
(B) Now, Calc II: $z=f(x, y)$
$\Delta, 8$

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\frac{\partial f}{\partial x}}=\text { the partial derivative of } f \text { with respect to, } x \\
& f_{y}=\frac{\partial f}{\partial y}=
\end{aligned}
$$

He had d, net d.
(fy)

$=$ slope of tangent line to C_{1} at P
$=$ instantaneous rate of change of f wot y at P

We treat x as constant, and we differentiate $f(x, y)$ wat y.
f

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

We treat y as constant, and we differentiate $f(x, y)$ wat x.
(c) Exp

Dx rules from Talc I extend naturally.
Chain Rule Ex
Boots omit ()
HowtoAce \rightarrow

$$
\underbrace{\frac{\partial}{\partial x}(\sin u)}_{\substack{\partial x \\ D_{x}}}=(\cos u)\left(\frac{\partial u}{\partial x}\right)
$$

Ex $f(x, y)=x y^{3}+\ln \left(2 x-3 y^{2}\right) \quad x^{z} y$
(a) Find $f_{x}(x, y)$

$$
f(x, y)=\underbrace{x y^{3}}_{\begin{array}{c}
x y^{\prime \prime} \\
\text { treat as } \\
\text { constant }
\end{array}}+\ln (2 x-\underbrace{3 y^{2}}_{\#}) \quad \text { Would } \ln
$$

Calc I: $D(\ln A)=\frac{1}{A} \cdot D(A)$

$$
\begin{aligned}
f_{x}(x, y) & =\underbrace{D_{x}(x \cdot 7)=7}_{\text {Think: }}+\frac{1}{y^{3}}+\underbrace{2 x-3 y^{2}}_{=2} \cdot \underbrace{D_{x}\left(2 x-3 y^{2}\right)}_{x} \\
& =y^{3}+\frac{2}{2 x-3 y^{2}}
\end{aligned}
$$

(b) Find $f_{y}(x, y)$

7-factro doern't

$$
\begin{aligned}
& f(x, y)=\underbrace{x}_{\#} \tilde{\#}^{3}+\ln (\underbrace{2 x}_{\#}-3 y^{2}) \\
& f_{y}(x, y)=\underbrace{x\left(3 y^{2}\right)}_{\text {Think: } D_{y}\left(1 y^{3}\right)=7\left(3 y^{2}\right)}+\frac{1}{2 x-3 y^{2}} \cdot D_{y}(\underbrace{2 x}_{\#}-3 y^{2})
\end{aligned}
$$

$$
\begin{aligned}
& =3 x y^{2}+\frac{1}{2 x-3 y^{2}} \cdot(-6 y) \\
& =3 x y^{2}-\frac{6 y}{2 x-3 y^{2}}
\end{aligned}
$$

$$
=y^{2} e^{x y+y z}
$$

$$
\begin{aligned}
f_{x}(0,3,4) & =(3)^{2} e^{(0)(3)+(3)(4)} \\
& =9 e^{12}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex } f(x, y, z)=y e^{\frac{D \text { cal with later: } D\left(e^{*}\right)=e^{*} D(t)}{x y+y z}} \text {. Find } f_{x} \text { and } f_{x}(0,3,4) \text {. } x^{-\mu} x^{\prime} \frac{z}{z} \\
& f_{x}(x, y, z)=y e^{x y+y z} \cdot D_{x}(\underbrace{x y}_{\ddot{\#}}+\underbrace{y z}_{\#}) \\
& =y+0 \\
& =y
\end{aligned}
$$

(D) $2^{\text {nd }}$-Order $P D_{S}$

$$
\left.\begin{array}{l}
f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}
\end{array} \text { or } \begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}} f \\
\text { operator } \\
f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \text { or } \frac{\partial^{2}}{\partial y^{2}} f
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { Concavity } \\
& \text { in } x, y \\
& \text { directions }
\end{aligned}
$$

Mixed Partials
Larson: fort wearable nearest f

$$
\left.\begin{array}{l}
\underset{x y}{f_{x y}}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
\longleftrightarrow \\
\underset{y x}{ }=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\stackrel{\partial^{2} f}{\partial x} \partial^{2} y
\end{array}\right\} \begin{aligned}
& \text { These are } \\
& \text { equal where } \\
& \text { both are } \\
& \text { continuous. }
\end{aligned}
$$

These extend naturally to higher-order $P D_{S}$.
Ex

$$
=10 y\left(3 x+y^{2}\right)^{4}
$$

$\left(f_{x x}\right): \begin{array}{cc}60\left(3 x+y^{2}\right)^{3}(3) & \left(f_{x y}\right): 60\left(3 x+y^{2}\right)^{3}(2 y) \\ = & =180\left(3 x+y^{2}\right)^{3}\end{array} \quad=120 y\left(3 x+y^{2}\right)^{3}$
$f_{y x}: 10 y \cdot 4\left(3 x+y^{2}\right)^{3}(3)$

(ty):

$$
\begin{aligned}
& :\left[D_{y}(10 y)\right] \cdot\left(3 x+y^{2}\right)^{4}+(10 y) \cdot D_{y}\left[\left(3 x+y^{2}\right)^{4}\right] \\
& =10\left(3 x+y^{2}\right)^{4}+(10 y) \cdot 4\left(3 x+y^{2}\right)^{3}(2 y) \\
& =10\left(3 x+y^{2}\right)^{4}+80 y^{2}\left(3 x+y^{2}\right)^{3}
\end{aligned}
$$

16.3: PARTIAL DERIVATIVES

(Mathematica was used to produce these computer graphics.)

Note: The coordinate axes are oriented in an unusual way:

The large black dot indicates the point $(1,2,3)$.
Figure \#1: Graph of $f(x, y)=-5 x^{2}+y^{3}$
Figure \#2: The tangent plane to the graph of f at $(1,2,3)$
Figure \#3: Combining \#1 and \#2

Figure \#1

Figure \#2

Figure \#3

Find $\frac{\partial}{\partial y}$ of the following

 (remember, x acts like a constant):1) $e^{x x} y^{2}$
2) $y^{2} e^{x^{2} y^{3}}$
3) $\frac{y^{2}}{\ln y}$
4) $\cos ^{3}\left(x y^{2}\right)$
5) $\tan ^{-1}\left(x y^{2}\right)$
6) $\sin ^{3} y$
7) $\sin \left(y^{3}\right)$
8) $\ln \sqrt{x^{2}+y^{2}}$

Answers

(not necessarily simplified):

$$
\begin{aligned}
& \text { 1) } \frac{\partial}{\partial y}\left(e^{x x} y^{2}\right)=e^{x x}(2 y) \\
& e^{x x} \text { acts like a constant multiplier for } y^{2} \\
& \text { 2) } \frac{\partial}{\partial y}\left(y^{2} e^{x^{2} y^{3}}\right)=(2 y) e^{x^{2} y^{3}}+y^{2}\left(e ^ { x ^ { 2 } y ^ { 3 } } \bullet \frac { \partial } { \partial y } \left(x^{2} y^{3}\right.\right. \text {, } \\
& =(2 y) e^{x^{2} y^{3}}+y^{2}\left(e^{x 2 y^{3}} \bullet x^{2}\left(3 y^{2}\right)\right) \\
& \text { Product rule and chain rule }
\end{aligned}
$$

