For any (x, y) that satisfies $x+y=1$, (x, y, z) will satisfy $x+y=1$ for any real z.
We "sweep" the line Il to the z-axis. We then pick up all $\frac{t \text {-cords. for any }}{}$ (x, y) that "worker."

plane IIz-axis

Circles: (E) Spheres
Find an eq, for the sphere with Center C $\left(x_{0}, y_{0}, z_{0}\right)$;

Radius $=r \quad(r>0)$

We want all points (x, y, z) that are r units away from C.

$$
\begin{aligned}
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r \\
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
\end{aligned}
$$

$\# 30 \rightarrow$

$$
x^{2}+y^{2}+z^{2}-6 x-10 y+6 z+34=0
$$

Group terms.

$$
\left(x^{2}-6 x\right)+\left(y^{2}-10 y\right)+\left(z^{2}+6 z\right)=-34
$$

Complete the Square (CTS) within groups; Balance!

$$
\begin{aligned}
& \left(x^{2}-6 x+9\right)+\left(y^{2}-10 y+25\right)+\left(z^{2}+6 z+9\right)=-34+9+25+9 \\
& \begin{array}{l}
\text { Factor } \\
(x-3)^{2}+(y-5)^{2}+(z+3)^{2}
\end{array}=\underbrace{9}_{r^{2}=9} \\
& \begin{array}{l}
C:(3,5,-3) \\
r=3
\end{array}
\end{aligned}
$$

(E) Regions in \mathbb{R}^{3}

Ex Describe $R=\left\{(x, y, z)\left|x^{2}+y^{2} \leq 1,|z| \leq 4\right\}\right.$.
Extra conditions/ restrictions never
grow the surface. grow the surface.
(1)(1) $x^{2}+y^{2}=1$

(2) ${ }^{2}$

$$
\underbrace{x^{2}+y^{2}}_{\substack{\text { squared } \\ \text { distance } \\ \text { from } 0}} \leq 1
$$

(3) $\left(\mathbb{R}^{3}\right)$

$$
x^{2}+y^{2} \leq 1
$$

open-ended solid circular (bycross-section) cylinder
(4) $\mathbb{1 R}^{3}$

$$
x^{2}+y^{2} \leq 1, \underbrace{|z| \leq 4}_{-4 \leq z \leq 4}
$$

All points inside or on the closed circular cylinder with center at 0 , radius 1 , altitude (height 18, and axis along the z-axis,
(A) $\vec{a} \cdot \vec{b}$
is a scalar. Algebraic definition: $\left.\vec{a} \cdot \vec{b}=\sum_{i=1}^{n} a_{i} b_{i} \quad \begin{array}{l}\vec{a}=\left(a_{1}, a_{3}, a_{n}\right) \\ \vec{b}=\left(a_{1}, b_{2}, b_{n}\right)\end{array}\right)$

$$
=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} i_{i=1}
$$

We add products of corresponding components.
Ex $\langle 2,-3,-4\rangle \cdot\langle 1,-2,5\rangle$

$$
=(2)(1)+(-3)(-2)+(-4)(5)
$$

up to s
(B) Properties $(4,702)$
$\overrightarrow{0}, \vec{a}, \vec{b}, \vec{c}$ in $V_{n} ; c$ scalar
Prove in 39
(i) $\vec{a} \cdot \vec{a}=\|\vec{a}\|^{2}$
(ii) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
(iii) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$

Comments
$\frac{E_{x}}{}\langle 2,3\rangle \cdot\left\langle\{3\rangle=(2)^{2}+(3)^{2}=\left(\|\langle 3,3) \mid(\mid)^{2}\right.\right.$ $\because "$ is comm.
"" distributes over vector " + " (prot p.702)
Scalar malt. is flexible re"."
(iv) $(\vec{a}) \cdot \vec{b}=$

Ex Prove $(c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})$ if \vec{a}, \vec{b} in V_{3}.
Proof Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

$$
\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

$$
\begin{aligned}
\langle c \vec{a} \cdot| \vec{b} & =\left(c\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right) \cdot\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
& =\left\langle c a_{1},\left(a_{2}, c a_{3}\right) \cdot\left(b_{1}, b_{2}, b_{3}\right)\right. \\
& =c a_{1}, b_{1}+c a_{2} b_{2}+c a_{3} b_{3} \\
& =c\left(a_{1}, b_{1}+a_{2} b_{2}+a_{3}, b_{3}\right) \\
& =c\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left(b_{1}, b_{2}, b_{3}\right\rangle\right) \\
& =c(\vec{a} \cdot \vec{b})
\end{aligned}
$$

c any scalar
(C) Angle Between \vec{a}, \vec{b}

Let $\theta=$ smallest nonnegative angle between the position vectors for \vec{a}, \vec{b}.

$$
0 \leq \theta \leq \pi
$$

From the Law of Cosines for triangles,

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=\underbrace{\|\vec{a}\|\|\vec{b}\|}_{\text {product }} \underbrace{\cos \theta}_{\text {fines } \cos \text { of }} \\
& \text { dor lengths angle between them } \\
& \begin{array}{c}
\text { (Geometric def'n) } \\
\text { "polar" }
\end{array} \\
& \Rightarrow \cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \vec{b} \|} \quad(\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}) \\
& \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{(h \vec{a}(\vec{a} \vec{b})}\right)
\end{aligned}
$$

Ex (\#12) Find the angle between $\vec{a}=\vec{i}-7 \vec{j}+4 \vec{k}, \vec{b}=5 \vec{i}-\vec{k}$.
Sol $\vec{a}=\langle 1,-7,4\rangle, \vec{b}=\langle 5,0,-1\rangle$

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\langle 1,-7,4\rangle \cdot\langle 5,0,-1\rangle}{\|\langle 1,-1,4\rangle\|\|(5,0,-1\rangle\|}\right) \\
& =\cos ^{-1}\left(\frac{1}{\sqrt{66} \sqrt{26}}\right) \\
& =\cos ^{-1}\left(\frac{1}{\sqrt{1776}}\right) \\
& \approx 1.547 \text { (radians) or } 88.6^{\circ}
\end{aligned}
$$

(0) Cauchy-Schwarz Inequality

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\| \vec{b} \| \underbrace{\cos \theta}_{\substack{i \leq \cos \theta \leq 1 \\
i \cos \theta 1 \leq 1}} \quad\left(\begin{array}{l}
\| F I \text { give you two sticks } \\
\text { of fixed lengths, what } \\
\text { are the possible dot prods.? }
\end{array}\right)
$$

$\Rightarrow|\vec{a} \cdot \vec{b}| \leq\|\vec{a}\|\|\vec{b}\|$ The absolute value of a dot product cannot exceed the product of the lengths.
(E) Triangle Inequality

The length of one side cannot exceed the sum of the lengths of the other two sides.

$$
\|\vec{a}+\vec{b}\| \leq\|\vec{a}\|+\|\vec{b}\|
$$

Prof uses (D).

