










































17.3.11

Here is the graph of 
  
f x y

y

x y
,( ) =

+

2

2 2
. (Mathematica)

The coordinate axes are rotated a bit differently from what we’re used
to.





How do you graph the surface   z = sin2 θ  over the annulus R from our example in
the 17.3 notes? How would you graph the corresponding solid whose volume we
were finding?

First off, let’s consider the graph of  sin
2 θ  vs. θ  in Cartesian coordinates:

The square of a real number in [0,1] will also be in [0,1].
Because the range of  sinθ  is [0,1], the range of  sin

2 θ  is also [0,1].

Unlike the graph for 
 
sinθ , there are no corners at θ -values of 0, π ,  2π ,

etc.  The  sin
2 θ  function is everywhere differentiable! Its derivative is given

by  2sinθ cosθ , or 
 
sin 2θ( ) , which is 0 at 

  
θ = πn n integer( ) .

How do you graph   z = sin2 θ  in 3-space?

Here’s what Mathematica gives; the coordinate axes are rotated a bit
differently from what we’re used to.



How do we get the piece over R?

You could take scissors to the previous graph, and rotate the scissors as you
cut.

It's basically like a twisty slide, or a piece of a roller coaster. Imagine a
staircase in a mansion that is curving upward, except that we smooth out the
steps. Notice that the function values are constant along the straight lines in
the xy-plane through the origin: when θ  is fixed, it doesn't matter what r is.
The steps are flat, because our function is independent of r and therefore
doesn't care about r; it's like sweeping through r-values. The level curves are
line segments pointing away from the origin, and they vary from an  f  or z
value of 0 to a value of 1.

Mathematica gives the following Contour Plot; ignore the curviness
of some of the lines – these are distortions.



When  θ = 0 , for example,  sin
2 θ  = 0, all the way from   r = 2  to   r = 3. That

means that the line segment from (2,0,0) to (3,0,0) in Cartesian coordinates
is going to be on our slide / staircase. In fact, it will be the bottom edge of
our staircase.

When 
 
θ =

π
2

,  sin
2 θ  = 1, all the way from   r = 2  to   r = 3. That means that

the line segment from (0,2,1) to (0,3,1) in Cartesian coordinates is going to
be on our slide. In fact, it will be the top edge of our staircase.

As θ  increases from 0 to 
 

π
2

,  sin
2 θ  increases from 0 to 1 in a curvy way,

like the way we discussed in class.  sin
2 θ  gives us the z-coordinate of our

step on the staircase. We don't get any hills or valleys along the staircase,

though, because  sin
2 θ  is always increasing between  θ = 0  and 

 
θ =

π
2

. If we

go beyond 
 

π
2

, though, then the staircase begins to go down.

Look at the first Mathematica graph. The top edge of the staircase lies on
that top "crease", though it's not really a sharp crease (no corner in our first
graph!). The solid whose volume we're finding is basically the wall beneath
the staircase.



















































17.7.6

Graph z = £ £( )q q p0 2 .

Think of a rising, rotating line with a rising z-intercept that never
intersects the xy-plane (except for z = 0). These lines are “parallel” to
the xy-plane.

The pole may be coordinatized as 0,q( )  in polar coordinates, where q
is any real number. Here, we have the restriction 0 2£ £q p . The
multiple representations (“identities”) of the pole lead to infinitely
many image points along the z-axis of the form 0, ,q q= =( )z z , or

0, ,z z( ), where 0 2£ ( ) £q por z .

Mathematica graphs:

0 1£ £r - £ £1 1r

























































JUMBLING TSPs

How is a b c¥( ) ∑  related to a c b¥( ) ∑ ?

Determinant approach:

   

a b c¥( ) ∑ =
a a a

b b b

c c c

1 2 3

1 2 3

1 2 3

   

a c b¥( ) ∑ =
a a a

c c c

b b b

1 2 3

1 2 3

1 2 3

The determinant forms differ only by a single switch of two rows, so
they differ only by a sign.

  a b c a c b¥( ) ∑ = - ¥( ) ∑[ ]

Geometric approach:

Both 
  

a b c¥( ) ∑  and 
  

a c b¥( ) ∑  represent the volume of the

parallelepiped determined by the position vectors for a, b, and c. This
is consistent with the box above.



How is a b c¥( ) ∑  related to b c a¥( ) ∑ ?

Determinant approach:

   

a b c¥( ) ∑ =
a a a

b b b

c c c

1 2 3

1 2 3

1 2 3

   

b c a¥( ) ∑ =
b b b

c c c

a a a

1 2 3

1 2 3

1 2 3

The determinant forms differ by two switches of pairs of rows, so
there is a “double negative” effect, and the determinants are equal.

  a b c b c a¥( ) ∑ = ¥( ) ∑

Geometric approach:

(Similar to the first example)

Remember that dot products are commutative, and cross products are
anticommutative, so it may be easy to relate some jumbles. For example,

  

a b c c a b

c b a

¥( ) ∑ = ∑ ¥( )
= - ∑ ¥( )[ ]

Basically, if you perform a TSP jumble of three vectors in V3 that makes sense
(you only take dot products of two vectors of the same length, and you only take
cross products of two vectors in V3), you either get the original TSP value or its
opposite. This is consistent with the geometric interpretation of the absolute value
of a TSP as the volume of a parallelepiped determined by the position vectors for
the three constituent vectors.
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