3) $\frac{\partial}{\partial y}\left(\frac{y^{2}}{\ln y}\right)=\frac{(\ln y)(2 y)-\left(y^{2}\right)\left(\frac{1}{y}\right)}{(\ln y)^{2}}$

Quotient rule: $\frac{\mathrm{Lo} \bullet \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \bullet \mathrm{D}(\mathrm{Lo})}{\text { Square of below }}$
As in 2), write $\frac{\partial}{\partial y}$ if you need the chain rule.

$$
\text { 4) } \begin{aligned}
& \frac{\partial}{\partial y}\left(\cos ^{3}\left(x y^{2}\right)\right)=\frac{\partial}{\partial y}\left[\left(\cos \left(x y^{2}\right)\right)^{3}\right] \text { (Clearer notation) } \\
&=3\left(\cos \left(x y^{2}\right)\right)^{2} \bullet \frac{\partial}{\partial y}\left(\cos \left(x y^{2}\right)\right) \\
&= 3\left(\cos \left(x y^{2}\right)\right)^{2} \bullet\left(-\sin \left(x y^{2}\right) \bullet \frac{\partial}{\partial y}\left(x y^{2}\right)\right) \\
&= 3\left(\cos \left(x y^{2}\right)\right)^{2} \bullet\left(-\sin \left(x y^{2}\right) \bullet x(2 y)\right)
\end{aligned}
$$

Trig powers, power rule, chain rule (twice!)

$$
\text { 5) } \begin{gathered}
\frac{\partial}{\partial y}\left(\tan ^{-1}\left(x y^{2}\right)\right)=\frac{1}{1+\left(x y^{2}\right)^{2}} \bullet \frac{\partial}{\partial y}\left(x y^{2}\right) \\
=\frac{1}{1+\left(x y^{2}\right)^{2}} \bullet x(2 y)
\end{gathered} \text { Rule: } \frac{\partial}{\partial y} \tan ^{-1}(\text { blah })=\frac{1}{1+\text { blah }^{2}} \bullet \frac{\partial}{\partial y}(\text { blah }) .
$$

$$
\text { 6) } \frac{\partial}{\partial y}\left(\sin ^{3} y\right)=(\sin y)^{3} \text { (Clearer notation) }
$$

$$
=3(\sin y)^{2} \bullet \frac{\partial}{\partial y}(\sin y)
$$

$$
=3(\sin y)^{2} \cdot \cos y
$$

$$
\text { 7) } \frac{\partial}{\partial y}\left(\sin \left(y^{3}\right)\right)=\cos \left(y^{3}\right) \bullet \frac{\partial}{\partial y}\left(y^{3}\right)
$$

$$
=\cos \left(y^{3}\right) \cdot 3 y^{2}
$$

As opposed to 6), we don@ need the power rule here until the end.

$$
\text { 8) } \begin{aligned}
& \begin{aligned}
& \frac{\partial}{\partial y}\left(\ln \sqrt{x^{2}+y^{2}}\right)=\frac{1}{\sqrt{x^{2}+y^{2}}} \bullet \frac{\partial}{\partial y}\left(\sqrt{x^{2}+y^{2}}\right) \\
&=\frac{1}{\sqrt{x^{2}+y^{2}}} \bullet \frac{\partial}{\partial y}\left[\left(x^{2}+y^{2}\right)^{1 / 2}\right] \\
&=\frac{1}{\sqrt{x^{2}+y^{2}}} \bullet \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \bullet \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) \\
&=\frac{1}{\sqrt{x^{2}+y^{2}}} \bullet \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \bullet 2 y
\end{aligned} \\
& \text { Rule: } \frac{\partial}{\partial y} \ln (\text { blah })=\frac{1}{\text { blah }} \bullet \frac{\partial}{\partial y}(\text { blah }) \\
& \text { Roots as powers, power rule, chain rule }
\end{aligned}
$$

Not in How to Ace

$$
\Delta x, \Delta y, \Delta z, \Delta w \quad d x, d y, d z, d w
$$

(A) Interpreting Slope.

$$
f(x)=m x+b
$$

run 1
\Rightarrow rise

run dx \Rightarrow rise $m d x$

$$
\text { slope }=\frac{\text { rise }}{\text { run }} \Rightarrow \text { rise }=(\text { slope })(\text { run })
$$

$$
=f^{\prime}(x) d x
$$

(B) Review Talc I: $y=f(x)$

Find $(L(x+\Delta x)$, a linear approximation for $f(x+\Delta x)$ based on a "seed" point $P(x, f(x))$ and its tangent line, l.
Approx.

$$
\begin{aligned}
f(x+\Delta x) & =f(x)+\Delta y \\
L(x+\Delta x) & =f(x)+\underbrace{d y} \\
\text { where } d y & =\text { rise along } \ell \\
& \text { as } x \rightarrow x+\Delta x \\
& =f^{\prime}(x) d x
\end{aligned}
$$

(C) Now, Talc III: $z=f(x, y)$

Based on a "seed" point $P(x, y, f(x, y))$ and its $\underbrace{\text { tangent plane to the surface (graph of } f \text {), }}$
best linear model
around P

$$
\oiint_{z=f(x, y)}^{z=L(x, y)}
$$

approx.

$$
f(x+\Delta x, y+\Delta y)=f(x, y)+\underbrace{\Delta z}_{\begin{array}{c}
\text { actual change in } z \\
\text { along saractace as } \\
\text { "shadow" }(x, y) \rightarrow \\
(x+\Delta x, y+\Delta y)
\end{array}}
$$

by $\quad L(x+\Delta x, y+\Delta y)=f(x, y)+\Delta d z$
change in z along tangent plane
(D) What is $d z$?

$$
\begin{aligned}
d z & =\text { total differential of } z \\
& =\text { change in } z \text { from } P \text { to } Q \\
& =\text { (change in } z \text { from Stage (1)) }+
\end{aligned}
$$

$=$ (slope of tangent plane in, x-direction) (run in, $x)+$

$$
\begin{aligned}
= & f_{x}(x, y) d x+ \\
& f_{y}(x, y) d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } w=f(x, y, z), \\
& \qquad d w=f_{x} d x+f_{y} d y+f_{z} d z
\end{aligned}
$$

(E) Ex

$$
f(x, y)=x^{2}+3 x y^{2}
$$

Use the fact that $f(1,2)=13$ to find a linear approx. for $f(0.98,2.03)$.