Ex (\#48) When is $\|\vec{a}+\vec{b}\|=\|\stackrel{\rightharpoonup}{a}\|+\|\vec{b}\|$?

$$
\Leftrightarrow(\|\vec{a}+\vec{b}\|)^{2}=(\|\vec{a}\|+\|\vec{b}\|)^{2}
$$

because magnitudes are nonnegative

$$
\begin{aligned}
& \Leftrightarrow \underbrace{(\vec{a}) \cdot(\vec{b})}_{\begin{array}{l}
\text { we used } \\
\|\vec{a}\|^{2}=\vec{b} \cdot \vec{b}
\end{array}}=\|\vec{a}\|^{2}+2\|\vec{a}\|\|\vec{b}\|+\|\cdot\|^{2} \\
& \Leftrightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=1 \\
& \Leftrightarrow\|\vec{a}\|^{2}+2(\vec{a} \cdot \vec{b})+\|\vec{b}\|^{2}=\|\vec{a}\|^{2}+2\|\vec{a}\|\|\vec{b}\|+\| \vec{b} H^{2} \\
& \Leftrightarrow 2(\vec{a} \cdot \vec{b})=2\|\vec{a}\|\|\vec{b}\| \\
& \Leftrightarrow \quad \vec{a} \cdot \vec{b}=\|\vec{a}\| \vec{b} \| \\
& \Leftrightarrow\|\vec{a}\|\|\vec{b}\| \cos \theta=\|\vec{a}\|\|\vec{b}\| \quad(0 \leq \theta \leq \pi) \\
& \Leftrightarrow \quad \vec{a}=\vec{b}, \text { or } \vec{b}=\overrightarrow{0}, \text { or } \cos \theta=1 \\
& \theta=0 \\
& \Leftrightarrow \vec{a}=\overrightarrow{0}, \text { or } \vec{b}=\overrightarrow{0}, \text { or } \vec{a} \text { and } \vec{b} \text { have the same direction }
\end{aligned}
$$

"Degenerate triangle"
(F) comp $\vec{b} \vec{a}=$ The Component of \vec{a} Along \vec{b} (scalar)

Review $\vec{a}=\langle 3,2\rangle=3 \vec{i}+2 \vec{j}$
Larson uses this approach. Math 254 -Linear Alg.
approach

We're decomposing an as a sum of 21 vectors, (4)

Other ways to do Θ !
Ex If $\vec{a}=\langle 3,2\rangle, \vec{b}=\langle 5,1\rangle$, find comp \vec{b}.
$\overrightarrow{p r o j} \vec{b}_{b}^{\vec{a}}$
Think shadow of \vec{a} on
the time \vec{b} when a flashistht's
beams are 16

See 14.1.7
$\cos \theta=\frac{A}{H}$
$A=H \cos \theta$
$\theta \frac{H}{A}$

$$
\begin{array}{rlr}
\operatorname{comp}_{\vec{b}} \vec{a} & =\|\vec{a}\| \cos \theta & (\vec{b} \neq \overrightarrow{0}) \\
& =\| \frac{\vec{a} \#}{}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}+\| \vec{b} \|}\right)
\end{array}
$$

$$
\begin{gathered}
\left.\operatorname{comp}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \quad(\vec{b} \neq \overrightarrow{0}) \right\rvert\, \\
\text { Think "or for "bottom." }
\end{gathered}
$$

or $\vec{a} \cdot\left(\frac{\vec{b}}{\|\vec{b}\|}\right.$ unit rector in
direction of $\frac{6}{6}$

$$
\begin{aligned}
& \ln E x_{j} \text { comp } \vec{a} \\
&=\frac{\langle 3,2\rangle \cdot\langle 5,1\rangle}{\sqrt{(5)^{2}+(1)^{2}}} \\
&=\frac{17}{\sqrt{26}} \\
& \approx 3.334 \quad \text { (makes sense in figure) }
\end{aligned}
$$

$$
\text { If } \theta \text { is obtuse } \Rightarrow \vec{a} \cdot \vec{b}<0 \Rightarrow \operatorname{comp}_{\vec{b}} \vec{a}<0
$$

Ex

Larson

$$
\begin{aligned}
& =\left(\operatorname{comp}_{\vec{b}} \vec{a}\right) \underbrace{\left.\frac{\text { unit }}{}_{\text {direction of } \vec{b}} \overrightarrow{p r o j b}_{\vec{b}} \vec{a} \|=\left.\right|_{c o m p_{b}} \vec{a} \right\rvert\,}_{\text {length }=1 \text { to ensure } \|} \\
& =\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}\right)\left(\frac{\vec{b}}{\|\vec{b}\|}\right) \\
& \overrightarrow{\operatorname{proj}}_{\vec{b}} \vec{a}=\underbrace{\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^{2}} \vec{b} \quad(\vec{b} \neq \overrightarrow{0})}_{\text {scoter }}(\overrightarrow{\operatorname{proj}}, \vec{a}) / \vec{b}
\end{aligned}
$$

(G) Work
$\vec{F}=$ constant force (using Newtons, say)
$\vec{d}=$ displacement (using meters, say)

$$
\begin{aligned}
& \text { Work done "W" }=\underbrace{\left(\text { comps }_{d} \vec{f}\right)}_{\substack{\text { rene east } \\
\text { measure }}} \underbrace{(\| \| I I)}_{\text {distance }} \\
& \text { of force } \\
& =\left(\frac{\vec{F} \cdot \vec{d}}{\frac{d}{l}+H}\right)(\vec{H}+\#) \\
& W=\vec{F} \cdot \vec{d} \text { in Newton-meters } \\
& \text { (or joules) }
\end{aligned}
$$

14.4: CROSS (VECTOR) PROOUCT

Larson 730 e) x notation by Josiah Gillions
(U.S .phys.)
$\vec{a} \times \vec{b} \quad\left(\vec{a}, \vec{b}\right.$ in $\left.V_{3}\right)$ is a vector.
(A) Determinant of a 2×2 Matrix

$$
\underbrace{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c}_{\text {scalar }} \quad x-\text { butterfly }
$$

(B) Determinant of a 3×3 Matrix

Method 1: Expansion by Cofactors

* Choose a "magic" row or column, say Row 1.

Take the corresponding signs from the sign matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
+ & - & + \\
\hline- & + & - \\
+ & - & +
\end{array}\right] \text { "checkerboard" }}
\end{aligned}
$$

$$
\begin{aligned}
& -b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g)
\end{aligned}
$$

Method 2 Sarrus's Rule (only for Order 3)
(1) Rewrite $1^{\text {st }}, 2^{\text {nd }}$ columns on the right.
(2) Add products along the 3 full diagonals
(3) Subtract

Like 2×2

(equivalent to result from Method 1)
(c) $\vec{a} \times \vec{b}$

$$
\left.\begin{array}{rl}
\text { If } \vec{a} & =\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
\vec{b} & =\left\langle b_{1}, b_{2},\right. \\
b_{3}
\end{array}\right\rangle^{\prime} \text {, then }, \begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
a_{2} & a_{3} \\
\vec{b} & b_{2} & b_{3}
\end{array}\right|
\end{array}
$$

*Vectors, so not technically a "determinant."

$$
\text { Ex (\#2) If } \vec{a}=\langle-5,1,-1\rangle, \vec{b}=\langle 3,6,-2\rangle \text {, find } \vec{a} \times \vec{b} \text {. }
$$

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\oplus & \Theta_{\vec{~}} & \oplus+ \\
i & \vec{k} \\
-5 & j & -1 \\
3 & 6 & -2
\end{array}\right|^{\text {for Method } 1}
$$

