17.1: DOUBLE INTEGRALS (JJ), and
17.2: AREA and VOLUME
(A) Intro

Talc I

$$
\int_{a}^{b} f(x) d x=A \quad \int_{c}^{d} f(x) d x=-B
$$

1 dea

Widest width $\rightarrow 0$ (\ni \# rectangles $\rightarrow \infty$)

Now

Below xy-plane $\Rightarrow-V$

$$
\int / \int_{R} f(x, y) d A=V
$$

Idea

(B) Rectangular R

Ex R is given by $\{(x, y) \mid 1 \leq x \leq 4$ and $2 \leq y \leq 3\}$.

Find the volume between the graphs of $\underset{f(x, y)}{z}=x^{2} y+y^{2}$ and $\underset{x y \text {-plane }}{z=0}$ over R.
Solon
Note $x^{2} y+y^{2} \geq 0$ on R, so our solid lies entirely above the xy-plane.

By Fubini's Theorem,

$$
\iint_{R} f(x, y) d A=
$$

(\#1)

$$
\begin{aligned}
& \int_{2}^{3} \int_{1}^{4} \underbrace{\left(x^{2} y+y^{2}\right)} d x d y
\end{aligned}
$$

or (42) $\underbrace{\int_{1}^{4} \underbrace{\int_{2}^{3}\left(x^{2} y+y^{2}\right) d y}_{2} d x}$
(\#1)

$$
=\int_{2}^{3}\left(\left[\frac{(4)^{3}}{3} y+y^{2}(y)\right]-\left[\frac{()^{3}}{3} y+y^{2}(i)\right]\right) d y
$$

$$
=\int_{2}^{3}\left(\frac{64}{3} y+4 y^{2}-\frac{1}{3} y-y^{2}\right) d y
$$

$$
=\int_{2}^{3}\left(3 y^{2}+21 y\right) d y \quad(\text { Talc } I!)
$$

$$
=\left[y^{3}+2 \left\lvert\,\left(\frac{y^{2}}{2}\right)\right.\right]_{2}^{3}
$$

$$
=\left[(3)^{3}+21 \cdot \frac{(3)^{2}}{2}\right]-\left[(2)^{3}+21 \cdot \frac{(2)^{2}}{2}\right]
$$

Can do 13

$$
=\frac{143}{2} \text { or } 71.5 \text { cubic units }
$$

Idea

$$
\begin{aligned}
& \int_{2}^{3}[\int_{1}^{4}(x^{2} y+\underbrace{2}) d x] d y \\
& \text { treat } y \text { as a constant. } \\
& =\int_{2}^{3}\left[\left(\frac{x^{3}}{3}\right) y+y^{2} x\right]_{x=1}^{x=4} d y \quad \left\lvert\, \begin{array}{c}
\uparrow \\
\text { Optional reminder }
\end{array} \quad \begin{array}{c}
\int \ln k: \int x^{2}, 7 d x=\left(\frac{x^{3}}{3}\right) \cdot 7+C \\
\int 7 d x=7 x+C
\end{array}\right.
\end{aligned}
$$

How did we scan ever R?

(Aim) Fix a y-value between 2,3 . y is the outer variable.
(Shoot) From $x=1$ to $x=4$.
x is the inner variable.
Slide) (f) from $y_{x_{\text {outer }}}=2$ to $y=3$.
y : final scanning direction t
(c) Other R_{s}

Ex Find the volume, V, of the solid bounded by the graphs of:
(1) What is R ?
(19) Find any Intersection Points (Just "x"coords.? "y"?)

Solve $\left\{\begin{array}{l}y=2 x^{3} \\ y=x^{4}\end{array}\right.$

$$
\begin{aligned}
\Rightarrow 2 x^{3} & =x^{4} \\
0 & =x^{4}-2 x^{3} \\
0 & =x^{3}-(x-2) \\
& \text { (0) }
\end{aligned}
$$

$$
x=0,2
$$

(II) Which graph is on top? bottom?

At $x=1$,

$$
\begin{array}{rlrl}
2 x^{3} & =2(1)^{3}=2 & & 2>1, \text { so } \\
x^{4} & =(1)^{4}=1 & & \text { (bot) } \\
& \text { where } 0<x<2
\end{array}
$$

(Ic) Sketch R (maybe - / may want this on a test)

(2) Set up \iint

Idea
(Aim) Fix $x \quad(0 \leq x \leq 2)$
outer variable
Shoot f From $y=x^{4}$ to $y=2 x^{3}$
(bottom) (top) yiinner variable
(slide) \leftrightarrow From $x=0$ to $x=2$
"outer variable is overall "scan "variable

Surfaces

$$
\begin{gathered}
\text { On }, \quad z=x+y+4>0 \text { (top) } \\
z=0 \\
V=\iint_{R}[\underbrace{(x+y+4)}_{\text {top } z}-\underbrace{(0)}_{\text {bottom } z}] d A
\end{gathered}
$$

Note It's OK if "bottom z " is sometimes negative on R, as long as it's below or at "top z."

$" x="$
$" y="$) optional but help!
(3) Evaluate /f (1 may or may not ask for this.)

$$
\begin{aligned}
& V=\int_{x=0}^{x=2}\left[\int_{y=x^{4}}^{y=2 x^{3}}(x+y+4) d y\right] d x \\
& =\int_{x=0}^{x=2}\left[x y+\frac{1}{2} y^{2}+4 y\right]_{y=x^{4}}^{y=2 x^{3}} d x \\
& =\int_{x=0}^{x=2}\left(\left[x\left(2 x^{3}\right)+\frac{1}{2}\left(2 x^{3}\right)^{2}+4\left(2 x^{3}\right)\right]\right. \\
& \left.-\left[x\left(x^{4}\right)+\frac{1}{2}\left(x^{4}\right)^{2}+4\left(x^{4}\right)\right]\right) d x \\
& =\int_{0}^{2}\left(2 x^{4}+\frac{1}{2}\left(4 x^{6}\right)+8 x^{3}-\left[x^{5}+\frac{1}{2} x^{8}+4 x^{4}\right]\right) d x \\
& \left\{\begin{array}{c}
\text { You're in dangeraf } \\
\text { forgeting }
\end{array}\right. \\
& =\int_{0}^{2}\left(2 x^{4}+2 x^{6}+8 x^{3}-x^{5}-\frac{1}{2} x^{8}-4 x^{4}\right) d x \\
& =\int_{0}^{2}\left(-\frac{1}{2} x^{8}+2 x^{6}-x^{5}-2 x^{4}+8 x^{3}\right) d x \\
& =\left[-\frac{1}{2}\left(\frac{x^{9}}{9}\right)+2\left(\frac{x^{7}}{7}\right)-\frac{x^{6}}{6}-2\left(\frac{x^{5}}{5}\right)+\frac{2}{8}\left(\frac{x^{4}}{x}\right)\right]_{0}^{2} \\
& =\left[-\frac{1}{2}\left(\frac{29}{9}\right)+2\left(\frac{27}{7}\right)-\frac{2^{6}}{6}-2\left(\frac{25}{5}\right)+2(2)^{4}\right]-[0] \\
& =\frac{5248}{315}
\end{aligned}
$$

(D) Reversing the Order of Integration

Same Ex $\int_{x=0}^{x=2} \int_{y=x^{4}}^{y=2 x^{3}}(x+y+4) d y d x \Rightarrow \iint_{R}(x+y+4) d x d y$
Don't just switch!
Sketch R

Solve for x

$$
\begin{array}{ll}
y=2 x^{3} & y=x^{4} \\
\frac{y}{2}=x^{3} & x=\frac{+}{4} y \\
x=\sqrt[3]{\frac{y}{2}} &
\end{array}
$$

(Aim) Fix $y_{\text {outer }}(0 \leq y \leq 16)$
(Shot) \rightarrow From $x=\sqrt[3]{\frac{y}{2}}$ (left) to $x=\sqrt[4]{4}$
Side I From $y=0$ to $y=16$
All lat 1.2, $n \quad \int_{y=0}^{y=16} \int_{x=\sqrt[3]{y / 2}}^{x=\sqrt[4]{7}}(x+y+4) d x d y$

It may be easier (or necessary) to reverse the order because of R andlor the form of $\underbrace{f(x, y)}$.
homie.

"冨 $\iint \sim d x d y$

Ex $\left(17.1_{1}^{*} 46\right) \int_{0}^{9} \int_{\sqrt{y}}^{3} \sin x^{3} d x d y$
BUT I can't do $\int \sin x^{3} d x$ (without series)
BETTER $\int_{\underbrace{\sin x^{3}}_{\text {"\#" }}} d y=y \sin x^{3}$
(E) Area of R

Area $=$ Volume (numerically)
Choose $f(x, y)=1$.
Ex

$$
\begin{aligned}
A & =\iint_{R}^{R} \mid d A \\
& =\int_{x=a}^{x=b} \int_{y=g(x)}^{y=f(x)} \mid d y d x \\
& =\int_{x=a}^{x=6}[y]_{y=g(x)}^{y=f(x)} d x \\
= & \int_{a}^{b}[\underbrace{f(x)}_{\text {top }}-\frac{g(x)}{\text { bottom }}] d x \\
& \text { Calc I! (6.1) }
\end{aligned}
$$

(F) Splitting R

17.3: Jfs IN POLAR COORDS. (PCS)
(A) Review PCs

(B) Area of a Polar Rectangle
(B1) 17.1/12.2: Cartesian Rectangle

In Riemann Sum,

$$
\begin{aligned}
& \Delta A=\Delta x \Delta y \\
& \ln \iiint_{1} \\
& d A=d x d y \\
& d A=d y d x
\end{aligned}
$$

(B2) Arc Length "L" along a Circle
Measure angles in radians.