Sol'n

$$
\begin{aligned}
& d z=\left[f_{x}(1,2)\right] d x+\left[f_{y}(1,2)\right] d y \\
& f_{x}(x, y)=2 x+3 y^{2} \\
& f_{x}(1,2)=2(1)+3(2)^{2} \\
&=(14) \\
& f_{y}(x, y)=3 x(2 y) \\
&=6 x y \\
& f_{y}(1,2)=6(1)(2) \\
&=(12) \\
&=(14)(-0.02)+(12)(0.03) \\
&=0.08
\end{aligned}
$$

$$
\begin{aligned}
L(0.98,2.03) & =f(1,2)+d z \\
& =13+0.08 \\
& =13.08
\end{aligned}
$$

Exact: 13.075846

$$
\Delta z=0.075846
$$

(F) Applications

Given: Limited f info in a table
\Rightarrow Estimate f_{x}, f_{y} at a "seed" in the table
\Rightarrow Perform linear interpolations for f using differentials (near the seed)

Table:

$\star 4$	0	100	200
0	36	$\frac{38}{}$	42
10	40	$\leftarrow-43$	47
20	45	48	51

(6) Theory

Advanced Note

$$
\left(\begin{array}{r}
f \text { is differentiable at }(a, b) \text { if we can write } \\
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\uparrow
\end{array}\right.
$$

Stewart:
$f_{x}, f_{y} \rightarrow$ but f, f, f_{y} not cont at $(0,0)$
\downarrow
$f(x, y)=\left\{\begin{aligned} \frac{x y}{x^{2}+y^{2}} & (x, y) \\ 0 & (y, p) \\ 0 & (y) \\ & =(0,0)\end{aligned}\right.$

If f_{x}, f_{y} cont. on an open region $R \Rightarrow f$ is differentiable on R
\Rightarrow Linear approxs. tend to get better as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$.
If f is diff'e at $(a, b) \Rightarrow f$ is cont. there.
(A) Intro

Assume funcs, are diff'e where we care.
Cake I

$$
(w)=f(u)
$$

$\frac{d w}{d u}$

$$
(4)=g(x)
$$

$$
\frac{d w}{d x}=\frac{d u}{d u} \frac{d u}{d x}
$$

$\frac{d u}{d x}$
©

Talc III

\otimes
(4)
(x) (y)

Pinko model:
For $\frac{2 x}{3 x}$, take products along paths from w tox, and add them.

$$
\frac{\partial w}{\partial x}=\frac{\partial u}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial x}
$$

Ex Find $\frac{\partial w}{\partial u}$ if $w=3 x^{2}+e^{4 y}-x \ln z$, where $x=\sin (t u), y=t^{3}+u$, and $z=u^{4}$.
Solon

$$
\begin{aligned}
\frac{\partial w}{\partial u} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial u} \\
& =D_{x}\left(3 x^{2}+e^{4 y}-x \ln z\right) \cdot D_{u}[\sin (t u)] \\
& +D_{y}(1 \\
& +D_{z}^{\prime}(1 \\
& =(6 x-\ln z) \cdot[t \cos (t u)] \\
& +\left(4 e^{3}+u\right] \\
& +\left(-x \cdot \frac{1}{z}\right) \cdot\left(4 u^{3}\right)
\end{aligned}
$$

$$
=(6 x-\ln z) \cos (+u)+4 e^{4 y}-\frac{4 x u^{3}}{z}
$$

Sub into x, y, z.

$$
\begin{aligned}
&= {\left[6 \sin (t u)-\sqrt{\left.\ln \left(u^{4}\right)\right]+\cos (t u)}\right.} \\
&+4 e^{4\left(t^{2}+u\right)} \\
&-\frac{[4 \sin (t u)] u^{2}}{u^{4} u} \\
&= {\left[6 \sin (t u)-4 \ln (u l]+\cos (t u)+4 e^{4\left(t^{3}+u\right)}\right.} \\
&-\frac{4 \sin (t u)}{u}
\end{aligned}
$$

In many problems,
(B) Getting Derivatives from Implicit Functions
(Shortcuts to 3.7 Method)
If $F(x, y)=0$ determines a diff'e func. f such that $y=f(x)$, then

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{F_{x}}{F_{y}} \\
& \text { If } F(x, y, z)=0 \text { Think "negative reciprocal." } \\
& \text { Proof based on Chain Rule. } \\
& \frac{\partial z}{\partial x}=-\frac{f_{x}}{f_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

Ex Find $\frac{\partial z}{\partial x}$ if $\underbrace{x^{2} z+\tan (y z)}_{=F(x, y, z)}=0$ (ϵ (an't solve for z.)
Sol'n

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =-\frac{F_{x}}{F_{z}} \\
& =-\frac{2 x z}{x^{2}+y \sec ^{2}(y z)}
\end{aligned}
$$

Section 3.7 Method (for comparison \because-)

$$
\begin{gathered}
z=f(x, y) \\
D_{x}\left(x^{2} z\right)+D_{x}[\tan (y z)]=0
\end{gathered}
$$

Use Product Rule!

$$
\begin{aligned}
2 x z+x^{2} \frac{\partial z}{\partial x}+\left[\sec ^{2}(y z)\right]\left[y \frac{\partial z}{\partial x}\right] & =0 \\
\prime & =-2 x z \\
\frac{\partial z}{\partial x}\left[x^{2}+y \sec ^{2}(y z)\right] & =-2 x z \\
\frac{\partial z}{\partial x} & =-\frac{2 x z}{x^{2}+y \sec ^{2}(y z)} \hat{S}_{(\text {same })}
\end{aligned}
$$

16.6: DIREETIONAL DERIVATIVES (DOS)
(A) Intro

Consider the tangent plane to the graph of $z=f(x, y)$ at P.
 of surfaction surface in the plane $w /$ normal $\vec{k} \times \vec{u}$ and containing P
$f_{x}\left(x_{0}, y_{0}\right)=D D$ of f at P in the direction of, \dot{i}
$f_{y}\left(x_{0}, y_{0}\right)=$
$D_{\vec{u}} f\left(x_{0}, y_{0}\right)='$
$=$ slope along tangent plane at p in the direction of $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$, " unit vector indicating "compass direction"

$$
\stackrel{\text { Def }}{=} \lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s}
$$

Not weighted average of f_{r}, f_{y}, since $u_{1}+u_{2} \neq 1$ $(=1$ if $i, j)$
del, like 2

$$
\begin{aligned}
D_{\vec{u}} f(x, y)= & =f_{x}(x, y) u_{1}+f_{y}(x, y) u_{z} \\
& =\left\langle f_{x}(x, y) f_{y}(x, y)\right\rangle \cdot\left\langle u_{1}, u_{z}\right\rangle \\
& =\vec{\nabla} f(x, y) \cdot \vec{u}
\end{aligned}
$$

- del, the vector differential pretor $\left\langle\frac{3}{x}, \frac{2}{2}\right\rangle$ where $\vec{\nabla} f(x, y)=$ the gradient of f

$$
=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

Sketch of Proof of (7)

(h) $=x+5 u_{1}$

$$
\text { (V) }=y+5 u_{z}
$$

Ex $f(x, y)=2 x^{2}+y^{2}$
(a) Find $\vec{\nabla} f(2,3)$

$$
\begin{aligned}
\vec{\nabla} f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \\
& =\langle 4 x, 2 y\rangle \\
\vec{\nabla} f(2,3) & =\langle 4(2), 2(3)\rangle \\
& =\langle 8,6\rangle
\end{aligned}
$$

(b) Find the $O D$ of f at $(2,3)$ in the direction of $\vec{a}=\langle-3, \mid\rangle$.