Method I

$$
\begin{aligned}
& =\left|\begin{array}{cc}
1 & -1 \\
6 & -2
\end{array}\right| \vec{i} \underset{\substack{\text { magic } \\
\text { entry careful! }}}{ } \underset{\mid c c}{-5}-1\left|\vec{j}+\left|\begin{array}{cc}
-5 & 1 \\
3 & 6
\end{array}\right| \vec{k}\right. \\
& =[-2-(-6)] \vec{i}-[10-(-3)] \vec{j}+[-30-3] \vec{k} \\
& =4 \vec{i}-13 \vec{j}-33 \vec{k} \text { or }\langle 4,-13,-33\rangle
\end{aligned}
$$

Method 2

Can do 1,5

$$
=-2 \vec{i}-3 \vec{j}-30 \vec{k}-3 \vec{k}+6 \vec{i}-10 \vec{j}
$$

$=4 \vec{i}-13 \vec{j}-33 \vec{k}$ or $\langle 4,-1,-33\rangle$
(D) Basic Properties

$$
\begin{aligned}
& \vec{a}, \stackrel{\rightharpoonup}{b}, \vec{c} \text { in } V_{3}, \\
& m \text { scalar }
\end{aligned}
$$

" x " is not commutative or associative.
(E) Geometry

Direction of $\vec{a} \times \vec{b}$

$$
\begin{array}{|lll}
\vec{a} \times \vec{b} & \perp & \vec{a} \\
\vec{a} \times \vec{b} & \perp & \vec{b}
\end{array} \quad \leftarrow \text { Show }(\vec{a} \times \vec{b}) \cdot \vec{a}=0 \text {. }
$$

Right -Hand Rule
If its fingers curl "through $\theta^{\prime \prime} \quad(0<\theta<\pi)$ from \vec{a} to \vec{b}, then its thumb points in the direction of $\vec{a} \times \vec{b}$.

Length of $\vec{a} \times \vec{b}$

$$
\begin{equation*}
\underbrace{\|\vec{a} \times \vec{b}\|}_{\text {scalar }}\|=\| \vec{a}\| \| \hbar \sin \theta \tag{®}
\end{equation*}
$$

Proof (Optional)-p. 713
Recall $\underbrace{\vec{a} \cdot \vec{b}}_{\text {scalar }}=\|\vec{a}\|\|\vec{b}\| \cos \theta$

$$
\begin{aligned}
& \vec{a} \| \vec{b} \leftrightarrow \theta=0 \text { or } \theta=\pi \text { or } \vec{a}=\overrightarrow{0} \text { or } \vec{b}=\overrightarrow{0} \\
& \not x^{\prime} \\
& \Leftrightarrow \sin \theta=0 \\
&\|\vec{a}\|\|\vec{b}\| \sin \theta=0 \\
&\stackrel{\rightharpoonup}{0}) \\
& \Leftrightarrow \vec{a} \times \vec{b} \|=0 \\
& \vec{a} \times \vec{b}=\overrightarrow{0} \\
& \vec{a} \| \vec{b} \Leftrightarrow \vec{a} \times \vec{b}=\overrightarrow{0} \\
& \text { vector }
\end{aligned}
$$

Recall $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0$

3 noncollinear points in \mathbb{R}^{3} determine
do not lie on the same fine
(a) one triangle, and
(b) different parallelograms) The given with the same area. Sointsare

How are $\overrightarrow{B A} \times \overrightarrow{B C}$, $\overrightarrow{B C} \times \overrightarrow{B A}$ related:

$$
\begin{aligned}
& \text { Area }=\|\overrightarrow{B A} \times \overrightarrow{B C}\| \\
&=\|\overrightarrow{B C} \times \overrightarrow{B A}\| \\
& \text { Qrporite vectors } \\
&=\|\overrightarrow{A B} \times \overrightarrow{A C}\|
\end{aligned}
$$

 vertices.
etc.

Area of triangle $A B C=\frac{1}{2}$ (any of these)
Use all 3 points!

Ex Find the area of the triangle determined by $A(8,-3,2), B(3,-2,1)$, and $C(11,3,0)$.
Sol'n

$$
\begin{aligned}
\overrightarrow{A B} & =\langle 3-8,-2-(-3), \mid-2\rangle \\
& =\langle-5,1,-1\rangle \\
\overrightarrow{A C} & =\langle 11-8,3-(-3), 0-2\rangle \\
& =\langle 3,6,-2\rangle
\end{aligned}
$$

From (C), $\overrightarrow{A B} \times \overrightarrow{A C}=\langle 4,-13,-33\rangle$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\|\langle 4,-13,-33\rangle\| \\
& =\frac{1}{2} \sqrt{(4)^{2}+(-13)^{2}+(-33)^{2}} \\
& =\frac{1}{2} \sqrt{1274} \\
& \approx 17.8
\end{aligned}
$$

(F) $\vec{i}, \vec{j}, \vec{k}$

Wheel: $八^{\vec{i}}$ (vector) \times (successor) $=\left(3^{\text {rd }}\right)$
face bard
$\underline{\vec{a}} \times \vec{b}$ Table
$2 \vec{i} \times \vec{j}=\vec{k}:{ }_{i}^{k} \uparrow \rightarrow \vec{j}$ en and $\left\|\vec{i} \times \vec{j}^{j}\right\|=1$ (vector) $\times($ predecessor $)=-\left(3\right.$ rd) $\left.\begin{array}{c}\text { (why ice } \\ 14.45(0)\end{array}\right)$ $\hat{s} \Rightarrow \Theta \quad \vec{j} \times \vec{i}=-\vec{k}$:

$$
\vec{i}_{-\vec{k}}^{\vec{l}^{j}} \text { and } \mid\left\|_{j} x_{i}\right\|=1
$$

(G) The Distance Between a Point and a Line

$$
v_{p} \text { to } 19
$$

Area of $\theta=6 \mathrm{~h}$

$$
\begin{aligned}
& h=\frac{\text { Area }}{b} \quad\left(\begin{array}{c}
U_{\text {se }} \\
3 \text { all } \\
\text { point }
\end{array}\right) \\
& d=\frac{\|\vec{P} \times \overrightarrow{P R}\|}{\|\overrightarrow{P Q}\|}=\frac{\|\vec{P} R \times \vec{F}\|}{\|\vec{R}\|}
\end{aligned}
$$

Recall $c=\operatorname{comp}_{P \vec{P}} \overrightarrow{P R}=\frac{\overrightarrow{P R} \cdot \overrightarrow{P Q}}{\|\vec{P}\|}\binom{$ on off }{ omitted }

Not Traveling (H) Triple Scalar Product (TSP, Box Product)
Salesman
Prop. (v) TTSP $=(\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})$ (scalar)
ie., You can switch " x " and "."
ie., Cross 2 successive vectors in order, and dot the result with the 3 rd 7 some\#

Nonsense: $\underbrace{\frac{(\vec{a} \cdot \vec{b})}{\text { rector }} \text { 容 }}_{\text {scalar }}$
\#lunangeres) For computation:

$$
T S P=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|<\vec{a}
$$

$C_{a n}$ do: $T S P=\underset{\substack{|\vec{a} \vec{c}| \\ \text { by columns }}}{ } ;|A|=\left|\begin{array}{c}\left|A^{\top}\right| \\ \text { matrix }\end{array}\right|$