$L=$ (fraction of circle) (circumference)

$$
\begin{aligned}
& L=\left(\frac{\theta}{2 \pi}\right)(2 \pi r) \\
& L=r \theta
\end{aligned}
$$

(B3) Area of a Polar Rectangle

Think: fan/ windshield wiper (How to Ace)

Turns out (see (B4))

$$
\text { Shaded } \begin{aligned}
\Delta A & =(\Delta r)(F \Delta \theta) \\
& =\bar{r} \Delta r \Delta \theta \\
\ln \iint, \frac{d A}{}= & r d r d \theta \\
& \text { Don't forget!! Idea: If } d \theta, \text { dr fixed, }
\end{aligned}
$$

(B4) Optional: Why does $\Delta A=(\Delta r)(\bar{r} \Delta \theta)=\bar{r} \Delta r \Delta \theta$?

$$
\begin{aligned}
\text { Sector Area } & =(\text { fraction of circle })(\text { area of circle }) \\
& =\left(\frac{\theta}{2 \pi}\right)\left(\pi r^{2}\right) \\
& =\frac{1}{2} r^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} r_{2}^{2} \Delta \theta-\frac{1}{2} r_{1}^{2} \Delta \theta \\
& =\frac{1}{2} \underbrace{\left(r_{2}^{2}-r_{1}^{2}\right) \Delta \theta}_{\text {Factor }} \\
& =\underbrace{\frac{1}{2}\left(r_{2}+r_{1}\right)}_{\bar{r}} \underbrace{\left(r_{2}-r_{1}\right)}_{\Delta r} \Delta \theta \\
& =\bar{r} \Delta r \Delta \theta
\end{aligned}
$$

(c) Area

Assume

$$
\begin{gathered}
r_{\text {out }}, r_{\text {in }} \text { are cont., } \geq 0 \\
\text { on }[\alpha, \beta]
\end{gathered}
$$

where $\underbrace{0 \leq \underbrace{\alpha}_{0}}_{\text {so } \underbrace{0 \leq \beta-\alpha}_{\text {so no "overlapping" }} \leq 2 \pi}$

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A \\
& =\int_{\theta=\alpha}^{\boldsymbol{\theta}=\beta} \int_{r=r_{\text {in }}(\theta)}^{r=r_{\text {out }}(\theta)} r d r d \theta
\end{aligned}
$$

Idea: Ain /Fix θ (outer variable)
(Shot) From $r=r_{\text {in }}(\theta)$

$$
\text { to } r=r_{\text {out }}(\theta)
$$

Slide/Rotate From $\theta=\alpha$
to $\theta=\beta$

Special Case

$$
\begin{aligned}
& \text { Area }= \int_{\theta=\alpha}^{\theta=\beta} \int_{r=0}^{r=f(\theta)} r d r d \theta \\
&=\int_{\theta=\alpha}^{\theta=\beta}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=f(\theta)} d \theta \\
&= \int_{\theta=\alpha}^{\theta=\beta} \frac{1}{2}[f(\theta)]^{2} d \theta \\
& \text { Cal } \mathbb{I}(13,4)
\end{aligned}
$$

Also

$$
\text { Area }=\int_{r=a}^{r=6} \int_{\theta=f(r)}^{\theta=g(r)} r d \theta d r
$$

(D) Volumes, Other \iint_{S}

Ex Find the volume of the solid
bounded above by the graph of $\underbrace{f(x, y)}_{z}=\frac{y^{2}}{x^{2}+y^{2}}$,
bounded below by the $x y$-plane, and lying above R,
where R is the region in Quadrant I Cot the $x y-p l a n e]$ bounded by the graph r of $x=0, y=0, y=\sqrt{9-x^{2}}$, and $y=\sqrt{4-x^{2}}$.

Sol'n
(1) Express $f(x, y)$ in $P C_{s}$

Recall

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
x^{2}+y^{2} & =r^{2} \\
\underbrace{x^{2}+y^{2}}_{\text {Observe : These } \geq 0} & =\frac{(r \sin \theta)^{2}}{r^{2}}=\frac{x^{2} \sin ^{2} \theta}{x^{2}}=\underbrace{\sin ^{2} \theta}_{\text {for all }(x, y) \neq(0,0)}(\text { if } r \neq 0)
\end{aligned}
$$ (ie, $r \neq 0$), so the graph never falls below the ry -plane.

(2) Graph R (if possible)

$$
\begin{aligned}
y & =\sqrt{9-x^{2}} & y & =\sqrt{4-x^{2}} \\
y^{2} & =9-x^{2}, y \geq 0 & y^{2} & =4-x^{2}, y \geq 0 \\
x^{2}+y^{2} & =9 & , y \geq 0 & x^{2}+y^{2}
\end{aligned}=4, y \geq 0
$$

$$
\underset{\substack{\text { Improper } / s \\ r \rightarrow 0}}{ }
$$

in Quadrant I
part of annulus (ring) (O)

Note These are hard:

$$
\nabla \int_{x=0}^{x=2} \int_{y=\sqrt{4-x^{2}}}^{y=\sqrt{4-x^{2}}} \frac{y^{2}}{x^{2}+y^{2}} d y d x+\int_{x=2}^{x=3} \int_{y=0}^{y=\sqrt{9-x^{2}}}
$$

Inveluer tan ${ }^{-1}$

$$
\text { () } \int_{y=0}^{y=2} \int_{x=\sqrt{4-y^{2}}}^{x=\sqrt{9-y^{2}}} \frac{y^{2}}{x^{2}+y^{2}} d x d y+\int_{y=2}^{y=3} \int_{x=0}^{x=\sqrt{9-y^{2}}},
$$

(3) Use (2) to Set U_{p} the $\iint_{\text {in }} P C_{5}$.

Method I

(Aim)/Fix θ (outer variable),
Shoot From $r=2$ to $r=3$.
Shide/Rotate From $\theta=0$ to $\theta=\frac{\pi}{2}$.

$$
=\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=3}^{r=3}(2) \underbrace{\sin ^{2} \theta \cdot r} d r d \theta
$$

Indep. of θ_{j} can separate $\theta_{\text {, }}$ into different factors
\Rightarrow We can separate the $\int_{s}!!$

$$
\begin{equation*}
=\left[\int_{\theta=0}^{\theta=\frac{\pi}{2}} \sin ^{2} \theta d \theta\right] \underbrace{\left[\int_{r=2}^{r=3} r d r\right]} \tag{8}
\end{equation*}
$$

(4) Evaluate

$$
\begin{aligned}
& =\left[\frac{r^{2}}{2}\right]_{2}^{3} \\
& =\frac{\left(r^{2}\right.}{2}-\frac{60^{2}}{2} \\
& =\frac{5}{2}
\end{aligned}
$$

$$
=\frac{5}{2} \int_{0}^{\frac{\pi}{2}} \underbrace{\begin{array}{c}
" \sin \text { is had" } \\
\frac{\Delta-\cos (2 \theta)}{2}
\end{array} d \theta . d \theta}
$$

from a Power -Reducing Identity (PRI)

$$
\begin{aligned}
& =\frac{5}{4} \int_{0}^{\frac{\pi}{2}}[1-\underbrace{\cos (2 \theta)}_{\text {use Guess-and-v (or u-sub) }}] d \theta \\
& =\frac{5}{4}\left[\theta-\frac{1}{2} \sin (2 \theta)\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{5}{4}([\frac{\pi}{2}-\frac{1}{2} \underbrace{\sin \left(z-\frac{\pi}{2}\right)}_{=0}]-(0]) \\
& =\frac{5 \pi}{8} \text { cubic units. }
\end{aligned}
$$

Method 2

(Aim)/Fix r souter variable).
(Shot) From $\theta=0$ to $\theta=\frac{\pi}{2}$.
(Side) From $r=2$ to $r=3$. Push out

$$
\int_{r=2}^{r=3} \int_{\theta=0}^{\theta=\frac{\pi}{2}} \sin ^{2} \theta \cdot r d \theta d r
$$

= , $1 / 50$

Here is the graph of $f(x, y)=\frac{y^{2}}{x^{2}+y^{2}}$. (Mathematica)
The coordinate axes are rotated a bit differently from what we're used to.

(E) PCs May Help if...

Remember is. 2 on limits
(1) You see " $x^{2}+y^{2}$ " in the integrand
(2) R is bounded by circular ares or rays (or other polar curves such as cardioids," lima sons, lemniscates, roses,...)

Note

Were finding a volume under a
surface.
You can translate? if you...
$\left(x_{0}, y_{0}\right) \times$ If this is not the origin $1 p 0 / e$, try translating?

We must also translate the surface (s).

$$
\iint_{R_{1}} f(x, y) d A=\iint_{R_{2}} \underbrace{f\left(x+x_{0}, y+y_{0}\right)}_{1} d A
$$

In the $f(x, y)$ rule, replace:
x with $\left(x+x_{0}\right)$ and
y with $\left(y+y_{0}\right)$.
\uparrow
0 will be our new reference point.