Find \vec{u}, the unit vector in the direction of \vec{a}.

$$
\begin{aligned}
\vec{u} & =\frac{\vec{a}}{\|\vec{a}\|}=\frac{\langle-3,1\rangle}{\sqrt{(-3)^{2}+(1)^{2}}} \\
& =\frac{1}{\sqrt{10}}\langle-3,1\rangle \\
D_{\vec{u}}(2,3) & =\vec{\nabla} f(2,3) \cdot \vec{u} \\
& =\langle 8,6\rangle \cdot \frac{1}{\sqrt{10}}\langle-3,1\rangle \\
& =\frac{1}{\sqrt{10}}(-24+6) \\
& =-\frac{18}{\sqrt{10}} \\
& \approx-5.7
\end{aligned}
$$

(c) Find the $D D$ of f at $(2,3)$ in the direction of $\underbrace{\langle(-3,4\rangle}_{\substack{\sqrt{\text { Normalize }} \quad(a \text { new } \\ u}})$

$$
\begin{aligned}
D_{\vec{u}}(2,3) & =\vec{\nabla} f(2,3) \cdot \vec{u} \\
& =\frac{\langle 8,6\rangle \cdot \frac{\langle-3,4\rangle\rangle^{0}}{\|\langle-3,4\rangle\|}}{} \\
& =0
\end{aligned}
$$

When do 2 vectors han
a^{U}." of 0 ,
geom. speaking!

$$
\text { Note } \vec{\nabla} f(2,3) \perp \underset{(02,3)}{\langle(00)=0}
$$

(B) Comparing DDs

The DD of f at (x, y) is maximized in the direction of $\vec{\nabla} f(x, y)$, (steepest) the direction of fastest increase of f. The corresponding $D D=\|\vec{D} f(x, y)\|$.
minimized - $\vec{\nabla} f(x, y){ }^{(s t e q p e s t)}$ fall decrease decrease

- $\|\vec{D} f(x, y)\|$

Why?

$$
\begin{aligned}
& D_{\vec{u}} f(x, y)=\vec{\nabla} f(x, y) \cdot \vec{u} \\
& =\|\vec{\nabla} f(x, y)\|\|\vec{A}\|^{\mathbf{n}^{\prime}} \cos \underbrace{\cos \theta} \\
& \text { Max: }=1 \quad(\theta=0) \xrightarrow{+\quad t r} \\
& \text { Min: }=-1(\theta=\pi) \quad \longrightarrow \vec{\rightharpoonup} \\
& \text { Note: }=0\left(\theta=\frac{\pi}{2}\right) \\
& \text { if } 0 \leq \theta \leq \pi \quad \hat{\beta} \longrightarrow \vec{\nabla} f
\end{aligned}
$$

Note The DD changes continuously but not steadily writ θ. ' fastest near $\theta=\frac{\pi}{2} \quad\left(\vec{u}_{2}, \vec{u}_{4}\right)$ slowest near $\theta=0, \pi \quad(\vec{u}, \vec{u})$
Why? $D_{\theta}(D O)=-\| \vec{D} f(x, y \| \sin \theta$

$$
=
$$

Level curve (LC) of $f(x, y)=2 x^{2}+y^{2}$ through $(2,3)$:
Find k

$$
\begin{aligned}
k & =f(2,3) \\
& =2(2)^{2}+(3)^{2} \\
& =17
\end{aligned}
$$

$b \approx<, 9 a \approx 4,1$
A+ (23), in which directions will $00=0$?

LC: $2 x^{2}+y^{2}=17$
$f(x, y)=17$, a constant, for all (x, y) on $(C$.

$D D=0$ at (2,3) in "tangent directions" to the (C through (3,3).

Path of steepest ascent along the surface:
Keep going in the direction of $\underbrace{\vec{\delta} f(x, y)}_{\begin{array}{c}\text { may change } \\ \text { as you move }\end{array}}$ on your compass.
Hard fall
'descent
${ }^{\prime}-\vec{\nabla} f(x, y)^{\prime}$
(C) $w=f(x, y, z)$

$$
\begin{aligned}
& \vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& D_{\vec{u}} f=\vec{\nabla} f \cdot \vec{u}
\end{aligned}
$$

unit $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$
Level curves \rightarrow Level surfaces (16,7)
16.7: TANGENT PLANES and NORMAL LINES

Let S be the graph of $F(x, y, z)=0$.
Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S.
If $\vec{\nabla} F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is cont.,
then $\left.\vec{\nabla} F\right|_{P_{0}} ^{\perp} \perp$ (the tangent plane to S at P_{0}),
\#27: Every normal line to a sphere passes though
the center.

The level surface of $F(k=0)$
that contains P_{0}.
What's an eq, for the tangent plane at P_{0} ?
Ingredients
A point: $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$
A normal: $\left.\vec{\nabla} F\right|_{p_{0}}=\left\langle\left. F_{x}\right|_{p_{0}},\left.f_{y}\right|_{p_{0}},\left.F_{z}\right|_{p_{0}}\right\rangle * " n "$
From 14.5,

$$
\left(\left.f_{x}\right|_{p_{0}}\right)\left(x-x_{0}\right)+\left(\left.f_{y}\right|_{0}\right)\left(y-y_{0}\right)+\left(\left.f_{t}\right|_{p_{0}}\right)\left(z-z_{0}\right)=0
$$

Ex OF ind an eq. for the tangent plane to the graph of $z=2 x^{2}+y^{2}$ at $P_{0}(2,3,17)$. \leftarrow from 16.6 (b) Find eqs, for the normal line at P_{0}.

Solon

$$
z=2 x^{2}+y^{2}
$$

Isolate 0 on one side.

Projection in

$$
\begin{aligned}
\vec{\nabla} F & =\langle 4 x, 2 y,-1\rangle \\
\left.\vec{\nabla} F\right|_{P_{0}} & =\langle 4(2), 2(3),-1\rangle \\
& =\langle 8,6,-1\rangle \leqslant u_{\vec{n}}{ }^{\prime \prime}
\end{aligned}
$$

(a) Tangent plane

$$
8(x-2)+6(y-3)-(z-17)=0
$$

(b) Normal line

$$
\frac{\left\{\begin{array}{l}
x=2+8 t \\
y=3+6 t \\
z=17-t
\end{array} \quad, t \text { in } \mathbb{R} \mid\right.}{\substack{1 \\
P_{0}+\vec{n}}}
$$

- 16.8: OPTIMIZATION I
(A) Local/Relative Extrema of $f(x, y)$

Calc I: $y=f(x)$

Now: $z=f(x, y)$

A critical \# is a \# in Dom (t) where $f^{\prime}=0$ or $D N E$.
These are the ency \#5 (candidates) where L. Max / Min may occur. (Not "must": may)

f has a L. Max. of 30 at $(1,2)$.