$|T S P|=$ volume of box (parallelepiped) ${ }_{a}^{k}$ ass.value determined by $\vec{a}, \vec{b}, \vec{c}$

Proof (Optional) p. 716 or:
$\underset{\stackrel{a}{a} \times \vec{b}}{\stackrel{\rightharpoonup}{b}}$ Larson 734 uses pros

$$
\vec{a}=\overrightarrow{0}, 0, b=\overrightarrow{0}
$$

$$
\Rightarrow \vec{a} \| \vec{b}
$$

$\vec{a} \| \vec{c} \Rightarrow \vec{a} \times \vec{b} \perp \vec{c}$

$$
\begin{aligned}
& V=B h \\
& =\|\vec{a} \times \vec{b}\||\mathrm{comp} \overrightarrow{\vec{a} \times \vec{b}} \times \vec{c}| \\
& =\|\vec{a} \times \vec{b}\|\left|\frac{\vec{c} \cdot(\vec{a} \times \vec{b})}{\frac{\| \vec{a} \times \vec{b}}{>0}}\right|+\begin{array}{c}
(\vec{a}+1 \vec{b}) \\
\text { cherewise, } \\
\text { ISoPOD }
\end{array} \\
& =|(\vec{a} \times \vec{b}) \cdot \vec{c}| \quad\left\langle\left({ }^{(1,} .{ }^{\prime \prime}\right.\right. \text { comm.) } \\
& =|T S P|
\end{aligned}
$$

$T S P=0 \Leftrightarrow[$ position vectors for $] \vec{a}, \vec{b}, \vec{c}$ are $\underset{\text { tie in same plane }}{\text { coplanar }}$

$$
c_{c}^{\vec{a}}
$$

(I) Triple Vector Product

Prop. (vi) $\quad \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ (I'll give)
" x " not associative:

$$
\text { Often, } \vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}
$$

or Moment of \vec{E} (J) Torque (Optional)
about o.
P moves

$\|\overrightarrow{O P}\|$ fixed (constant). Let's say $\|F\|$ is fixed.

When is $\|\overrightarrow{o p} \times \vec{F}\|$ maximized?

$$
\|\overrightarrow{O P} \times \vec{F}\|=0
$$

$$
\|\overrightarrow{o p} \times \vec{F}\|=\|\overrightarrow{o p}\|\|\vec{F}\| \|_{\substack{\sin \theta \\ \max ^{\prime} \times \frac{\pi}{2} \\ \theta=\frac{\pi}{2}}}
$$

ie., when $\vec{F} \perp \overrightarrow{O P}$

- 14. S: LINES and PLANES in \mathbb{R}^{3}
(A) What Determines a Line, l ?
(a) 2 distinct points
or (b) point: $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and 1 direction vector: $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ (replaces "slope")

(B) Parametric Equations for a (line (many possibilities)
t ("time") is our parameter. (t) watch

l contains all points $P(x, y, z)$ such that

Book's
approach:

$$
\overrightarrow{P, p}=t \vec{a}
$$

$\langle x-x, y-y, y-z$,
$=f\left(a_{1}, a_{2}, a_{3}\right)$
$\overrightarrow{p p}$, Plane:

$$
\begin{aligned}
& \underset{\substack{\text { column } \\
\text { for } \\
a \text { vector }}}{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}=\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]+t\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \uparrow \\
& \left\{\begin{array}{l}
x=x_{1}+a_{1} t \\
y=y_{1}+a_{2} t \\
z=z_{1}+a_{3} t
\end{array} \quad, t \text { in } \mathbb{R}\right. \text { (sweeps }
\end{aligned}
$$

(c) Symmetric Equations for a Line

Solve each eq. for t, and equate.

$$
t=\underbrace{\frac{x-x_{1}}{a_{1}}}_{\substack{\text { If } a_{1}=0 \\ a_{1} \\{ }^{\prime \prime} x=x_{1} "}}=\frac{y-y_{+}}{a_{2}}=\frac{z-z_{1}}{a_{3}} \text { kif none are } 0
$$

(D) Ex

The line l contains $P_{1}(3,-7,2)$ and $P_{2}(5,-10,2)$.
(a) Find parametric eqs. for ℓ
(b) Find symmetric eas, for l.

$$
\begin{aligned}
& \begin{aligned}
\vec{a} & =\vec{P}_{1} P_{2} \\
& =\langle 5,-3,-10-(-7), 2-2\rangle \\
& =\langle 2,-3,0\rangle
\end{aligned} \\
& \quad\left(\vec{P}_{2} P_{1}, O K \Rightarrow \text { time reversal }\right) \\
& P_{1}, P_{1}(3,-7,2)
\end{aligned}
$$

(a) Param. eggs.:
(b) Sym. eq. :

$$
\frac{x-3}{2}=\frac{y+7}{-3}, z=2
$$

(c) Where does l intersect the $x z$-plane?

$$
\left(-\frac{5}{3}, 0,2\right)
$$

Where does l intersect the xy-plane?
How do you graph $z=2$? I lies on here.
(E) Do 2 Lines Intersect? Where?

Ex

Solve the system often used to find intersection pis.

$$
\begin{aligned}
& \left\{\begin{array}{l}
1+3 t=2-5 u \\
6-4 t=2 u \\
-1+2 t=4+u
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
3 t+5 u=1 \\
-4 t-2 u=-6 \\
2 t-u=5
\end{array}\right\} \frac{\text { solve }(\overrightarrow{4 A}, \text { say (easiest pair?) }}{\Rightarrow t=2, u=-1}
\end{aligned}
$$

Note If has no solution \Rightarrow no intersection pts. If has many solution $5 \rightarrow$ Math 254 (Projections/shadows on yz-plane might coincide.)
Check to see if $t=2, u=-1$ satisfy the remaining eq.
If so, l_{1} and l_{2} intersect. If not, they don't.

$$
\begin{aligned}
3 t+S u & =1 \\
3(2)+S(-1) & =1 \\
1 & =1 \quad \Rightarrow l_{1} \text { and } l_{2} \text { intersect. }
\end{aligned}
$$

What's the intersection pt. (x, y, z) ?
Plug $t=2$ into B or $u=-1$ into (+4 .

$$
\text { (H) }\left\{\begin{array}{l}
x=1+3(2)=7 \\
y=6-4(2)=-2 \\
z=-1+2(2)=3 \\
(7,-2,3)
\end{array}\right.
$$

(F) Angles Between Lines

Ex from (E)

$$
\begin{aligned}
& l_{1}:\left\{\begin{array}{l}
x=1+3 t \\
y=6-4 t \\
z=-1+2 t
\end{array} \quad l_{2}:\left\{\begin{array}{l}
x=2-5 u \\
y=2 u \\
z=4+u \\
\vec{d}=4 \text { section vector } \\
\vec{a}=\langle 3,-4,2\rangle
\end{array},\right.\right. \\
& \vec{\alpha}=\langle 3,-4,2\rangle \\
& \vec{b}=\langle-5,2,1\rangle
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\| \| \overrightarrow{l l i t h} \|}\right) \\
& =\cos ^{-1}\left(\frac{-21}{\sqrt{29} \sqrt{30}}\right) \\
\approx & 2.36 \text { radians, or } 135^{\circ} \\
& \pi-\theta \text { Get supp, angle. } \| 180^{\circ}-\theta \\
& 0.78 \text { radians, or } 45^{\circ}
\end{aligned}
$$

Applies to non intersecting lines, also. translate lines without rotating \Rightarrow same angles.
If \vec{a} is any direction vector for l_{1}, and l_{2}, then
(6) What Determines a Plane?