How do you graph the surface $z=\sin ^{2} \theta$ over the annulus R from our example in the 17.3 notes? How would you graph the corresponding solid whose volume we were finding?

First off, let's consider the graph of $\sin ^{2} \theta$ vs. θ in Cartesian coordinates:

The square of a real number in [0,1] will also be in $[0,1]$.
Because the range of $\sin \theta$ is $[0,1]$, the range of $\sin ^{2} \theta$ is also $[0,1]$.
Unlike the graph for $|\sin \theta|$, there are no corners at θ-values of $0, \pi, 2 \pi$, etc. The $\sin ^{2} \theta$ function is everywhere differentiable! Its derivative is given by $2 \sin \theta \cos \theta$, or $\sin (2 \theta)$, which is 0 at $\theta=\pi n$ (n integer $)$.

How do you graph $z=\sin ^{2} \theta$ in 3 -space?
Here's what Mathematica gives; the coordinate axes are rotated a bit differently from what we're used to.

You could take scissors to the previous graph, and rotate the scissors as you cut.

It's basically like a twisty slide, or a piece of a roller coaster. Imagine a staircase in a mansion that is curving upward, except that we smooth out the steps. Notice that the function values are constant along the straight lines in the $x y$-plane through the origin: when θ is fixed, it doesn't matter what r is. The steps are flat, because our function is independent of r and therefore doesn't care about r; it's like sweeping through r-values. The level curves are line segments pointing away from the origin, and they vary from an f or z value of 0 to a value of 1 .

Mathematica gives the following Contour Plot; ignore the curviness of some of the lines - these are distortions.

When $\theta=0$, for example, $\sin ^{2} \theta=0$, all the way from $r=2$ to $r=3$. That means that the line segment from $(2,0,0)$ to $(3,0,0)$ in Cartesian coordinates is going to be on our slide / staircase. In fact, it will be the bottom edge of our staircase.

When $\theta=\frac{\pi}{2}, \sin ^{2} \theta=1$, all the way from $r=2$ to $r=3$. That means that the line segment from $(0,2,1)$ to $(0,3,1)$ in Cartesian coordinates is going to be on our slide. In fact, it will be the top edge of our staircase.

As θ increases from 0 to $\frac{\pi}{2}, \sin ^{2} \theta$ increases from 0 to 1 in a curvy way, like the way we discussed in class. $\sin ^{2} \theta$ gives us the z-coordinate of our step on the staircase. We don't get any hills or valleys along the staircase, though, because $\sin ^{2} \theta$ is always increasing between $\theta=0$ and $\theta=\frac{\pi}{2}$. If we go beyond $\frac{\pi}{2}$, though, then the staircase begins to go down.

Look at the first Mathematica graph. The top edge of the staircase lies on that top "crease", though it's not really a sharp crease (no corner in our first graph!). The solid whose volume we're finding is basically the wall beneath the staircase.
(A) Idea: Arc Length, "L" $(6,5)$

Riemann approx,:
Sample points.
Connect the dots.
We get a piecewise linear frankenstein's monster of pieces of secant lines.
(B) Idea: Surface Area, "S"

Take the sum of the areas of the stickies. Make partition finer so $\underbrace{\text { longest diagonal }}_{\|P\|} \rightarrow 0$.

Assume f_{x}, f_{y} cont on R
no normal vector to a sticky is II to x_{y}-plane

No $z=f(x, y)$, could shift perspective
(c) What's the Area of a Sticky?

Again, differentials

$$
\begin{aligned}
\text { Area } & =\|\vec{a} \times \vec{b}\| \\
& =\left\|\begin{array}{|ccc}
\vec{i} & \vec{j} & \vec{k} \\
\Delta x & 0 & \left(f_{x} l_{p}\right)(\Delta x) \\
0 & \Delta y & \left(f_{y} b_{p}\right)(\Delta y)
\end{array}\right\| \| \\
& =\left\|\left\langle-\left(f_{x} l_{p}\right) \Delta x \Delta y,-\left(f_{y} l_{p}\right) \Delta x \Delta y, \Delta x \Delta y\right\rangle\right\| \\
& \left.=\|\left\langle-\left(\left.f_{x}\right|_{p}\right),-\left(\left.f_{y}\right|_{p}\right)_{,}\right)\right\rangle \| \Delta x \Delta y \\
& =\sqrt{1+\left(f_{x} l_{p}\right)^{2}+\left(f_{y} l_{p}\right)^{2}} \Delta_{x} \Delta y
\end{aligned}
$$

(D) Formula for S

$$
S=\iint_{R} \underbrace{\sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A}_{=d S}
$$

Notes (1) Looks like extension of arc length to higher dim.
(I don't know if we deal w/ "surface area" in even higher dims.)
(2) This formula does not depend directly on f, just like for L. ${ }_{\theta}$ sames
(3) Can be modified for, say, $y=f(x, z)$.

(4) If you have a surface of revolution, the Method from 6.5 may be easier. Translations Rotations may help.
Part of sphere more promising using 6.5 than part of paraboloid, for example.
(I think ellipsoids can be tricky either way.) Using 17.4, you often use $P_{\text {s }}$.
(E) E_{X}

Find the surface area of the graph of $z=x^{2}+4 y+1$ over R, where R is bounded by a triangle with vertices $(0,0),(3,0)$, and $(3,4)$.
Sol'n

$$
\begin{aligned}
f(x, y) & =x^{2}+4 y+1 \\
f_{x}(x, y) & =2 x \\
f_{y}(x, y) & =4 \\
S & =\iint_{R} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A \\
& =\int_{x=0}^{x=3} \int_{y=0}^{y=\frac{4}{3} x} \sqrt{1+[2 x]^{2}+[4]^{2}} d y d x \\
& =\int_{x=0}^{x=3} \int_{y=0}^{y=\frac{4}{3} x} \sqrt{4 x^{2}+17} d y d x
\end{aligned}
$$

If we had $\int \sqrt{4 x^{2}+17} d x$, use Table of \int_{5} (pp. $A Z 1$ to $\left.A 26\right)$ g or Trig Sub: $2 x=\sqrt{17} \tan \theta$
Tough S ? Try: Table of f_{5} (9.7) or Trig Sub (9.3) Other Ch. 9 Methods: (Parts sq.) Neat u- sub,...) $P C_{s}$ (is R well-suited?)

$$
\begin{aligned}
& \int_{x=0}^{x=3}\left[\sqrt{4 x^{2}+17} \cdot y\right]_{y=0}^{y=\frac{4}{3}} d x \\
&= \int_{x=0}^{x=3}\left(\sqrt{4 x^{2}+17} \cdot \frac{4}{3} x-[0]\right) d x \\
& u=4 x^{2}+17 \\
& d u=8 x d x \\
& \Rightarrow \frac{1}{8} d u=x d x
\end{aligned}\left\{\begin{array}{l}
x=0 \Rightarrow u=17 \\
x=3 \Rightarrow u=53
\end{array}\right]=\int_{17}^{53} \sqrt{u} \cdot \frac{4^{1}}{3}\left(\frac{1}{8} d u\right) .
$$

17. S: TRIPLE WTEGRALS (UUS.)
like TNB frame from 15.3

Turn the wheel!

$$
\vec{i} \times \vec{j}=\vec{k}
$$

$$
\vec{j} \times \vec{k}=\vec{i}
$$

$$
\vec{k} \times \vec{i}=\vec{j}
$$ Right-Hand Rule

$+t+(0 \operatorname{ctant} x)$ opens towards you

(B) Idea

Special Case: $\iiint_{Q} / d V=$ Volume of Q
(C) $E x$

Find $\iiint_{Q} y d V$, where Q is the solid [region] bounded by the graphs of:
(1) $y=0$
(2) $y-x^{2}=1$
(3) $z=x^{2}-3 x$
(4) $2 x+z=2$

You observe

Cylinders 1 xE -plane (swept lly-axis)
We hope they "trap" some space with projection R lon the xz-plane.