Note 1: There is a horizontal tangent plane at $(1,2,30)$.

Note 2:

Why does this make sense?

Hyoure at the North Pole, can pu po further North?
$\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle$

$$
\vec{\nabla} f(1, z)=\langle 0,0\rangle=\overrightarrow{0}
$$

If $\vec{\sigma} f \neq \overrightarrow{0}$, then f can increase in that direction, and decrease in the opposite direction. We can't be at an L. Max./Min. Pt.

Level Curves of f

$\vec{\nabla} f$ shrinks as we move towards (1,2).

Note 3: $f(x, y)=\sqrt[3]{x^{2}+y^{2}}$
$Z_{\text {L. Min. } \rho_{t} \text {. }}$
$f_{x} f_{y}$ ONE

Define (a, b) is a $(P \Longleftrightarrow$
(0) (a, b) is in Dom (f)
(1) $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ (ie., $\left.\vec{\nabla} f(a, b)=0\right)$
or (2) either DNE
(ie., $\vec{\nabla} f(a, b) D N E$)
CPs are the only places where L. Max./Min. Pts. can occur.

Ex $2(p .863)$ (P where neither occurs

$$
f(x, y)=y^{2}-x^{2} \quad \text { (Hyp. paraboloid) }
$$

Discriminant
help us
dasrity.
$b^{2}-4 a c$ helped.
wilassity
quadratic fun c. as real ar imaginary.

Done care if we mitch $f_{x y}, f_{y x}$?
sym. Ralitix
fall evals real
(B) Classifying $C P_{s}$

Assume the $2^{\text {nd }}$ PD of f are cont. where we care

$$
\begin{aligned}
& \Rightarrow f_{x y}=f_{y x} \\
& \text { The discriminant of } f=\text { " } D^{\prime \prime} \text { or " } D(x, y)^{\prime} \\
&=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right| \\
&=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
\end{aligned}
$$

* For (1), you can use ty.

If $\left.f_{x, 1}, f_{4 y}\right)$ and fry
not too influential

$$
\Rightarrow D>0
$$

$$
\text { If } D=\underbrace{f_{x x} f_{y y}}_{>0}-\left(f_{x y}\right)^{2}>0 \text {, then }
$$

$\Rightarrow f_{x x}$, fry have same sign

** (2) Ex $f_{x x}<0, f_{y y}>0 \Rightarrow 0<0 \Rightarrow s p$
(c) ERs

Ex Find the local extrema and saddle points of

$$
f(x, y)=-x^{2}-y^{3}-6 x+3 y+4
$$

Step I: Find $C P_{s}$.

$$
\begin{aligned}
& \left.\begin{array}{l}
f_{x}=\underbrace{-2 x-6}_{\text {never DNE }} \stackrel{\text { set }}{=} 0 \\
f_{y}=\underbrace{-3 y^{2}+3}_{\text {never DNE }}=\frac{\text { set }}{=} 0
\end{array}\right\} \begin{array}{l}
\text { Solve } \\
\text { system. }
\end{array} \\
& \begin{aligned}
-2 x-6 & =0 \quad \text { and } \quad-3 y^{2}+3 \\
x & =-3 \\
y^{2} & =1
\end{aligned} \\
& y= \pm 1 \\
& \begin{array}{r}
C P_{5}:(-3,1) \\
(-3,-1)
\end{array} \\
& \text { Note: If we had... } \\
& \left\{\begin{array}{l}
x+y=0 \Leftrightarrow y=-x \\
x-y a=0
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{c}
y=-x \\
\underbrace{x-(-x)^{2}=0}_{x-x^{2}=0}
\end{array}\right. \\
& x(1-x)=0 \\
& x=0 \Rightarrow y=0 \\
& x=1 \stackrel{20}{9} y=-1 \\
& \text { (} P_{s} \text { : }(0,0) \\
& (1,-1)
\end{aligned}
$$

Step 2: Find $f_{x x}, D$.

$$
\begin{aligned}
& f_{x}=-2 x-6 \\
& f_{x x}=-2 \\
& f_{x y}=f_{y x}=0 \quad f_{y y}=-3 y^{2}+3 \\
& D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
-2 & 0 \\
0 & -6 y
\end{array}\right|=12 y
\end{aligned}
$$

Step 3: Classify CPs.

$$
\begin{array}{llll}
\frac{C P}{(-3,1)} & \frac{D=12 y}{12(1)=12>0} & \frac{f_{x x}=-2}{-2 \Theta} & \frac{\text { Conclusion }}{\text { L, Max. }} \\
(-3,-1) & 12(-1)=-12(0 & \text { (irrelevant) } & \text { SP }
\end{array}
$$

Step 4: Find t values at $C P_{s}$.

$$
\begin{aligned}
\text { L. Max. Pt. at } & (-3,1, f(-3,1) \\
& (-3,1,15) \\
\text { SP at }(-3,-1, & f(-3,-1)) \\
& (-3,-1,11)
\end{aligned}
$$

Larson \#qq
$x^{4}-2 x^{2}+y^{2}$
hat Zrelimin.
but no ret.max.
(D) What if the domain, D, is closed? (Wot on tests)

Calc I
Extreme Value Tho. (EVT)
If f is cont. on $[a, b]$, a closed interval
\Rightarrow There exist absolute max. and min. in $[a, b]$. 'A. (or global)

Now

Unbounded $\xrightarrow{\text { sita }} \rightarrow$ Bounded $=$ is a subregion disk

by circe

If D is open \Longrightarrow no boundary extrema to worm about
If D is closed \Longrightarrow examine boundary for passible A. Min. I Max. Pts.

EVT Extension: If f is cont. on a closed D \Rightarrow There exist A. Max. and AMin. in D.

Ex (\#2S) Find absolute extrema of $f(x, y)=x^{2}+2 x y+3 y^{2}$ on $D=\{(x, y) \mid-2 \leq x \leq 4$ and $-1 \leq y \leq 3\}$

Collect candidates where A. Max. Min. Pts. might appear.
(1) Find $C P_{s}$ in D (excluding boundary).

(2) Examine the 4 sides.
closed interval 7 redundant
work; $\sec ()$

F-
Splicer
Paramw/t

Beauty Contest

Ex $\underset{x=4}{D \int_{x}^{x}}$ tan open interval

$$
\begin{aligned}
f(4, y) & =(4)^{2}+2(4) y+3 y^{2} \\
& =\underbrace{16+8 y+3 y^{2}}_{g(y)}
\end{aligned}
$$

Calc I: $g^{\prime}(y)=0 \Rightarrow y=-\frac{4}{3}$
but $\left(4,-\frac{4}{3}\right)$ is not in D, so toss it!
(3) Find corners of D.
(4) Compare the f values at all our candidates.

Highest f value $\Rightarrow A$. Max, value on $D ;$ lowest $\Rightarrow A$. Min.