3 points it
they don't...
askew ines
plane
Truneh:
imagine 3
legs of a
slanted stool.
it Tiprover:
HI
(a) 3 noncollinear points
or (b) line and a point not on the line
or (c) I point and 2 non-ll vectors
or (d)
point and a normal vector \vec{n}

$$
\stackrel{\rightharpoonup}{n} \neq \overrightarrow{0}
$$

$\vec{n} \perp$ plane
(ie., $\vec{n} \perp$ [direction vectors for] every line in the plane)
$\vec{n} \perp \perp$ every line in the plane containing, $P_{P_{1}}$

How to Ace: "joystick on a flying carpet"

(14) Equation Forms for a Plane

Given: $\begin{aligned} & P_{\text {oink }} P_{l}\left(x_{1}, y_{1}, z_{1}\right) \text { in the plane } \\ & \vec{n}=\langle a, b, c\rangle\end{aligned}$ $\vec{n}=\langle a, b, c\rangle$

A point $P(x, y, z)$ is in the plane

$$
\Longleftrightarrow \vec{n} \cdot \overrightarrow{P_{1} P}=0
$$

$\Longleftrightarrow\langle a, b, c\rangle,\left\langle x-x_{1}, y-y_{1}, z-z,\right\rangle=0$
$\Longleftrightarrow \begin{gathered}a\left(x-x_{1}\right)+b\left(y-y_{i}\right)+c\left(z-z_{1}\right)=0 \\ \text { Standard form }\end{gathered}$

$$
\Longleftrightarrow \begin{aligned}
& a x+b y+c z+d=0 \\
& \text { areal } \# \\
&=-a x_{1}-b y_{1}-c z_{1} \\
& \text { General form }
\end{aligned}
$$

If a, b, c are not all 0 ,
The graph of $a x+b y+c z+d=0$ is a plane with normal $\vec{n}=\langle\stackrel{b}{a}, b, c \stackrel{c}{c}\rangle$

Ex Find an eq. for the plane determined by $P(2,-3,4), Q(-3,-2,3)$, and $R(5,3,2)$. noncollinear Solon
$\overrightarrow{P Q}=\langle-5,1,-1\rangle$, There are other
$\overrightarrow{P R}=\langle 3,6,-2\rangle\}$ possibs.
Find a normal vector for the plane.
nonopolineor
$\Rightarrow \overrightarrow{P a} A \vec{F}$
$\Rightarrow \vec{C} \times \vec{P} \neq \overrightarrow{0}$

Let $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$
\vdots (see $14,4,3$)
$=\langle 4,-13,-33\rangle$
(or any non- $\overrightarrow{0}$ scalar multiple) (A)

$\frac{\text { Standard Form: }}{\text { (using P, say) }}: 4(x-2)-13 \underbrace{(y-(-3))}_{(y+3)}-33(z-4)=0$
(\$)OK to malt. through by any non-O scalar.

General form: $4 x-13 y-33 z+85=0$

Ex Find an eq, for the plane containing the point $Q(-3,-2,3)$ and the line

$$
l:\left\{\begin{array}{l}
x=2+3 t \\
y=-3+6 t \\
z=4-2 t
\end{array}, t \text { in } \mathbb{R}\right.
$$

Solon

$$
P(2,-3,4) \quad \vec{a}=\langle 3,6,-2\rangle
$$

$(t=0) \quad$ direction vector
is on l for l

Let $\vec{n}=\overrightarrow{P Q} \times \vec{a}$
!
(same as in previous Ex)
(I) Angles Between Planes

Let \vec{n}_{1} be a normal vector for, Plane \#l.
Let \vec{n}_{2} ' 'Plane \#2.
Let $\hat{\theta}^{2}$ be the angle between \vec{n}_{1}, \vec{n}_{2}.
\Rightarrow The angles between the planes are θ and its supplement.

The planes are $\left\|\Longleftrightarrow \vec{n}_{1}\right\| \vec{n}_{2}$
up to $45 \quad$ The planes are $\perp \Longleftrightarrow \stackrel{n_{1}}{1}$
(J) The Line of Intersection of 2 Planes

In How to Ace,
mentioned in $m e n t i o n e d ~ i n ~$
Larson 740

If planes If, \vec{n}_{1} and \vec{n}_{2} determine a planes.
(Together whet. \Rightarrow (plane)
Only vectors $\vec{n}_{1} x_{n}$ are 1
these planes (ie., $\operatorname{Ln}_{1}, \perp \vec{n}$) $\Rightarrow \vec{n}_{1} \times \vec{x}_{2}=a$ do ec. vector for l

Not in book!

Ex 12 in book (pp. 725-6)-but new way!
(2) $\left\{\begin{aligned} & 2 x-y+4 z=4 \text { (Plane \#1) } \\ & x+3 y-2 z=1 \\ & \text { (Plane \#7) }\end{aligned}\right\} \Rightarrow$ line 1

Find parametric eggs. and symmetric eggs, for l.
Sol
Find \vec{a}, a direction vector for ℓ.

$$
\text { Let } \begin{aligned}
\vec{a} & =\vec{n}_{1} \times \vec{n}_{2} \\
& =\langle 2,-1,4\rangle \times\langle 1,3,-2\rangle \\
& \vdots\langle-10,8,7\rangle
\end{aligned}
$$

Find a point on l.

Where doer l
hit the
ky-plane?
A line must intersect $x=a, y=b, a r$ $z=c$.

Ex $\left\{\begin{array}{l}x+y+z=1 \\ x+y+4 z=2\end{array}\right.$
$z=0 \Rightarrow$ N sol in
\rightarrow line of intersection, $x y$ plane
$z=0)$ do not intersect

Plug $z=0$, say, into (8).
$\Rightarrow\left\{\begin{array}{l}2 x-y=4 \\ x+3 y=1\end{array}\right.$
$\xlongequal{\text { Solve! }}$

$$
\begin{aligned}
& \Rightarrow x=\frac{13}{7}, y=-\frac{2}{7},(z=0) \\
& \left(1 \frac{13}{7},-\frac{2}{7}, 0\right)
\end{aligned}
$$

Parametric Eggs. for l
(Why is the book's answer on p.726 also OK?)