Sol
(Sep 1) What is R?
Step la Intersection Points
(3) $z=x^{2}-3 x$
(4)

$$
\begin{aligned}
& \left.\begin{array}{l}
z=x^{2}-3 x \\
2 x+z=2
\end{array} \Rightarrow z=2-2 x \quad\right\} \Rightarrow x^{2}-3 x=2-2 x \\
& \begin{array}{l}
\left.x^{2}-2\right)(x+1)=0
\end{array} \\
& \text { Optional:Vse } z=2-7 x \\
& \Rightarrow \alpha_{x=-1}^{x=2\left(\begin{array}{c}
\text { Optional } \\
=z=-2 \\
\Rightarrow z=4
\end{array}\right)}
\end{aligned}
$$

(Step Ib) In ${\underset{T}{x}}^{x} z$, which graph is on right ? left?
$1 f \operatorname{dof}^{7}+$
θ orientation revered; Y points
Ont board

(3) $z=x^{2}-3 x \Rightarrow$ parabola opening right C
(4) $2 x+z=2 \Rightarrow$ line they intersect, $50 \rightarrow$
Turns out $\frac{\text { Graph R? }}{x}$

(Step 2) Based on R, Set Up the Outer II

$$
\int_{x=-1}^{x=2} \int_{z=x^{2}-3 x}^{z=2-2 x}\left[\int_{y=?}^{y=? ?} y d y\right] d z d x
$$

Visualize?
Use symmetry? (Take integrand into account; also inner Is.)
Use PCs?

$$
x^{2}+z^{2}=r^{2}, z=r \cos \theta, x=r \sin \theta
$$

(Step 3 Innermost 5
(1) $y=0$ (bottom

(2) $y-x^{2}=1 \Rightarrow y=x^{2}+1 \geq 0$ for all x in $[-1,2]$
(fop)

$$
\int_{x=-1}^{x=2} \int_{z=x^{2}-3 x}^{z=2-2 x} \int_{y=0}^{y=x^{2}+1} y d y d z d x \quad \text { the Set-Up }
$$

(step 4) Evaluate

$$
\begin{aligned}
& =\int_{x=-1}^{x=2} \int_{z=x^{2}-3 x}^{z=2-2 x}\left[\frac{y^{2}}{2}\right]_{y=0}^{y=x^{2}+1} d z d x \\
& \left.=\int_{x=-1}^{x=2} \int_{z=2-2 x}^{z=2-3 x} \frac{1}{2}\left[\left(x^{2}+1\right)^{2}=10\right)\right] d z d x \\
& =\frac{1}{2} \int_{x=-1}^{x=2}\left[\left(x^{2}+1\right)^{2} z\right]_{z=x^{2}-3 x}^{z=2-2 x} d x \\
& =\frac{1}{2} \int_{-1}^{2}\left(\left[\left(x^{2}+1\right)^{2}(2-2 x)\right]-\left[\left(x^{2}+1\right)^{2}\left(x^{2}-3 x\right)\right]\right) d x
\end{aligned}
$$

Talc I!!

$$
=\frac{225}{28}
$$

(D) Mass

Old Ex $\iiint_{a} \underbrace{y^{2}} d V=$ Mass of Q (ie, the solid takingup Q)
Let's say this is $p(x, y, z)$,or $\delta(x, y, z)$, a mass density function.
Nonconstant on $Q \Rightarrow$ Solid is nonhomogeneous.
(c) Average Value of $\frac{f \text { in } Q}{\text { 'temperature? }}$

$$
=\frac{\iiint_{Q} f(x, y, z) d V}{\iiint_{a} d V} \leftarrow \text { Volume of } a
$$

This follows the classic "average" template of

$$
\frac{\text { Sum }}{\text { Input Size }}<\text { "integration is continuous summation." }
$$

- 17.6: MOMENTS and CENTERS OF MASS
(A) Idea: Weighted Averages (Discrete Case) Ex (GPA)

$$
\begin{aligned}
G P A & =\frac{\sum x \cdot w}{\sum w} \\
& =\frac{(3.7)(5)+(1.0)(4)+(2.3)(3)}{12} \\
& =2.45
\end{aligned}
$$

(B) ID Lamina " L " with Shape R : Center of Mass
(Really, there should be some [constant] thickness.)

$$
\text { Mass of } \begin{aligned}
L & =\text { "m" } \\
& =\iint_{R} \underbrace{\delta(x, y)}_{\text {or p }(x, y):} \underbrace{\delta(x, y)}_{\text {(masea mass per unit area) }} d A
\end{aligned}
$$

Center of Mass $=(\bar{x}, \bar{y})$, where

$$
\left.\bar{x}=\frac{\iint_{R} x \delta(x, y) d A}{\iint_{R} \delta(x, y) d A}\right\} m
$$

This is [literally) a weighted average of the x-cords, throughout R.

Larson 6.6
to or tate a
seesaw,

$$
\begin{aligned}
& \text { would you } \\
& \text { sit close }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sit close } \\
& \text { to the }
\end{aligned}
$$

fulcrum or far andy?

Think: $x=$ grade

$$
\delta(x, y)=\# \text { units }
$$

(*) My measures the tendency to rotate about the y-axis.

Imagine mass of C being concentrated at the center of
mass.

$$
\left.\bar{y}=\frac{\iint_{R} y \delta(x, y) d A}{\iint_{R} \delta(x, y) d A}\right\} m \text { Max, the first moment }
$$

If $\delta(x, y)=a$ constant, then L is homogeneous, and (\bar{x}, \bar{y}) is the centroid, which only depends on shape. (See Section 6.7.)

Ex
\square

Ex L has shape R, which is bounded by the x-axis and the graph of $y=\sqrt{9-x^{2}}$. The density at $P(x, y)$ is directly proportional to the square of the distance from P to the y-axis. Find the center of mass for L.
Sol'n
Sketch R

Find Density $\delta(x, y)$

Distance from P to the y-axis $=|x|$
Square of this $=x^{2}$

$$
\delta(x, y)=k x^{2} \text {, where } k>0
$$

constant of
proportionality
(don't have to find)
Guess: Find \bar{x}
Horton
208

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

Oherve: $\quad R$ is symmetric about the y-axis $(x=0)$.

$$
\begin{aligned}
& \bar{x}=\iint_{R} \underset{x\left(k x^{2}\right) d A}{\text { odin } x} \Rightarrow \bar{x}=0 \\
& \frac{\sqrt{\text { sym. }}}{\frac{s}{s y}} \\
& =0
\end{aligned}
$$

Find \bar{y}

$$
\begin{aligned}
& \bar{y}=\frac{\iint_{R} y \delta(x, y) d A}{\iint_{R} \delta(x, y) d A} \\
& R \text { : } \\
& =\frac{\int_{x=-3}^{x=3} \int_{y=0}^{y=\sqrt{9-x^{2}}} y \cdot k x^{2} d y d x}{\int_{x=-3}^{x=3} \int_{y=0}^{y=\sqrt{9-x^{2}}} k x^{2} d y d x} \\
& =\frac{K \int_{x=-3}^{x=3}\left[x^{2} \cdot \frac{y^{2}}{2}\right]_{y=0}^{y=\sqrt{9-x^{2}}} d x}{K \int_{x=-3}^{x=3}\left[x^{2} y\right]_{y=0}^{y=\sqrt{9-x^{2}}} d x} \\
& =\frac{\int_{x=-3}^{x=3} \frac{1}{2} x^{2}\left(\sqrt{9-x^{2}}\right)^{2} d x}{\int_{x=-3}^{x=3} x^{2} \sqrt{9-x^{2}} d x} \quad\left\{\begin{array}{l}
\text { Both integrands } \\
\text { are even in } x \text {, so } \\
\int_{-3}^{3} \cdots=2 \int_{0}^{2} \ldots \\
\text { we like to }
\end{array}\right. \\
& \text { We like to } \\
& =\frac{2 \int_{0}^{3} \frac{\frac{1}{2} x^{2}\left(9-x^{2}\right)}{\text { Maltyly out }}}{2 \int_{0}^{3} x^{2} \sqrt{9-x^{2}} d x} \\
& \text { Use Trig Sub } \\
& \text { or Table of } f_{s}(p . A 2 Z, \# 31) \in D_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{81}{5}}{\frac{81 \pi}{16}} \\
& \left.=\frac{16}{5 \pi} \quad \begin{array}{c}
\text { Center of mas 5 }=(\bar{x}, \bar{y})=\left(0, \frac{16}{5 \pi}\right) \\
\text { Note: } \frac{16}{5 \pi} \simeq 1,02, \text { Why so low? }
\end{array}\right]
\end{aligned}
$$

(C) 2D "L": Moments of Inertia, or Second Moments:

$$
I_{y}=\iint_{R} x^{2} \delta(x, y) d A
$$

This is a "weighted sum" of squared distances of points from the y-axis.

Larson: Mass is a mearure of refinance to straight-lme motion (Cats 1)
Cartoon Guide to physics: Moment of inertia is resistance to arguer moment. tenteredato?

$$
\begin{aligned}
& \text { Higher } T_{y} \Rightarrow \text { Hor der } \\
& \iint_{R} y^{2} \delta(x, y) d A
\end{aligned}
$$

$$
\begin{aligned}
I_{x} & =\iint_{R} y^{2} \delta(x, y) d A \\
I_{0} & =I_{x}+I_{y} \\
& =\iint_{R}^{(\underbrace{x^{2}+y^{2}}_{=r^{2}}) \delta(x, y) d A} \\
& =5 q . \text { dist. from } 0
\end{aligned}
$$

This is the polar moment of inertia.
(D) 3D Solid with Shape "Q": Center of Mass $(\bar{x}, \bar{y}, \bar{z})$ where

$$
\left.\bar{x}=\frac{\int_{Q}^{\iiint_{i} x(x, y, z)} d V}{\iiint_{Q} \delta(x, y, z) d V}\right\} m \text {, the mass of the solid }
$$

(*) Myz measures the tendency to rotate about the $y z$-plane. (Is this visualizable?)

\bar{y}, \bar{z} analogous

Ex Q : upper hemisphere of radius a wlbase centered at 0 ,

$$
f(x, y, z)=\underbrace{y^{4}+3 y^{2}+z+1}
$$

even in x and Q is sym about cz plane

$$
\Rightarrow \bar{x}=0
$$

Similarly, $\bar{y}=0$.
(E) 3D: Moments of Inertia: I_{x}, I_{y}, I_{z}

$$
I_{z}=\iiint_{Q}\left(x^{2}+y^{2}\right) \delta(x, y, z) d V
$$

This is a "weighted sum" of squared distances of points from the z-axis.