PART E: FOOTNOTES

Extending the 2 ${ }^{\text {nd }}$ Derivative Test

If you have a nice function of n variables, you will construct an $n \times n$ real symmetric matrix consisting of n th-order partial derivatives; such a matrix only has real eigenvalues. When classifying a critical point (CP), we consider the signs of the determinants of all the upper left square submatrices ($1 \times 1,2 \times 2$, etc.).

- If they are all positive, the matrix is called positive definite, and all of its eigenvalues are positive. The CP corresponds to a local min.

- If they alternate in sign from negative to positive, etc., the matrix is called negative definite, and all of its eigenvalues are negative. The CP corresponds to a local max.

- If they are all nonzero, and neither of the two above configurations occur, then the CP corresponds to a saddle point (SP).

Observe that the notes on 16.8.4 are consistent with all of this.

Defining a Saddle Point (SP)

The Harper Collins Dictionary of Mathematics:
"A point on a surface that is a maximum in one planar cross-section and a minimum in another."

Visualizing a hyperbolic paraboloid helps.
The definition may vary. Are degenerate "ties" allowed along a crosssection, like for horizontal lines? Also, for example, are the points along the y-axis saddle points if we have the graph of the "snake cylinder" $f(x, y)=x^{3}$?

Orientation of axes: $<{ }_{x}^{y}$
That's debatable. Using the Harper Collins definition, I don't believe they would be; the thing just doesn't look like a "saddle" along the y axis. But it is true that there are higher and lower points "immediately around" those points. Incidentally, $D=0$ everywhere for this function, so the $2^{\text {nd }}$ Derivative Test says nothing.

See: http://en.wikipedia.org/wiki/Saddle_point
(A) Intro
$\ln 16.8$ (0)

Id like to analyze f along C.
Now, what if C is my [restricted] domain?
like a strip along the
surface

"where we care":
In vicinity of
pHr. along C?
16.4 :
/6.4:
f_{x}, f_{y} count.
in open region
\Rightarrow fiff'e there
$\Rightarrow f$ cont.
$\sigma^{c c s}$

Another EVT Extension
If f is cont. on a closed curve (like δ)
or on a curve that includes its endows. (like vive)
\Rightarrow There exist A. Max. and A. Min. along the curve.
Note: This extends to surfaces and their boundaries in higher $\operatorname{dim} 5 . \theta \square$

Assume $\vec{\nabla} f$ is cont., $\vec{v}_{g} \neq \overrightarrow{0}$ where we care.

Goal: Find L. or A. Max, /Min. of $f(x, y)$ Calc I: Pigpen pollens! subject to the constraint $g(x, y)=0$, $100 \mathrm{ft}$. of fencing, \bar{x}^{y}
Note If you can solve $g(x, y)=0$ for y in terms of, x or
if can solve for y in \rightarrow Let $t=x$, or $x=t$?

To trace the corresp. graph off, move your finger so thar height for.

Labels are f values:
Ex (Not the "f" from 16.9.1.)

(OK, maybe the L. Max. value is 3.1, not 3 . Shut up! :")
If C is a closed curve like ${ }^{s}$ or is like \sim, then, A. Max./Min. are L. Max/ Min. (We're assuming f is cont. where we care.)
If $P \sim Q$, then check for possible A. Max. $/$ Min. at P,Q. Can't have (Max. Min, there.
(B) Lagrange's The.

Idea Consider the level curves (Cs) of f.
Where are the local extrema of f on C ?

Where the Cs of f barely touch C. (Why? See /6,9.11) At P, L and C share the same tangent line. ${ }^{-}$-

L is a $L C$ of, f,
9 $\Longrightarrow \vec{\nabla} f \| \vec{\nabla}_{g}$ at P

Lagrange's Thy.
If P is a L. Max./Min. locale along C, then there is a real \#, λ (lambda), such that

$$
\vec{\nabla} f=\lambda \vec{\nabla}_{g} \text { at } P .
$$

λ is a lagrange multiplier.

Proof (Optional)
Let $\vec{r}(t)=\langle x(t), y(t)\rangle$ be a sinooth paras. of C.
Let $h(t)=f(x(t), y(t))$.
$\overbrace{}^{f}(x, y) \quad h(t)=f(x, y)$
$h^{\prime}(t)$ or $\frac{d h}{d t}=O$ at P, a L. Max. Min. locale along C, (can't be "DNE" where Dि cont.)

By Chain Rule, ${ }_{x}^{\prime h}$
$A+P$,

$$
\begin{aligned}
\frac{d h}{d t}=\underbrace{\frac{d h}{d x} \frac{d x}{d t}}_{=f_{x}}+\underbrace{\frac{d h}{d y}}_{=f_{y}} \frac{d y}{d t} & =0 \\
& \underbrace{\left\langle f_{x}, f_{y}\right\rangle}_{\vec{b} f}\rangle \\
\underbrace{\left\langle\frac{d x}{d t}, \frac{d}{d t}\right\rangle}_{\vec{y}^{\prime}}\rangle & =0
\end{aligned}
$$

$$
\left.\begin{array}{c}
\vec{\nabla} f \perp \vec{r}^{\prime} \\
\vec{\nabla}_{g} \perp \vec{r}^{\prime}
\end{array}\right\} \Rightarrow \begin{aligned}
& \vec{\nabla} f \| \vec{\nabla}_{g} \\
& \vec{\nabla} f=\lambda \vec{\nabla}_{g}
\end{aligned}
$$

for some real
(c) Method

Goal: Find L. or A. Max, /Min. of $f(x, y)$ subject to $g(x, y)=0$.

To find the candidates (x, y) for L.Maxi/Min. locales, solve $\left\{\begin{aligned} \vec{\nabla} f(x, y) & =\lambda \vec{\nabla}_{g}(x, y) \\ g(x, y) & =0 \quad \text { ensures }(x, y) \text { is on } C\end{aligned}\right.$ for (x, y, λ)
can differ for different candidates (x, y); don't have to find (Nimeansto end)

If you're looking for A. Max. /Min., examine any endpoints of C.
Method extends to higher dimensions. $\left(L C_{s} \rightarrow\left(S_{s}\right)\right.$
Note If there are 2 constraints, $g\left(x_{1}, \ldots, x_{n}\right)=0$ and $\left.\frac{h\left(x_{1}, \ldots, x_{n}\right)}{\text { InTromit }}\right)=0$,
$\ln E x, 4$ on
Pp. $879-50$,
Can para.
Canparam, Care I.

for (x, y, z, λ, μ)

Stewart 2. 83

not really here, bit 1
pood form.
We then use " $g=0$ "
(D) Ex Find the C. Max, Min. of $f(x, y)=x y$ subject to $9 x^{2}+y^{2}=4$.