Symmetric Eqs. for l

$$
\frac{x-\frac{13}{7}}{-10}=\frac{y+\frac{2}{7}}{8}=\frac{z}{7}
$$

(K) The Distance (h) Between
a Point: $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and
a Plane: $a x+b y+c z+d=0$

Key for Distance
$\binom{$ A normal $\vec{n}}{$ for a plane }$\frac{\perp}{\downarrow}$ The plane
Figure
Think of \vec{p} ar a tether or connector,
we really want lcompa $\vec{p} t$ We prefer directions 1
plane plane.

an arbitrary point
in the plane,
satisfies $(\#)=0$

$$
\Rightarrow \underbrace{d=-a x_{1}-b y_{1}-c z_{1}}_{\infty}
$$

$\Rightarrow \vec{p} \cdot \vec{n}<0$
\Rightarrow comp, $\vec{p}<0$

$$
\begin{aligned}
& h=\left|\operatorname{comp}_{\vec{n}} \vec{p}\right| \quad \text { Well use in (4). } \\
& =\frac{|\stackrel{\rightharpoonup}{p} \cdot \vec{n}|}{\|\vec{n}\|} \\
& =\frac{\left|\left\langle x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right\rangle \cdot\langle a, b, c\rangle\right|}{\|\langle a, b, c\rangle\|} \\
& \begin{aligned}
h=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} & \leftarrow \mid \text { Revolt prom "plugging } P_{0}^{\prime \prime} \text { in to (3) } \mid \\
& \leftarrow\|\bar{n}\|
\end{aligned} \\
& \text { No need to find } P_{1} \text { !! See Ex in (L). }
\end{aligned}
$$

(L) The Distance (h) Between II Planes

The dist.
bet. $x+y=1$,

$$
\text { The in } x_{x}^{\prime} x^{2}
$$

$$
\text { anding-y } x_{x}>0
$$

Ex Find the distance between ${ }^{\text {[the graphs of] }} 2 x-y+5 z+3=0$ (Plane \#1)
 and $4 x-2 y+10 z+8=0 \quad$ (Plane \#2)
Solis
Show that the planes are 11.

$$
\text { We can let } \begin{aligned}
& \vec{n}_{1}=\langle 2,-1,5\rangle, \\
& \vec{n}_{2}=\langle 4,-2,10\rangle . \\
& \Rightarrow \vec{n}_{2}=2 \vec{n}_{1} \\
& \Rightarrow \vec{n}_{2}{ }^{\prime} \vec{n}_{1} \\
& \Rightarrow \text { The planes are } \| l .
\end{aligned}
$$

Find a point on, say, Plane \#2 ("uglier eq.")

$$
4 x-2 y+10 z+8=0
$$

14 you had
$4 x-2 y+8=0$,
You contd
still choose $z=0$.

Choose $y=0, z=0$, say.

$$
\begin{array}{rlrl}
\Rightarrow & 4 x+8 & =0 \\
\Rightarrow & x & =-2 \\
& (-2,0,0)
\end{array}
$$

The other ("nicer") plane has eq. $a x+b y+c z+d=0$.

$$
\begin{equation*}
2 x-y+5 z+3=0 \tag{e}
\end{equation*}
$$

Use (X)

$$
\begin{aligned}
h & \left.=\frac{|2(-2)-(0)+5(0)+3|}{\sqrt{(2)^{2}+(-1)^{2}+(5)^{2}}} \leftarrow \text { Plug }(-2,0,0) \text { into } \otimes\right) \\
& =\frac{1}{\sqrt{30}} \\
& \approx 0.18 \text { [units] }
\end{aligned}
$$

(M) The [Shortest] Distance (h) Between Skew Liner Think: Edges of Lox or rom. ${ }^{\text {me }} \begin{aligned} & \text { neither ll, nor } \\ & \text { intersecting } \\ & \text { noncoplanar }\end{aligned}$
Ex $l_{1}:\left\{\begin{array}{l}x=t \\ y=0 \\ z=0\end{array} \quad l_{2}:\left\{\begin{array}{l}x=0 \\ y=1 \\ z=u\end{array} \quad 0 \neq 1 \Rightarrow l_{1}, l_{2}\right.\right.$ don'tintersect.

$$
\begin{aligned}
\vec{a}_{1}=\langle 1,0,0\rangle{\underset{H}{H}}_{t}^{t, u \operatorname{in} R} \\
\underbrace{z}_{-}
\end{aligned}
$$

ℓ_{1} (x-axis) sticks out at you.

We want the distance between II planes containing skew lines.
$\ln E_{x}$

Book more Complicated complicated
n
n Remember

Fall back to a mare fundamental formula.

We don't have eqs, for these planes?
Use: $h=\mid$ comp $_{\vec{n}} \vec{p} \mid$
(1) Find a point P_{1} on l_{1}. P_{2} on l_{2}.
(2) Let $\vec{p}=\vec{P}_{1} P_{2}$.
(3) Let \vec{a}_{1} be a direction vector for l_{1}. Let \vec{a}_{2}
(4) Let $\vec{n}=\vec{a}_{1} \times \vec{a}_{2}$.

$$
\binom{\vec{n} \perp \vec{a}_{1}, \vec{n} \perp a_{2}}{\vec{n} \vec{n} \perp \text { both planes }}
$$

(5)

$$
\begin{aligned}
h & =\left|\operatorname{comp}_{\vec{n}} \vec{p}\right| \\
& =\frac{|\vec{p} \cdot \vec{n}|}{\|\vec{n}\|}
\end{aligned}
$$

Do HW \#SS
(N) Graphs

Ex The plane $x-2 y+3 z=6$

Find x-intercept (if any)
Plug in $y=0, z=0$
$\Rightarrow x=6$ or $(6,0,0)$ is x int.

$$
y \text {-int }=-3 \text { or }(0,-3,0)
$$

$$
z \text {-int. }=2 \text { or }(0,0,2)
$$

Note
(a) $-2 y+3 z=6$ has no x int.
(b) $-2 y+3 z=0$ includes the entire x-axis.
Sweep II x-axis:

Find $x y$-trace
intersection with the xy-plane
Plug in $z=0$

$$
\begin{equation*}
\Rightarrow x-2 y=6, z=0 \quad \text { (line) } \tag{1}
\end{equation*}
$$

$x z$-trace: $x+3 z=6, y=0$
$y z$-trace: $-2 y+3 z=6, x=0$

Ex Line l_{1} from (() $\left\{\begin{array}{l}x=1+3 t \\ y=6-4 t \\ z=-1+2 t\end{array}\right.$ has symmetric eqs,

(3)

- l_{1} is the intersection of, say, (1) and (2). (3 a a/so $\left(\begin{array}{l}\left.\text { contains } l_{1}\right)\end{array}\right.$
(1) Plane \perp xy-plane
xy-trace

$$
y=-\frac{4}{3} x+7 \frac{1}{3}
$$

(2) Plane 1 yz-plane

$$
\begin{aligned}
& y^{2} \text {-trace }
\end{aligned}
$$

$$
z=-\frac{1}{2} y+2
$$

(4) Traces

Ex Unit sphere $x^{2}+y^{2}+z^{2}=1$

Like stacking
transparent transparent playing cards
(1) Traces in (intersections with) planes of the form $z=k$
"cross sections"

\square $z=2 \Rightarrow$ empty $z=1 \Rightarrow$ point

$$
z=0 \Rightarrow x y \text {-trace: }
$$

circle

$$
x^{2}+y^{2}=1, z=0
$$

$$
\text { If } \begin{aligned}
z=k \Rightarrow x^{2}+y^{2}+k^{2} & =1 \\
x^{2}+y^{2} & =1-k^{2}
\end{aligned}
$$

family of $\begin{cases}\text { circle }, & |k|<1 \\ \text { point }, & |k|=1 \\ \text { empty }, & |k|>1\end{cases}$
(2) $x=k$

(3) $y=k$

(B) Spheres (14.2)

Have circles as traces
(c) Planes (14.5)

Have lines as traces
(D) Cylinders (see 14.2.5)

Have a family of "identical" traces. maybe shifted

If a plane curve C is swept II to an $\underbrace{\text { axis }}_{\text {Ax to the }}$, the result is a cylinder.
C is called the directrix or generating curve.