Higher $I_{z} \Rightarrow$ Harder to rotated
revolve
by external
I_{x}, I_{y} analogous force (Think: big wheel $\left.\begin{array}{c}\phi^{\prime \prime} \\ \text { as opposed to }{ }^{\prime} \text {, }\end{array}\right)$

Ex Set up a triple integral for I_{y} for a cylinder of base radius 2 and height 6 centered at the origin. $\delta(x, y, z)=x^{2} z^{2}$.
Sol
$Q:$

$$
\begin{aligned}
& I_{x}=\frac{2.184 \pi}{5} \\
& I_{z}=142 \pi
\end{aligned}
$$

 about x, y-axes, because $\delta(x, y, z)=x^{2} z^{2}$ even in y, x.

$$
I_{y}=4 \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{-3}^{3}\left(x^{2}+z^{2}\right) x^{2} z^{2} \frac{d(x, z)}{d z d y d x}
$$

Turns out: $\frac{2664 \pi}{5}$ Can use sym., Seven in $z: ~ Z \int_{0}^{3}$
(A) Intro

How do we extend $P C_{5}$ to $3 D$?
Throw in z (or x or y, as the case may be) if you use PC5 to coordinative the ye plane

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

$x^{2}+y^{2}=r^{2}$
$r=$ distance of P from z-axis

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& \text { (if } x \neq 0 \text {; Watch Quadrant.) }
\end{aligned}
$$

(B) The Basic Principle of Graphing

The graph of an equation consists of all points whose cords. satisfy the equation.

Graph:

$$
r=1
$$

circle

$$
\theta=\frac{\pi}{4}
$$

right circular
cylinder cylinder
\{points / unit away from the z-axis)

Graph in (3D):
$z=2$ (same as for (artesian C_{5})
 plane

$$
z=r \quad(r \geq 0)
$$

A level curve analysis may help:

$$
\underbrace{f(r, \theta)}_{=z}=r
$$

Replace with k

Graph:

$$
\begin{aligned}
z & =r \\
& \Rightarrow \text { (artesian Cs } \\
z^{2} & =r^{2} \quad(z \geq 0) \\
z^{2} & =x^{2}+y^{2} \quad(z \geq 0)
\end{aligned}
$$

Upper nappe of a cone
Graph $z=r$ (r unrestricted over reals)
A level curve analysis
"multiple identities"
$\underbrace{f(r, \theta)}_{=z}=r \quad \begin{gathered}\text { The Vertical Line Fest does not apply. } \\ (x, y) \text { has multiple PC }\end{gathered}$ (x, y) has multiple $P C$ representations.

LC s can intersect in Cyl. (s settings.

Graph:

Complete double-napped cone

Graph $z=\theta \quad(0 \leq \theta \leq 2 \pi)$
A level curve analysis

$$
\underbrace{f(r, \theta)}_{=z}=\theta
$$

Graph $z=\theta \quad(0 \leq \theta \leq 2 \pi)$.
Think of a rising, rotating line with a rising z-intercept that never intersects the $x y$-plane (except for $z=0$). These lines are "parallel" to the $x y$-plane.

The pole may be coordinatized as $(0, \theta)$ in polar coordinates, where θ is any real number. Here, we have the restriction $0 \leq \theta \leq 2 \pi$. The multiple representations ("identities") of the pole lead to infinitely many image points along the z-axis of the form $(0, \theta=z, z=\theta)$, or $(0, z, z)$, where $0 \leq \theta($ or $z) \leq 2 \pi$.

Mathematica graphs:
$0 \leq r \leq 1$

$-1 \leq r \leq 1$

(c) Ex

Describe the graph of $r \cos \theta=\tan \theta+4$
Soling Let's go to Cartesian Cs.

$$
\begin{aligned}
& \left(x^{2}-4 x+4\right)-4=4 \\
& y=(x-2)^{2}-4
\end{aligned}
$$

Only z missing \Rightarrow Right cylinder orthogonal to the $x y$-plane
It's a parabolic cylinder whose $x y$-trace is an upward-opening e' parabola with vertex $(2,-4)$. form: $y=a(x-h)^{2}+k$ has vertex (h, k).
(May Skip)
Why does this make sense? Let's focus on the xy-trace.

Note:
$\cos \theta=0$ at no point, not even the pole.
(4) $\theta=\tan ^{-1}(4)$

Graph $\underset{r \cos \theta}{x}=\tan \theta+4$ using θ and x as Cartesian C_{s}.

$$
r \cos \theta
$$

(1) $\theta=0 \Rightarrow x=\frac{\tan \theta+4}{=0}$ $=4$
(2) $\theta \not^{\frac{\pi^{-}}{2}} \Rightarrow x \lambda^{\infty}$
(3) $\theta: 0 \downarrow \tan ^{-1}(4)$

$$
\Rightarrow x: 4 \searrow 0
$$

(4) $x=0 \Leftrightarrow \tan \theta=-4$

$$
\text { Reg. } \theta=\tan ^{-1}(-4)
$$

(5) $\theta+-\frac{\pi^{+}}{2} \rightarrow x^{2}-\infty$
correspond
to point at infinity (the parabola is a closed curve parsing through this when θ crosses an asymptote; think of ur aping it around
aspire) asphere)
(D) Volume, ΔV, of a Box in Cyl. Cs.
(17.3) Area of a Polar Rectangle
(Now)

$\Delta A=\bar{r} \Delta r \Delta \theta$

$$
\begin{aligned}
& \Delta V=\Delta A \Delta z \\
&=r \Delta r \Delta \theta \Delta z \\
& \frac{d V}{}=r d r d \theta d z \\
& \begin{array}{l}
\text { or } r d z d r d \theta \\
\text { etc. }
\end{array} \\
& \text { snare common? }
\end{aligned}
$$

(E) E_{x} (\#33)

A spherical solid has radius a, and the density at $P(x, y, z)$ is directly proportional to the distance from P to a fixed line l through the center of the solid. find its mass.

Solis
Orient the Sphere " Q "
Let its center be at 0 .
Let the z-axis be l.
Sketch Q (Optional?)

Sketch R, the projection of Q onto the xy-plane

An easy polar rectangle!

Find density, δ

$$
\delta=k r \quad(r \geq 0)
$$

More precisely, $\delta(r, \theta, z)$, but remember that a point has multiple representations in Cyl. (s.

Find mass, m, of the solid

$$
m=\iiint_{Q} \underbrace{k r}_{\substack{\delta \\ \text { func. }}} \underbrace{d V}_{=r d r d \theta d z}
$$

Use R to set up the outer $/ /$.

$$
=\underbrace{\left.\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=a} \sum_{z=?}^{z=?!} k_{r}^{z} d z\right] r d r d \theta}_{\text {or } 4 \int_{\theta=0}^{\theta=\pi / 2} \text { by sym., }} \text { may depend on } r, \theta
$$

Find z-limits based on surfaces.
soundery of

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =a^{2} \\
r^{2}+z^{2} & =a^{2} \\
z^{2} & =a^{2}-r^{2} \\
z & = \pm \sqrt{a^{2}-r^{2}}
\end{aligned}
$$

correspond to upper, lower hemispheres

$$
\begin{aligned}
m & =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=a}\left[\int_{z=-\sqrt{a^{2}-r^{2}}}^{z=\sqrt{a^{2}}} k r d z\right] r d r d \theta \\
& =k \int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=0} r^{2}\left[2 \int_{z=0}^{z=\sqrt{a^{2}-r^{2}}} d z\right] d r d \theta
\end{aligned}
$$

by sym. of Q about xy-plane $(z=0)$, δ even in z

$$
\begin{aligned}
& =2[z]_{z=0}^{z=\sqrt{a^{2}-r^{2}}} \\
& =2 \sqrt{a^{2}-r^{2}}
\end{aligned}
$$

$$
=2 k \int_{\theta=0}^{\theta=2 \pi} \underbrace{\int_{r=0}^{r=a} r^{2} \sqrt{a^{2}-r^{2}} d r}_{\text {Use Table of / S, p. A I2, \#3l }} d \theta
$$

$$
\begin{aligned}
& \stackrel{(u=r)}{\Rightarrow}\left[\frac{r}{8}\left(2 r^{2}-a^{2}\right) \sqrt{a^{2}-r^{2}}+\frac{a^{4}}{8} \sin ^{-1}\left(\frac{r}{a}\right)\right]_{r=0}^{r=a} \\
& =\underbrace{[\frac{a}{8}\left(2 a^{2}-a^{2}\right) \underbrace{a^{2}-a^{2}}_{=0}}_{=0}+\underbrace{}_{=-\frac{a^{4}}{8} \underbrace{\sin ^{-1}\left(\frac{a}{2}\right)}_{=\sin ^{-1}(1)}]-[0]} \quad \begin{array}{l}
\text { Note: } \\
\text { sin }
\end{array} \\
& =\frac{\pi a^{4}}{16}
\end{aligned}
$$

$$
\begin{aligned}
& =2 k\left(\frac{\pi a^{4}}{18}\right) \underbrace{\int_{0}^{2 \pi} d \theta}_{=[\theta]_{0}^{2 \pi}} \\
& =2 \pi \\
& =\frac{\pi k a^{4}}{8_{4}} \cdot 2 \pi \\
& =\frac{\pi^{2} k a^{4}}{4} \text { [mass units] }
\end{aligned}
$$

- 17.8: SPHERICAL COORDS. (SSs)
(A) Intro

How to Ace: same order son. (ρ, θ, ϕ)

Webster's: fir Ererqune else: fer $\rho \geq 0, \phi \geq 0$ hinder eqgopotation of symmetry

$\rho=$ distance from 0 to $P .(\varphi \geq 0)$ "rho"
(nonnegative)
$\phi=$ angle between positive z-axis, $\overline{O P}$.
"phi" $(0 \leq \phi \leq \pi)$. "lot machine pullout angle"
θ : same as for $C_{y} l C_{5}$, but assume ≥ 0.