Sol'n

$$
\begin{array}{r}
9 x^{2}+y^{2}=4 \\
\underbrace{9 x^{2}+y^{2}-4}_{g(x, y)}=0 \quad \text { (isolate } 0 .), ~
\end{array}
$$

Solve $\left\{\begin{aligned} \vec{\nabla} f(x, y) & =\lambda \vec{\nabla}_{g}(x, y) \\ g(x, y) & =0\end{aligned}\right.$

$$
\begin{aligned}
\vec{\nabla} f(x, y) & =\lambda \vec{\nabla}_{g}(x, y) \\
\left\langle f_{x}, f_{y}\right\rangle & =\lambda\left\langle g_{x}, g_{y}\right\rangle \\
\langle y, x\rangle & =\lambda\langle 18 x, 2 y\rangle
\end{aligned}
$$

Solve $\left\{\begin{array}{l}\text { (1) } \quad y=\lambda(18 x) \\ \text { (2) } x=\lambda(2 y) \\ \text { (2) } 9 x^{2}+y^{2}-4=0\end{array}\right.$
(1) $y=\lambda(18 x) \Rightarrow \lambda=\frac{y}{18 x}$ (if $x \neq 0$) or $x=0$

$$
\begin{aligned}
& 4 y=\lambda(18 x) \\
& y=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
x=\lambda(2 y) \Rightarrow \lambda=\frac{x}{2 y}(\text { if } y \neq 0) \text { or } y & =0 \\
\Downarrow & x=\lambda(2 y) \\
x & =0
\end{aligned}
$$

Use (A)

$$
\text { If } \begin{aligned}
& y^{2}=9 x^{2} \\
& 9 x^{2}+y^{2}-4=0 \\
& 9 x^{2}+9 x^{2}-4=0 \\
& 18 x^{2}=4 \\
& x^{2}=\frac{2}{9} \\
& x= \pm \frac{\sqrt{2}}{3}
\end{aligned}
$$

For both $x= \pm \frac{\sqrt{2}}{3}$

$$
\Rightarrow x^{2}=\frac{2}{9}
$$

$$
y^{2}=9 x^{2}
$$

$$
\begin{aligned}
& 4 \\
& y^{2}=9\left(\frac{2}{9}\right)
\end{aligned}
$$

$$
y^{2}=2
$$

$$
y= \pm \sqrt{2}
$$

4 candidates: $\left(\pm \frac{\sqrt{3}}{3}, \pm \sqrt{2}\right)$ Sign free for all.
" \pm "s can be ambiguous.

$$
\begin{aligned}
& \text { If }(x=0, y=0) \\
& 0+0-4=0 \mathrm{No}
\end{aligned}
$$

(0,0) does not lie on C. Toss it!

Note: If we had $x= \pm 2, y=3 x$

$$
\begin{aligned}
& x=2 \Rightarrow y=6 \\
& x=-2 \Rightarrow y=-6
\end{aligned}
$$

Only 2 cants: : $(2,6)$ $(-2,-6)$

Evaluate f at the candidates.
Why?

Ellipse

$$
\begin{aligned}
& 9 x^{2}+y^{2}=4 \\
& \frac{x^{2}}{\frac{y^{2}}{4}}=1 \\
& \frac{4}{4}=1 \\
& \frac{d}{d} a=2 \\
& b=\frac{2}{3}
\end{aligned}
$$

Analyze $L C_{s}$ of f :

Application
Find the dimensions of the rectangle of max area in QI whose corners are on $(0,0), x^{\text {the }}$ - and y-axes, and the ellipse $9 x^{2}+y^{2}=4$.

$$
\frac{\sqrt{2}}{3} \text { units by } \sqrt{2} \text { units }
$$

$$
A_{r e a}=\frac{2}{3} u_{n+5}
$$

$$
\begin{aligned}
& f(x, y)=x y \\
& f(\underbrace{\left(\frac{\sqrt{3}}{3}, \sqrt{2}\right.}_{A})=\left(\frac{\sqrt{2}}{3}\right) \sqrt{2})=\frac{2}{3} \quad \text { L., A. Max. value } \\
& f\left(\underset{B}{\left(\frac{\sqrt{2}}{3},-\sqrt{2}\right)} \quad=-\frac{2}{3} \quad\right. \text { L., A, Min. value } \\
& f \underbrace{}_{\frac{\sqrt{2}}{3}, \frac{\sqrt{2})}{\left(t^{2} i s\right. \text { our ellipse) }}}=-\frac{2}{3} \quad \text { L,A. Min. value } \\
& f \underbrace{\left(-\frac{\sqrt{2}}{3},-\sqrt{2}\right)}_{D} \quad=\frac{2}{3} \quad L_{1}, A_{1} \text {. Max value }
\end{aligned}
$$

(E) Strategies for Classifying Candidates

The test is ugly!
(1) Consider the graph (or $L C s$) of f.
(2) Compare the f values of the candidates.
(3) If there's only I candidate, try to trace the behavior of f near it along C, maybe by examining other pts. on C.
(5) If you're looking for A. Max, Min., examine any endpoints of C.
(6) If f is cont. on a closed curve ((like Oc), and there are only two candidates for local extrema, then one must be a (.Max. (and an A. Max.) and the other must be a (Min. (Land an A. Min).

Sign analyses may simplify clasilicition? -3 vs. +1

By an EVT, there exist.
They must our at C. Max./Min. if C is closed. Oc
(F) Strategies for Solving Systems
(1) Eliminate variables one-by-one.
(2) Solve for λ in the $\overrightarrow{\nabla f}=\lambda \vec{\nabla}_{g}$ eggs. and equate.
(3) Solve for x, y in terms of λ, \Rightarrow Get eq. in λ.
(4) Multiply both sides of an eq. by something to make elimination easier. (Beware of cases where this something is 0_{1})
1
Be mindful of this when canceling!
How oke Rest Factoring is preferable.
(6) footnotes

A can't be a L. Max or Min,
To $\lambda f, g o$ in the direction of \vec{u}_{1}.
fie can yon
Now th?

DD of f at a point P in the direction of \vec{u} lunit

$$
\begin{aligned}
& =D_{\vec{u}} f(P) \\
& =\left(\vec{\nabla} f f_{p}\right) \cdot \vec{u} \\
& =\frac{\left(\vec{\nabla} f l_{p}\right) \cdot \vec{u}}{\|\vec{u}\|} \quad<=1 \\
& =\operatorname{comp}_{\vec{u}}\left(\vec{D} f l_{p}\right) \\
& (\text { This }=0) \Leftrightarrow\left(\vec{\nabla} f l_{p}\right) \perp \vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\uparrow \\
\left.\begin{array}{c}
1+0 \\
a+c
\end{array}\right)
\end{array} \frac{i}{\text { tangent to } c}
\end{aligned}
$$

As in Calk I, we care where $D O=0$.
Note: If $\vec{D} F l_{p}=\overrightarrow{0}$, we have $D D=0$ automatically, In 16.8, we knew that pts. where $\overrightarrow{D f}=\overrightarrow{0}$ were interesting, anyway.

$$
f(x, y)=x^{2}-y^{2}
$$

(A Hyperbolic Paraboloid; "Saddle")

Contour Plot

The x-slopes are -3 everywhere (i.e., at all points on the plane); the y-slopes are 2 everywhere.
If we fix any y-value (for example, $y=0$, which corresponds to the x-axis), we get a cross-sectional line with a slope of -3 in the x-direction.