Ex

parabolic cylinder

Ex

Ex Graph $\frac{(y-2)^{2}}{4}+\frac{(z-3)^{2}}{1}=1$ (A)
yz-trace: Ellipse
Center: $y=2, z=3$

$$
\begin{aligned}
& a^{2}=4 \Rightarrow a=2 \\
& b^{2}=1 \Rightarrow b=1
\end{aligned}
$$

x missing in F sweep trace II to x-axis
right elliptic cylinder
(E) Surfaces of Revolution

Ex The graph of $y=x^{2}$ in the xy-plane is revolved about the y-axis. Find an eq. of the resulting surface.

Bookamess Lea

$$
x_{\text {old }}{ }^{2}=x_{\text {new }}{ }^{2}+z^{2}
$$

$$
y=x^{2}
$$

Replace x^{2} with $x^{2}+z^{2}$

$y=x_{7 y \geq 0}^{x^{2}+z^{2}}$
paraboloid with axis: $y^{\text {opens axis }}$
(F) Variable-Switch Trick
\Downarrow
Switch roles
Ex $z=x^{2}+y^{2}$ paraboloid with axis: z-axis (opens along)

circular paraboloid
(6) Coefficients Trick (for 14.6)

$$
\text { Ex } z=4 x^{2}+y^{2}
$$

elliptic paraboloid not a surface of reed.

If you multiply or divide a term by a positive real \#, you may change the shape of a graph but not its general type.
"paraboloid"
Exception: We distinguish between spheres ${ }^{\ominus}$ and ellipsoids Θ.
(H) Quadric Surfaces (Q,S,S)
(My approach differs from the book's!)
Graphs of [nondegenerate] 2nd-degree eggs. in $x y$, and z. (If any are missing \Rightarrow cylinder?)
The trace of a "basic" Q.S. in $x=k, y=k$, or $z=k$ can be:
(1) empty
(2) I point
(3) 2 intersecting lines X (degenerate hyperbola)
or (4) a conic

$$
\begin{aligned}
& E=\text { Ellipse (or (ircle) } \\
& H=\text { Hyperbola } \\
& P=\text { Parabola }
\end{aligned}
$$

*Note Other Q.S.s may be rotated or have single lines as traces.

We can't have different types of conics in, $z=2$ and $z=3$, say. We san $\quad z=2$ and $x=2$, say.

Trick Plug $z=0$ into the eq. to find the xy-trace [eq.]. If you get a conic, it must be the only conic type for the " $z=k$ " family of traces.

6 Basic Q．S．Types

$$
a, b, c: \text { constants, >o }
$$

（III）Ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

$$
\frac{x=k}{E} \frac{y=k}{E} \frac{z=k}{E}
$$

No "axis."

If $a=b=c \Rightarrow$ Sphere
（112）Hyperboloid of I Sheet

$$
y^{2}-z^{2}=1
$$

${ }^{\text {opens along }} y^{-a x i s}$
hint：No z－ints，

$$
\left.\begin{array}{l}
\left(y^{2}+x^{2}\right)-z^{2}=1 \\
x^{x^{2}+y^{2}-z^{2}=1} \underbrace{(\text { Baric }}_{\text {axis is } z \text {-axis }} ⿱ 幺 ⿲ 丶 丶 丶 x)
\end{array}\right)
$$

$$
\frac{x=k}{H} \quad \frac{y=k}{H} \frac{(1 \text { axis }}{E}
$$

$$
\left.\begin{array}{l}
\dot{2}|k| k \mid \\
\underset{x}{x}|k|=1
\end{array}\right\}, \frac{i}{i}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

(143) Hyperboloid of 2 Sheets

Morphing
© $z^{2}=x^{2}+y^{2}+1$
8. $z^{2}=x^{2}+y^{2}$
[1] $z^{2}=x^{2} y^{2}-1$

$$
z^{2}-\left(y^{2}+x^{2}\right)=1
$$

$$
z^{2}-x^{2}-y^{2}=1
$$

$$
\text { (2) }=->5=\frac{1}{2}=\frac{1}{2} \text { of (2) sheets }
$$

$$
z^{2}=\frac{x^{2}+y^{2}+1}{\substack{z^{2} \text { never } \\ \Rightarrow \text { never } 0}}
$$

(144) [Circular/Elliptic] Cone

$$
\begin{gathered}
\text { contrast wit } \\
\ell
\end{gathered}
$$

$$
\begin{aligned}
& z= \pm y \\
& z^{2}=y^{2}
\end{aligned}
$$

$$
\frac{x=k}{H} \frac{y=k}{H} \frac{z=k}{E}
$$

(H3) [Circular/Elliptic] Paraboloid

$$
\frac{x=k}{p} \quad y=k \frac{\left(\operatorname{laxis}^{\prime}\right)}{E}
$$

Also:

$$
-z=x^{2}+y^{2}
$$

(146) Hyperbolic Paraboloid

$$
\frac{z=y^{2}-x^{2}}{\text { "saddle" }}
$$

Also: $\quad-z=y^{2}-x^{2} \Leftrightarrow$

$$
z=x^{2}-y^{2}
$$

Extensions
Note 1 Recall the Variable-Switch and Coefficients Tricks
Note 2 If x is replaced by, $\left(x-x_{0}\right)$,

$$
\begin{array}{cc}
y_{z} i & ,\left(\begin{array}{ll}
y & \left.y_{0}\right) \\
z
\end{array}\right), \\
\left(z-z_{0}\right)
\end{array}
$$

\Rightarrow Translation in which $(0,0,0)$ is moved to $\left(x_{0}, y_{0}, z_{0}\right)$
Note 3 Rotations may lead to cross -terms such as my.

Memorize

Ex Identity the surface $x^{2}=\frac{y^{2}}{6}-3 z^{2}+4 .(A)$
Sol By Coefficients Trick, consider $x^{2}=y^{2}-z^{2}+1$

$$
\Leftrightarrow x^{2}-y^{2}+z^{2}=1
$$

Looks like $x^{2}+y^{2}-z^{2}=1$, except switch $z \leftrightarrow y$.
Hyperboloid of I sheet with the y-axis as its axis.
Note © $\circledast 4$ is a surface of revolution, but \circledast is not.

$$
x^{2}+y^{2}-z^{2}=1
$$

A Hyperboloid of One Sheet

Traces in $x=k$ (Hyperbola class):

Traces in $y=k$ (Hyperbola class):

Traces in $z=k$ (Ellipse / Circle class):

$$
x^{2}+y^{2}-z^{2}=k
$$

Morphing from a Hyperboloid of Two Sheets to a Cone to a Hyperboloid of One Sheet

$$
z=y^{2}-x^{2}
$$

A Hyperbolic Paraboloid ("Saddle")

Traces in $x=k$ (Parabola class):

Traces in $y=k$ (Parabola class):

Traces in $z=k$ (Hyperbola class):