\#measures

$$
\begin{aligned}
& \text { "ulublequ } \\
& \text { wididection }
\end{aligned}
$$

(ρ, ϕ, θ)
unique for
and ${ }^{p+}$.t.
if θ
restricted
to $(0,2 \pi)$
P, ϕ are unique for P, but θ is not.
not unique
if $P_{\text {is }} O_{\text {; }}$
there, ϕ can
be anything in $[0, \pi]$
source of multiple representations for P
Along z-axis, θ can be any real \#.

Game: It you fix ρ, ϕ, why does θ locate a point? Etc.... What happens if we "shoot" θ ? (If issue)
(B) Basic Graphs

Sphere
(sweep ϕ, θ)

xy-plane
upper nappe
of a cone (pacts like r)

lower nappe of a cone

nonpositive z-axis

$$
\theta=\frac{\pi}{4}
$$

half-plane (full plane for (yT .Cs)
(C) Conversions

$$
\begin{aligned}
& \text { af }{ }^{2}=0 \text {, } \\
& \phi \text { can be } \\
& \text { anything } \\
& \text { in }(0, \pi) \text {. } \\
& \begin{aligned}
& \sin \phi=\frac{r}{\rho} \quad \Rightarrow \quad r=\rho \sin \phi \\
& P C_{s}: x=r \cos \theta \Rightarrow x=\rho \sin \phi \cos \theta \\
& P C_{s}: y=r \sin \theta \Rightarrow y=\rho \sin \phi \sin \theta \quad \begin{array}{l}
\text { Why are you } \\
\text { so sunhat? }
\end{array} \\
& \cos \phi=\frac{z}{\rho} \Longrightarrow z=\rho \cos \phi
\end{aligned}
\end{aligned}
$$

Cartesian $C_{s} \rightarrow S C_{s}(x, y, z) \rightarrow(\rho, \phi, \theta)$
Find ρ
Ida: Use Distance formula, Myth. The., Trig ID (Myth. IDs). $\underset{\substack{\text { Try } \\ x, y, z \text {. }}}{\substack{\text { man } \\ \text { SC s }}}$

$$
\begin{aligned}
& \rho^{2}=x^{2}+y^{2}+z^{2} \quad(p \geq 0) \\
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\rho^{2} & =r^{2}+z^{2} \\
& =x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Find ϕ

$$
\begin{aligned}
z & =\rho \cos \phi \\
\cos \phi & =\frac{z}{\rho} \\
\phi & =\cos ^{-1}\left(\frac{z}{\rho}\right)
\end{aligned} \quad \begin{aligned}
& \text { Correct, because } \underbrace{0 \leq \phi \leq \pi}_{\text {Range of } \cos ^{-1}} \\
& \\
& \Rightarrow \phi \text { if } \begin{array}{l}
\rho=0
\end{array} \\
& \Rightarrow \phi \text { can be anything: } 0 \leq \phi \leq \pi
\end{aligned}
$$

Find θ

$$
\begin{aligned}
& P\left(s: \begin{array}{l}
\tan \theta=\frac{y}{x} \quad(x \neq 0) \\
\text { Watch Quadrant! }
\end{array}\right\} \begin{array}{c}
\text { there are } \infty \text { many soling. } \\
\text { for } \theta \text { in } R
\end{array} \\
& \text { or Use } x=\rho \sin \phi \cos \theta \text {, or } y=\rho \sin \phi \sin \theta \\
& \text { known found }
\end{aligned}
$$

(E) Old Ex (17.7,\#33: See 17.7.9)

A spherical solid has radius a, and the density at $P(x, y, z)$ is directly proportional to the distance from P to a fixed line l through the center of the solid. find its mass.

Colin
Orient the Sphere "Q"
Let its center be at 0 .
let the z-axis be l.
Sketch Q (Optional?)

A box in SCr.'

Find density, δ

$$
\begin{aligned}
& \delta=k \sqrt{x^{2}+y^{2}} \text { or } k r \\
&x=\rho \sin \phi \cos \theta) \\
& y=\rho \sin \phi \sin \theta \\
&=k \rho \sin \phi \\
& r=\rho \sin \phi \\
& m^{z} \rho r
\end{aligned}
$$

ค
Find mass, m, of the solid

$$
m=\iiint_{Q} \underbrace{k \rho \sin \phi}_{\delta \text { func. }} \underbrace{d V}_{=\rho^{2} \sin \phi d \rho d \phi d \theta}
$$

Fin g:

Then, fix ϕ :

$$
\begin{aligned}
& \text { Pika } \\
& \text { ray } \\
& \text { Then, pion } \\
& \text { Ta }
\end{aligned}
$$

$$
=k \int_{\theta=0}^{\theta=2 \pi} \int_{\substack{\phi=0}}^{\phi=\pi} \int_{\rho=0}^{\rho=a} \underbrace{\rho^{3} \sin ^{2} \phi} d \rho d \phi d \theta
$$

$$
\begin{aligned}
& =k \underbrace{\left[\int_{\theta=0}^{\theta=2 \pi} d \theta\right]}_{\text {Use a PRI }}[\underbrace{\left.\int_{\phi=0}^{\phi=\pi} \sin ^{2} \phi d \phi\right]}_{=\left[\frac{\rho^{4}}{4}\right]_{0}^{a}} \\
& \begin{aligned}
=2 \pi & =\int_{0}^{\pi} \frac{1-\cos (2 \phi)}{2} d \phi \\
& =\frac{1}{2}\left[\phi-\frac{1}{2} \sin (2 \phi)\right]_{0}^{\pi}=\frac{a^{4}}{4}
\end{aligned} \\
& =\frac{1}{2}\left(\left[\pi-\frac{1}{2} \sin (2 \pi)\right]\right. \\
& =\frac{\pi}{2} \\
& =K(2 \pi)\left(\frac{\pi}{4}\right)\left(\frac{a^{4}}{4}\right)
\end{aligned}
$$

We didn't
have
complete
separability before.
Here, using $f(s$,
all limits of s
are constants.

Same as before!'
Easier!
(A) Cal I: A New look at u-Subs

Ex $\int_{1}^{2} e^{3 x} d x$
Let $u=3 x) \xrightarrow{\text { Solve for } x} \rightarrow x=\frac{1}{3} u$ - We can think
 of the sub. this way:

$$
x=f(u)
$$

Change the limits of f

$$
\begin{aligned}
& x=1 \Longrightarrow u(1)=3 \\
& x=2 \Longrightarrow u(2)=6
\end{aligned}
$$

Idea

T is a $1-1$ transformation of coordinates. I I correspondence between x-values, u-values.

$$
\int_{1}^{2} e^{3 x} d x=\int_{\substack{1 \\ u(1)}}^{6^{u(2)}} e^{u} \cdot\left(\frac{1}{3}\right) d u
$$

Why do we need $\frac{d x}{d x}$?
Without it...

(Not to scale)
 the area!! (\pm
We need to compensate with $\frac{1}{3}$.

Why (A)?
Think: Riemann rectangles

$$
\begin{aligned}
d u= & 3 d x \\
\Delta u= & 3 \Delta x \\
& \text { If } \Delta x=\frac{1}{3} \Rightarrow \Delta u=1
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \quad \frac{d u}{d x} & =3 \\
& \left.=\text { stretching factor } x \rightarrow u \quad\left(\text { Think: } \frac{d a n}{d x}\right) 5\right) \\
\leftarrow \quad \frac{d x}{d u} & =\frac{1}{3} \\
& =\text { compensation factor } \\
& \left.=\text { stretching factor } u \rightarrow x \quad \text { (compression, since } O<\frac{1}{3}<1\right)
\end{aligned}
$$

$$
\left.\int_{1}^{2} e^{3 x} d x=\int_{3}^{6} e^{u} \cdot \frac{(1}{3}\right) d u \text { Need (dxu)}
$$

\mid |f you use $\left|\frac{d x}{d u}\right|$, you can adopt the convention \int lower \#

$$
\begin{aligned}
& \text { Ex } \begin{aligned}
& \int_{1}^{2} e^{-3 x} d x=\int_{-3}^{-6} e^{u} \cdot\left(-\frac{1}{3}\right) d u \\
&=\int_{-6}^{-3} e^{u} \cdot\left|-\frac{1}{3}\right| d u \\
& \text { Oka: } \int_{b}^{a} \sim=-\int_{a}^{6} \sim
\end{aligned}
\end{aligned}
$$