If we fix any x-value, (for example, $x=0$, which corresponds to the y-axis) we get a cross-sectional line with a slope of +2 in the y-direction.

$$
f(x, y) \text { or } z=x^{4}+y^{2}
$$

I've plotted the points $(2,3,0)$ and $(2,3, f(2,3)=25)$, which lies on the surface.

If we fix y to be some value k, we get $f(x, k)=x^{4}+k^{2}=x^{4}+$ some number. Then, the corresponding cross-section is a steep quartic (fourth-degree) curve.

If we fix x to be some value k, we get $f(k, y)=k^{4}+y^{2}=$ some number $+y^{2}$. Then, the corresponding cross-section is a not-as-steep quadratic (second-degree) curve.

Here's the corresponding contour diagram:

It turns out that $f_{x}(2,3)=32$ and $f_{y}(2,3)=6$; it makes sense that the former is larger, since $f(x, y)$ is a quartic in x but only a quadratic in y. The surface is much steeper in the x direction than in the y-direction starting from $(x=2, y=3)$. Given that the x - and y-scales are the same in our diagram, it is no wonder that the contours are closer in the x-direction than in the y-direction. In both directions, the contours are getting closer as we move away from $(x=0, y=0)$, indicating that the surface becomes steeper and steeper as we move away from $(x=0, y=0)$.

We have that $\operatorname{grad} f(2,3)=\left[f_{x}(2,3)\right] \mathbf{i}+\left[f_{y}(2,3)\right] \mathbf{j}=32 \mathbf{i}+6 \mathbf{j}$. Note that this gradient pretty much points in the x-direction, with just a little tilt towards the y-direction. This makes sense, since [like a magic compass arrow] the gradient points in the direction where f increases most rapidly from the point you're at.

REVIEW: $16.3-16.9$
$16.3: P D_{s}$
$1^{\text {st }}$ - Order Ex

$$
\begin{aligned}
& f_{x}(x, y) \text { or } \frac{\partial f}{\partial x}(x, y) \\
& \quad=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
\end{aligned}
$$

To find: Treat y as constant, Differentiate wot x,

2nd-Order Exs

$$
\begin{aligned}
& f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial^{2} f}{\partial x^{2} f^{2}} \\
& f_{x y}=\left(f_{x}\right)_{y}=\frac{\frac{\partial z}{2 y^{2}} f_{x}}{巳}
\end{aligned}
$$

16.4: INCREMFNTS and DIFFERENTIALS

Used to find linear approxs. for f near a seed point $P(x, y, f(x, y))$.

$$
\begin{aligned}
d x & =\Delta x=\text { new } x-\text { old } x \\
d y & =\Delta y=\text { new } y \text {-old } y \\
d z & =\text { change in } z \text { along tangent plane } \\
& =(x \text { slope })(x \text { run })+\text { (y slope)ly run }) \text { tldea: } \\
& =f_{x}(x, y) d x+f_{y}(x, y) d y
\end{aligned}
$$

approximates Δz, the actual change in z along the surface
We approx. $f(x+\Delta x, y+\Delta y)=f(x, y)+\Delta z$
by $L(x+\Delta x, y+\Delta y)=f(x, y)+d z$.
Theory Notes
f_{x}, f_{y} cont. on open region $\Rightarrow f(x, y)$ diff'e there f diff'e at $(a, b) \rightarrow f$ cont. there

Ex

$$
\begin{aligned}
& \text { At end, write in terms of } x, y \\
& \frac{\partial w}{\partial x}=\underbrace{\overbrace{\text { Add these }}^{\frac{\partial w}{\partial u}} \frac{\partial u}{\partial x}}_{\begin{array}{c}
\text { Product along } \\
\text { path } w \rightarrow x
\end{array}}+\underbrace{\text { At end, write in terms of }}_{\text {path products }} \text { of } x, y
\end{aligned}
$$

If $F(x, y)=0$ describes a diff'e func. f such that $y=f(x)$,

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} \quad\binom{\text { "Negative }}{\text { reciprocal" }}
$$

If $F(x, y, z)=0$
$z=f(x, y)$,

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

F
x M
x \& treat as indep.
16.6: DDs / 16.7
$f(x, y)$

$f(x, y, z)$
$\left\langle\left(\left\langle c_{s}\right) \rightarrow\left(L_{s}\right)\right.\right.$
Level curves \rightarrow Level surfaces
Tangent line $\rightarrow \underbrace{\text { Tangent plane }}$

$$
\epsilon_{q}:\left(\left.F_{x}\right|_{0}\right)\left(x-x_{0}\right)+\left(\left.f_{y}\right|_{0}\right)\left(y_{y}-y_{0}\right)+\left(\left.F_{z}\right|_{0}\right)\left(z-z_{0}\right)=0
$$

Ideas analogous to $f(x, y)$
Ex $\vec{\nabla} f \perp$ (Tangent to $L C / L S$)

CPs are the only places where L.Max./Min. can occur.

$$
\begin{aligned}
& (a, b) \text { is a } C P \Leftrightarrow \\
& \text { (0) }(a, b) \text { in } \operatorname{Dam}(f) \\
& \text { (1) } \vec{\nabla} f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle=\overrightarrow{0} \\
& \text { or (2) } \\
& \text { DUE }
\end{aligned}
$$

$2^{\text {nd }}$ Derivative lest to Classify $C P_{s}$

$$
\begin{aligned}
D & =\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right| \quad \begin{array}{c}
\text { Assume all } \\
\text { cont. }
\end{array} \\
& =f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
\end{aligned}
$$

At a $C P$ where $\vec{\nabla} f=\overrightarrow{0}$,
(1) If D>O,
(ba) If $f_{x x}$ (or $\left.f_{y y}\right)<0$
(2) \Rightarrow L. Max.
(16)
(1) \Rightarrow L. Min.
(2) If $D<0 \Rightarrow$ Saddle Pt.
(3) If $D=0 \Rightarrow$ No info
16.9: CONSTRAINED OPTMIZATION-

LAGRANGE MULTIPLIERS (LIS)
Ex f Find L. or A. Max. Min, Copes. 2 of f along [the image of $]$ C.

$$
\begin{aligned}
& \Rightarrow \vec{\nabla} \| \vec{\nabla}_{g} \text { at } P \\
& \Rightarrow \vec{\nabla} f=\lambda \vec{\nabla} g \text { at } P \\
& \quad \text { for some } \lambda \\
& \quad \text { in }
\end{aligned}
$$

Solve $\left\{\begin{array}{c}\vec{\nabla} f(x, y)=\lambda \vec{\nabla} g(x, y) \quad \text { for }(x, y, \lambda) \\ g(x, y)=0\end{array} \quad \begin{array}{c}\hat{c} \\ \text { can }\end{array}\right.$ can differ among (x, y) candidates don't have to find

Evaluate f at the candidates, and compare.
See Strategies for Classifying, Solving Systems.