VECTORS
(\mathbb{R}^{2}

$$
\begin{aligned}
& \overrightarrow{P Q} \\
& \vec{i}, j
\end{aligned}=\langle\Delta x, \Delta y\rangle
$$

\mathbb{R}^{3}

$$
\overrightarrow{P Q}=\langle\Delta x, \Delta y, \Delta z\rangle
$$

$\stackrel{i}{i}, \vec{k}, \vec{k}$
Midpoint M: arg. cords.
λ^{v}

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{\sum v_{i}^{2}} \\
& \vec{v}+\vec{w}, \vec{w}
\end{aligned}
$$

Compute, Draw

$$
\begin{aligned}
& \vec{w} \| \vec{v} \Leftrightarrow \exists \substack{\begin{subarray}{c}{n \\
\text { mech } \\
\text { exijrs }} }} \end{subarray} \vec{w}=c \vec{v} \text {, or } \vec{v}=\overrightarrow{0} \\
& \vec{u}=\overrightarrow{\vec{v}}, \vec{i}
\end{aligned}
$$

Horiz., Vert. Components
\mathbb{R}^{2}

$$
\begin{aligned}
& \tan \theta=\frac{V_{2}}{V_{1}}(e+0) \\
& 0 \leq \theta \leq \pi
\end{aligned}
$$

Vector Properties, Proofs

GRAPHS in \mathbb{R}^{3}
Spheres

$$
\begin{equation*}
\text { CTS } \Rightarrow\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2} \tag{-2}
\end{equation*}
$$

Graph, Describe Region R in words \Leftrightarrow Describe R using symbols $\vec{a} \cdot \vec{b}$ (scalar),$~ P r o p e r t i e s$, Proofs,$\stackrel{\vec{a} \times \vec{b}}{ }$ (vector)

$$
\vec{a} \cdot \vec{b}=\sum a_{i} b_{i}
$$

$$
\vec{a} \times \vec{b}=\mid \vec{i} \stackrel{\Theta}{j} \vec{j}^{\substack{* \vec{a} \\ \leftarrow \vec{b}}}
$$

$\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta(*)$

$$
\Rightarrow \theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}\right)_{\in i f \neq 0}
$$

$$
\begin{aligned}
\|\vec{a} \times \vec{b}\| & =\|\vec{a}\|\|\vec{b}\| \sin \theta \\
& =\text { Area of } \vec{a} \vec{A} \vec{b} \vec{b}
\end{aligned}
$$

$\frac{\text { Direction of } \vec{a} \times \vec{b}}{\frac{1}{a} \vec{b}, \vec{b}}$ Right-Hand Rule

$$
\vec{k}_{x}^{\vec{i}}
$$

$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0$

$$
\vec{a} \| \vec{b} \Leftrightarrow \vec{a} \times \vec{b}=\overrightarrow{0}
$$

Physics
Work $W=\vec{F} \cdot \vec{d}$
Torque uses " x " (Optional)

Inequalities
Cauchy: Schwartz $|\vec{a} \cdot \vec{b}| \leq\|\vec{a}\|\|\vec{b}\| \quad$ (from (B))
Triangle

$$
\|\vec{a}+\vec{b}\| \leq\|\vec{a}\|+\|\vec{b}\|
$$

Geometry

$$
\begin{aligned}
& \operatorname{comp}_{\substack{\vec{a} \\
\text { (scalar) }}}=\|\vec{a}\| \cos \theta \\
&=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \quad \text { from } \\
& \begin{array}{l}
\text { prof } \vec{b} \\
(\text { vector) } \\
\end{array}=(\operatorname{comp} \cdot \vec{a}) \frac{\vec{b}}{\|b\|} \\
&=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^{2}} \vec{b}
\end{aligned}
$$

$$
=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \text { from } \oplus(\underset{\leftrightarrow}{\leftrightarrows})
$$

$$
\begin{aligned}
I S P & =(\vec{a} \times \vec{b}) \cdot \vec{c} \\
& =\vec{a} \cdot(\vec{b} \times \vec{c}) \\
& =1 \quad \left\lvert\, \begin{array}{l}
\pm \vec{a} \\
+\vec{b} \\
+\vec{c}
\end{array}\right.
\end{aligned}
$$

\mid TSP $\mid=$ Volume of box $1=0 \leftrightarrow$ coplanar $)$
TUP (I'll give)

LINES
$\xrightarrow[\rightarrow]{p_{i}, \vec{a}} \rightarrow$ Vector Eq. for l :

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O P}_{1}+t \vec{a}, \operatorname{tin} \mathbb{R} \\
{\left[\begin{array}{l}
x \\
y \\
t
\end{array}\right] } & =\left[\begin{array}{l}
x_{1} \\
y_{1} \\
x_{1}
\end{array}\right]+\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+1,
\end{aligned}
$$

\Rightarrow Parametric Eggs.

$$
\left\{\begin{array}{l}
x=x_{1}+a_{1} t \\
y=y_{1}+a_{2} t \\
z=z_{1}+a_{3} t
\end{array}, t \operatorname{in} \mathbb{R}\right.
$$

\Longrightarrow Symmetric Eqs.

$$
\underbrace{\frac{x-x_{1}}{a_{1}}}_{\substack{1 f a_{1}=0 \\ \Rightarrow x=x_{1}}}=\frac{y-y_{1}}{a_{2}}=\frac{z-z_{1}}{a_{3}}
$$

$\chi \leftarrow$ Solve system for (t, u)

$$
\begin{aligned}
& \psi \downarrow \text { Use either } \\
& (x, y, z)
\end{aligned}
$$

Use direction vectors for angles, II, 1 .

PLANES

$$
\begin{aligned}
& {[L \mathrm{e} t] \overrightarrow{=}=\langle a, b, c\rangle} \\
& \prod_{(x, y, y, t,)} a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
\end{aligned}
$$

$$
a x+b y+c z+d=0 \Longrightarrow \vec{n}=\langle a, b, c\rangle
$$

(or any non $-\overrightarrow{0}$ scalar milt.)
Use normal vectors for angles, II, 1 .

Use \vec{n} and P_{1}, say, to construct an eq. for the plane.

Plane 2 looks like $z=k$; plug in $x=0$ here?

Find ℓ
Find a point.
Plug $x=0$, say, into the system.
Find a direction vector. $\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$ works.

Point, Plane If know eq of plane

$$
h=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}+c \log p_{0} \text { into }
$$

If not, find one!

2 II Planes

Skew Lines

Let $\vec{n}=\vec{a}_{1} \times \vec{a}_{2}$.

$$
\begin{aligned}
h & =\mid \text { comp } \vec{n} \vec{p} \mid \\
& =\frac{|\vec{p} \cdot \vec{n}|}{\|\vec{r}\|}
\end{aligned}
$$

SURFACES
Traces
Spheres
Planes
Cylinders
Ex I variable missing \Rightarrow sweep (II axis)

Surfaces of Revolution
Ex \underbrace{T}_{4} $z=y^{2}$ in $y z$-plane
Replace y^{2} with $y^{2}+x^{2}$.
Don't touch "axis variable" (z ,here),

Quadric Surfaces
Know Basic Eqs., Axes for 6 Basic Types Surfaces of Revolution may help! Traces

Tricks: Variable-Switch
\Rightarrow may change axis
Coefficients
\Rightarrow makes it easier to identify