Ex $\int_{1}^{2} x e^{x^{2}} d x$
Let $u=x^{2} \Longrightarrow \frac{x= \pm \sqrt{u}}{x=\sin [1,2]}$

$$
d x=\underbrace{\frac{1}{2 \sqrt{u}}}_{\left(\frac{d x}{d x}\right)} d u
$$

$$
\begin{aligned}
\frac{\text { Note: }}{\frac{d u}{d x}} & =2 x \\
\Rightarrow \frac{d x}{d u} & =\frac{1}{2 x} \\
& =\frac{1}{2 \sqrt{u}}
\end{aligned}
$$

$$
\left.\int_{1}^{2} x e^{x^{2}} d x=\int_{1}^{4^{4}} \sqrt{u} e^{u} \cdot \frac{1}{(2 \sqrt{u}}\right) d u
$$

instantaneous
compensation factor.

$$
\text { It changes as } u \text { changes. }
$$

(A) Idea: Riemann rectangles

$$
\begin{aligned}
& d u=2 x d x \\
& \Delta u \approx 2 x \Delta x \\
& \text { If } x \approx 1 \text {, then } \Delta u \approx 2 \Delta x . \\
& \text { If } x \approx 2 \text {, then } \Delta u \approx 4 \Delta x .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { Stretching } \\
\text { factors } \\
\text { change. }
\end{array} \begin{array}{l}
\text { Compensation } \\
\text { factors } \\
\text { change. }
\end{array}\right.
$$

Image: Were stretching the x-axis like a piece of taffy in which some parts are stretched more than others. The corresponding rectangles are stretched in the same way.
(B) Jacobians

Carl babi (German, 1804-18511
are compensation factors for multiple \int_{s} when we change variables to
(1) Simplify the region of integration, andlor
(2) Simplify the integrand.
(1) If $x=f(u)$,

Then, $d x=\left|\frac{d x}{d u}\right| d u$, if you always $\int_{\text {lower \#t }}^{\text {nigher\# }}$
((J) If $\left\{\begin{array}{l}x=f(u, v), \\ y=g(u, v)\end{array} \quad \begin{array}{c}\text { have cont. } 11^{5 t} \text {-order } P D_{s} \\ \text { where we care }\end{array}\right.$

Hard proof:
carson $6^{\text {fed }}$ p. 476

We require that this is never 0 where we care. What would it compensate for? Stretches/compresses a 2-D,-egion, (conezponing $3-D$ solid $)$

Note $\left\lvert\, \begin{array}{cc}\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \left.\begin{array}{c}\frac{\partial u}{\partial v}\end{array} \right\rvert\,\end{array}\right.$
OK to switch: $|\operatorname{matin} x A|=\left|A_{\uparrow}^{T}\right|$ transpose:

Key: $\frac{\partial}{\partial} \leftarrow x, y$ on top
(JJJ) If $\left\{\begin{array}{l}x=f(u, v, w) \\ y=g(u, v, w) \\ z=h(u, v, w)\end{array}\right.$

How to Ace

$$
\begin{aligned}
& \text { If } \vec{r}=\langle x, y, z\rangle, \\
& \text { then this }= \\
& =\left|\begin{array}{|l|l|}
\leftarrow & \leftarrow \frac{\partial \vec{v}}{\partial u} \rightarrow \\
\leftarrow \frac{\partial v}{\partial v} \rightarrow \\
\leftarrow \frac{\partial z}{\partial w} \rightarrow
\end{array}\right| \\
& \\
& =
\end{aligned}
$$

Stretches/compresses a 3-Dregion.
(c) A New look at PCs

Ex A region R in the xy-plane consists of points (x, y) :

$$
x=\underbrace{r \cos \theta}_{f(r, \theta)} \quad \begin{array}{rl}
\underbrace{r \sin \theta}_{g(r, \theta)}
\end{array}\} \begin{aligned}
& \text { Weire expressing the old vars. } \\
& \text { in terms of the new vars. } \\
& \text { This turns out to be easier } \\
& \text { for us! }
\end{aligned}
$$

where $\left.\begin{array}{l}1 \leq r \leq 2 \\ \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}\end{array}\right\} \begin{gathered}\text { determine a region } S \\ \text { in the } r \theta \text {-plane }\end{gathered}$

What is dA?
(1) $d r d \theta$
\Rightarrow Greater stretching (Really compensating)
areas as $\Delta r \rightarrow 2$?
Graph R,S

These are recurves $(r=\#)$,
θ-curves $(\theta=\#)$ in the xy-plane.

Jacobian tums out to be portative in value, so positive orientation is refined.

Think: Level curves,
Note 1: We like that the boundaries of R, S are piecewise smooth, simple, closed, bounded curves. has pieces, parameternioble by param'ns where series. cont. Fo except
maybe at end pts.
Note 2: We like that, as we trace the boundary of R once in one direction, 'we trace the boundary of'S once in one direction.

Note 3: And the Jacobian been negative in value, the orientation would have been reversed along the S-boundary.

Note 4: We like that S is simpler than R. The change of variables may help!

See larson
$6^{6+} \cdot m .975-8$

Let R be the region bounded by:

$$
\begin{aligned}
& x-2 y=0 \\
& x-2 y=2 \\
& x+y=1 \\
& x+y=3
\end{aligned}
$$

$$
\text { Evaluate } \iint_{R}(x+y) \sin (x-2 y) d A \text {. }
$$

Sol
(1) Change of variables

Let $\left\{\begin{array}{l}u=x-2 y \\ v=x+y\end{array}\right.$ for
(2) New limits of fl

$$
\begin{aligned}
& u=0 \\
& u=2 \\
& v=1 \\
& v=3
\end{aligned}
$$

(2)

Note: What do R and S look like?

Jacobian turns out to be positive in value, so positive orientation is retained.
(3) Solve for x, y in terms of u, v (Can skip if do (4) next page)

$$
\begin{aligned}
u & =x-2 y \\
v & =x+y \quad+(-1) \\
u & =x-2 y \quad \quad \text { Add } \\
-v & =-x-y \\
u-v & =-3 y \\
y & =-\frac{1}{3}(u-v) \text { or } \frac{1}{3} v-\frac{1}{3} u
\end{aligned}
$$

Find x

$$
\begin{aligned}
v & =x+y \\
v & =x-\frac{1}{3}(u-v) \\
x & =v+\frac{1}{3}(u-v) \\
x & =\frac{1}{3} u+\frac{2}{3} v \text { or } \frac{1}{3}(u+2 v)
\end{aligned}
$$

Another Method (because of linearity)

$$
\begin{aligned}
& {\left[\begin{array}{l}
u \\
v
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]}_{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
u \\
v
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]} \\
& \left\{\begin{array}{l}
x=\frac{1}{3}(u+2 v) \\
y=\frac{1}{3}(-u+v)
\end{array}\right.
\end{aligned}
$$

Note It we had done something dumb, like

$$
\left\{\begin{array}{l}
u=x-2 y, \\
v=x-2 y,
\end{array}\right.
$$

then $\operatorname{det}\left(\left[\begin{array}{cc}1 & -2 \\ 1 & -2\end{array}\right]\right)=0$.

$$
\begin{aligned}
& u=0, v=0 \\
& u=2, v=2
\end{aligned}
$$

(4) Find Jacobiun

$$
\begin{aligned}
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial u}{\partial u} & \frac{\partial v}{\partial v}
\end{array}\right| \\
& x=\frac{1}{3} u+\frac{2}{3} v \\
& y=-\frac{1}{3} u+\frac{1}{3} v \\
& =\left|\begin{array}{cc}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right| \\
& =\frac{1}{9}+\frac{2}{9} \\
& =\frac{1}{3}
\end{aligned}
$$

(5) Set up \iint, and Evaluate

$$
\begin{aligned}
& \iint_{R} \underbrace{(x+y)}_{\text {cont on } R} \sin (x-2 y)
\end{aligned} d A
$$

or (4*) ((an skip (3))

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial x}{\partial x} & \frac{\partial z}{\partial y}
\end{array}\right|
$$

$$
u=x-2 y
$$

$$
v=x+y
$$

$$
=\left|\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right|
$$

$$
=3 \quad 4 \begin{aligned}
& 16 \text { this had } \\
& \text { xandery }
\end{aligned}
$$

$$
\begin{aligned}
& x \text { andioy in, } \\
& \text { expess in }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{\frac{\partial(u v)}{\partial(x, y)}} \tag{1}
\end{equation*}
$$

$$
\operatorname{terms} \text { of } u, v
$$

(Remember: \int lomer \#

$$
\begin{aligned}
& =\frac{1}{3}(1-\cos 2)(4) \\
& =\frac{4(1-\cos 2)}{3} \\
& \approx 1.8882
\end{aligned}
$$

Ex (\#20)

$$
\iint_{R}(3 x-4 y) d x d y
$$

Boundary of $R: y=3 x, y=\frac{1}{2} x, x=4$
Change of vars.:

$$
\begin{aligned}
& x=u-2 v \\
& y=3 u-v
\end{aligned}
$$

Solon
Rewrite the Integrand:

$$
\begin{aligned}
3 x-4 y & =3(u-2 v)-4(3 u-v) \\
& =-9 u-2 v
\end{aligned}
$$

Jacobian:

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial u}{\partial u} & \frac{\partial v}{\partial v}
\end{array}\right| \\
& =\left|\begin{array}{ll}
1 & -2 \\
3 & -1
\end{array}\right| \\
& =\text { (5) }
\end{aligned}
$$

What's R?

What's S?
Boundaries:

$$
\left.\begin{array}{rlrl}
y & =3 x & y & =\frac{1}{2} x \\
(3 u-v) & =3(u-2 v) & (3 u-v) & =\frac{1}{2}(u-2 v)
\end{array}\right) \quad(u-2 v=4)=4 .
$$

Close-Up:

Note: $A\left({ }^{x}, V_{2}^{Y}\right) \Rightarrow A^{\prime}(\underset{4}{4}, 0)$ -from this qraph,or
Soke: $\left\{\begin{array}{l}4=u-2 v \\ 12=3 u-v\end{array}\right.$

$$
\Rightarrow(u, v)=(4,0)
$$

Note: Area $(R)=S \cdot \operatorname{Area}(S)$
Area $(S)=\frac{1}{S} \cdot$ Area (R)

$$
\begin{aligned}
& \iint_{R}(3 x-4 y) d x d y=\iint_{5}(-9 u-2 v) \cdot \underbrace{\frac{2(x, y)}{2\left(u_{v}\right)}}_{=(5)} \underbrace{d u d v}_{\text {or } d v d u} \\
& =5 \iint_{5}(-9 u-2 v) d v d u \\
& =5 \int_{u=0}^{u=4} \int_{v=\frac{1}{2} u-z}^{v=0}(-9 u-2 v) d v d u \\
& \text { Remember, } \int_{\text {lower value }}^{\text {higher value }} \\
& \text { No more unusual than } \int_{-3}^{0} \sim \text {. } \\
& =-\frac{640}{3} \quad(=-213, \overline{3})
\end{aligned}
$$

JUMBLING TSPs

How is $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ related to $(\mathbf{a} \times \mathbf{c}) \bullet \mathbf{b}$?
Determinant approach:

$$
\begin{aligned}
& (\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& (\mathbf{a} \times \mathbf{c}) \bullet \mathbf{b}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
\end{aligned}
$$

The determinant forms differ only by a single switch of two rows, so they differ only by a sign.

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=-[(\mathbf{a} \times \mathbf{c}) \bullet \mathbf{b}]
$$

Geometric approach:
Both $|(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c}|$ and $|(\mathbf{a} \times \mathbf{c}) \bullet \mathbf{b}|$ represent the volume of the parallelepiped determined by the position vectors for \mathbf{a}, \mathbf{b}, and \mathbf{c}. This is consistent with the box above.

How is $(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c}$ related to $(\mathbf{b} \times \mathbf{c}) \bullet \mathbf{a}$?
Determinant approach:

$$
\begin{aligned}
& (\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& (\mathbf{b} \times \mathbf{c}) \bullet \mathbf{a}=\left|\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|
\end{aligned}
$$

The determinant forms differ by two switches of pairs of rows, so there is a "double negative" effect, and the determinants are equal.

$$
(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c}=(\mathbf{b} \times \mathbf{c}) \bullet \mathbf{a}
$$

Geometric approach:
(Similar to the first example)

Remember that dot products are commutative, and cross products are anticommutative, so it may be easy to relate some jumbles. For example,

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c} & =\mathbf{c} \bullet(\mathbf{a} \times \mathbf{b}) \\
& =-[\mathbf{c} \bullet(\mathbf{b} \times \mathbf{a})]
\end{aligned}
$$

Basically, if you perform a TSP jumble of three vectors in V_{3} that makes sense (you only take dot products of two vectors of the same length, and you only take cross products of two vectors in V_{3}), you either get the original TSP value or its opposite. This is consistent with the geometric interpretation of the absolute value of a TSP as the volume of a parallelepiped determined by the position vectors for the three constituent vectors.

REVIEW: CHIT
17,1/17.2:///5
$\underset{R}{\int /} \mid d A=$ Area of R

$$
d A=d x d y \text { or } d y d x
$$

$\frac{\text { (1) Sketch } R}{?}$
Solve systems to locate intersection points.

Identify which graph is on top vs. bottom or right vs. left.
Use test values?*
If $\Delta \Rightarrow$ Split R.
(2) Set up limits of If

Ex

(3) Jide/Scan along

Reversing Order of II
Why? If R-scan is awkward, or if hard to do inner \int.

If $\int_{x=a}^{x=6} \int_{y=c}^{y=d} \sim d y d x$
Can if all limits are constant
Otherwise, Sketch R
Switch scan (slide)louter lain variable in analysis.
$\iint_{R}^{f} \underbrace{}_{\text {if } \geq 0 \text { on } R}(x, y) d A=$ Volume between f graph, $x y$-plane over R.
$\iint_{R}[f(x, y)-g(x, y)] d A=$ Volume between f, g graphs "over" R bottom R
(4.)

Can shift perspective

$$
\int_{x}^{z} \int_{-4}^{z} d A=d x d z
$$

17.3:P(s) Po lan

$$
x^{2}+y^{2}=r^{2}
$$

Why use $P C_{s}$?
If R is bounded by lines/rays, circular arcs, basic polar graphs, or If the integrand has $x^{2}+y^{2}$, et.
17.4: SURFACE AREA

$$
\begin{aligned}
& S=\iint_{R} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A \\
& U S e P C_{s} ?
\end{aligned}
$$

17.5: $\mathrm{ff} \mathrm{f}_{5}$

$$
\iiint_{Q} f(x, y, z) \underbrace{d V}_{=d x d y d z \text { (or permutation) }}
$$

Ex

Can you find the projection of Q
on a word. plane? (Here, xy-plane.)
Maybe look for 2 cylinders that "trap" space. Let R be bounded by their, traces in a coord plane they're \perp to.
Use symmetry? PCs?
consider
integrand,

$$
\text { inner } f_{s}
$$

Can shift perspective

$$
\iint_{R}\left[\int_{y=?}^{y=!} f(x, y, z) d y\right] d x d z
$$

17.6: (ENTER OF MASS

$$
\begin{aligned}
\text { Mass } & =m \\
& =\iiint_{R} \underbrace{\delta(x, y)}_{\text {density }} d A
\end{aligned}
$$

constant for a homogeneous lamina
Center of mass $=(\bar{x}, \bar{y})$

$$
\bar{x}=\frac{\int_{R}(x) \delta(x, y) d A}{m} \quad, \bar{y}=\frac{{ }^{\prime}(y),}{(y}
$$

(an use symmetry about $x=0$ (yz-plane), say, if

$$
\begin{aligned}
& \delta_{\text {is even in } x, \text { and }} \\
& \text { is sym. about } x=0 \text {. } \\
& m=2 \iint_{\substack{n e w \\
R}} \text {, or } \bar{x}=0
\end{aligned}
$$

Moments of inertia

$$
\begin{aligned}
& I_{y}=\iint_{R}\left(x^{2}\right) \delta(x, y) d A \\
& I_{x}={ }^{\prime \prime}\left(y^{2}\right), \\
& I_{0}=' r^{2} .
\end{aligned}
$$

30 similar, except

$$
I_{z}=\iiint \int_{a}(\underbrace{x^{2}}_{\text {sq. dist. from } z-a x i s}) \delta(x, y, z) d V \text {, etc, }
$$

Basic graphs

$$
\begin{aligned}
& d V=r \underbrace{r d r d \theta d z}_{\text {often }} \\
& \iint_{R}\left[\int_{\vec{z}=?}^{z=?!} \sim d z\right] \underset{\substack{\text { or }}}{\operatorname{rar}} \underset{\sim}{d r} d \theta
\end{aligned}
$$

Sketch!
Thankifolar

$$
\frac{17,8: S^{\text {Spherical }}}{(0, s)}
$$

Basic graphs
Sketch \rightarrow Formulas

$$
\begin{aligned}
& r=\rho \sin \phi
\end{aligned}\left\{\begin{array}{l}
x=r \cos \theta=\rho \sin \phi \cos \theta \\
y=r \sin \theta=\rho \sin \phi \sin \theta \quad \text { y so } \sin f u l ? \\
z=\rho \cos \phi \\
\rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
\phi=\cos ^{-1}\left(\frac{z}{\rho}\right) \\
\tan \theta=\frac{\pi}{x}, \text { watch } Q! \\
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
\end{array}\right.
$$

17.9: JACOBIANS, CHANGE OF VARIABLES

$$
\begin{aligned}
& \left.d A=\left|\begin{array}{ll}
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial u}{\partial u} \\
\frac{\partial x}{2 v} & \frac{\partial v}{\partial v}
\end{array}\right|
\end{array}\right| d u d v, \text { where } \begin{array}{l}
x=f(u, v), \\
y=g(u, v)
\end{array}\right\} \underset{(u, v) \leftrightarrow(x, y)}{1-1} \\
& d V=\left\|\begin{array}{c}
\text { similar, } \\
3 \times 3
\end{array}\right\| d u d v d u
\end{aligned}
$$

$\left.\begin{array}{l}\text { Need new limits for } \iint, \iint J \\ \rightarrow u, v, w \text { for integrand }\end{array}\right\} \begin{aligned} & \text { Influence } \\ & \text { choice } \\ & \text { of sub }\end{aligned}$

