CH: 18: VECTOR CALCVIUS, We'll look at extensions of the fund. The, of Calculus 18.1.1 (FTC) from Calk I !!
(A) Intro

Ch. 15
VF $\vec{r}: D$, a subset of $\mathbb{R} \rightarrow V_{n}$ (or $\left.\mathbb{R}^{n}\right)$

Ch. 16
Scalar func. $f: D$, a subset of $\mathbb{R}^{n} \rightarrow \mathbb{R}$

Now
A vector field is described by a VF $\vec{F}: D_{\text {, a subset of }}^{\mathbb{R}^{n}} \longrightarrow V_{n}$ (or $\left.\mathbb{R}^{n}\right)$

We use p
in $\vec{f}=\langle M, N, \rho\rangle$

$$
\vec{F}(1,2)=(30,40)
$$

Every point A in a region D gets a vector $\left.\vec{F}\right|_{A}$.

$$
\begin{gathered}
(x, y) \\
(x, y, z)
\end{gathered}
$$

$$
\vec{f}(x, y)
$$

$$
F(x, y, z)
$$

We'll study steady vector fields, in which vectors do not change with time.
Ex Velocity field for a kitchen sink (See 18.3.9, Note 2)
Show some of the vectors, enough to show a pattern.

Use A as the initial point for \vec{F}_{A}.
Sample units:

Ex Electromagnetic force fields Gravitational

Given a scalar malitravarable
tinct incite
 what vestry Construct? vF

Like the Gop. must be consemative to have potential.

Ex. (Ch.16) Gradient vector field
Ex

We call f a potential function for \vec{F}.
\uparrow-f in Physics so that: $\left.\begin{array}{c}\text { lower } \\ \text { pot. }\end{array}\right) \stackrel{\vec{f}=\overrightarrow{\nabla f f}}{\leftrightarrows}\left(\begin{array}{l}\text { Higher } \\ \text { pot. }\end{array}\right.$
We call \vec{F} a conservative vector field, because $\vec{F}=\vec{\nabla} f$ for some scalar func f (ie., Fhas a potential function).

Recall (from 16.6):
(1) $\underbrace{\stackrel{\rightharpoonup}{f}}_{\vec{\nabla} f l_{A}} \perp$ level curvelsurface of the
$=\overbrace{\vec{F} \|_{A}}$ potential f containing A
here
(2) $\vec{\nabla} f l_{A}$ points in direction of max rate of $?$ of f at A.
(3) Hs length, $\left\|\bar{D} f I_{A}\right\|$ is that max rate of λ.

> Table
> (LL thru A)
> $k=$
> $f(x, y)=$
(B) $\vec{\nabla}$ Operator

$$
\begin{aligned}
& \vec{\nabla}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \quad \text { (l informal) } \\
& \vec{\nabla} f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \quad \text { gives a VVF (vector field) } \\
& \text { scalar }
\end{aligned} \mathbb{R}^{3} \text { version } 5
$$

Mars den uses C^{1} instead of "nice."
"S sooth" implies derive non -0,
$\ln 18.7$, Suokouski says. $\operatorname{rot} \vec{f}=$
$(c \overrightarrow{u r l} \vec{f}) \cdot \vec{n}$

How does \vec{D} operate on IVEs?
(Assume \vec{F} is "nice": components are cont. and have cont. ist-order $^{P} D_{5}$ where we care.
gives a VVF (vector field)
Ex (\#18) If $\underset{\text { find }}{\vec{F}(x, y, z)} \frac{(x, y)}{\text { curl }}=\langle\underbrace{x^{3} \ln z}_{M(x, y, z)}, \underbrace{x e^{-y}}_{N(x, y, z)} \underbrace{-\left(y^{2}+2 z\right)}_{p(x, y, z)}\rangle$,

$$
\begin{aligned}
& \overrightarrow{\text { curl }} \vec{F}=\vec{\nabla} \times \vec{F} \\
& =\left|\begin{array}{ccc}
\vec{i} & \overrightarrow{j_{2}} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\vec{b}}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} \ln z & x e^{-y} & -\left(y^{2}+\overrightarrow{z z}\right)
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}\left[-\left(y^{2}+2 z\right)\right]-\frac{\partial}{\partial z}\left(x e^{-y}\right)\right)^{0} \\
& \Theta\left[\frac{\partial}{\partial x}\left[-\left(y^{2}+[z z)\right]^{0}-\frac{\partial}{\partial z}\left(x^{3} \ln z\right)\right]\right. \text {; } \\
& \left.\frac{\partial}{\partial x}\left(x e^{-y}\right)-\frac{\partial}{\partial y}\left(x^{3} \ln \vec{z}\right)^{\circ}\right\rangle \\
& =\left\langle-2 y, x^{3}, \frac{1}{z}, e^{-4}\right\rangle \\
& =\left\langle-2 y, \frac{x^{3}}{z}, e^{-y}\right\rangle
\end{aligned}
$$

Don't need Cartesian!
inate-free sense

Explained on pp, $1013-4$ using. forest The. in 18.7.
rotation is counter-

- clochuirs if look from
tip of curl
lector towards
the paddlewheel

Analogous to
idea if
ODs at A
maxed in
direction of
$\stackrel{\rightharpoonup}{\mathrm{V}} \mathrm{I}_{A}$
suck see, Mir Hunkers
seeniw

Right-Hand Rule for curl

curling of fingers
indicate "overall rotation" (see I)
of F near A
Idea
At A, rotate this paddlewheel until its paddles revolve the fastest

$\|[\text { curl } \vec{f}]_{A} \|$ indicates the strength of the rotational effect about near A. It equals twice the angular speed of the paddles about this axis. Sample units: Salians used unit $\overrightarrow{\text { curl }} \vec{f}=\overrightarrow{0}$ throughout $D \Leftrightarrow \vec{F}$ is irotational in \vec{D}
(E) $\operatorname{div} \vec{F}=\vec{D} \cdot \vec{F}$
divergence gives a scalar function
Ex (\#18) If $\vec{F}(x, y, z)=\left\langle x^{3} \ln z, x e^{-y},-\left(y^{2}+2 z\right)\right\rangle$, find $\operatorname{div} \vec{F}$.

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\vec{\nabla} \cdot \vec{F} \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle x^{3} \ln z, x e^{-y},-\left(y^{2}+2 z\right)\right\rangle \\
& =\frac{\partial}{\partial x}\left(x^{3} \ln z\right)+\frac{\partial}{2 y}\left(x e^{-y}\right)+\frac{\partial}{\partial z}\left[-\left(y^{2}+2 z\right)\right] \\
& =3 x^{2} \ln z+x e^{-y}(-1)+(-2) \\
& =3 x^{2} \ln z-x e^{-y}-2
\end{aligned}
$$

Explained (F) Interpreting $\left[\operatorname{div} \vec{F}_{A}\right.$ (again, in terms of local behavior near A)
using $A, ~$ The using liv.thm. 'tendency of fluid to diverge from pt. A

If $[\operatorname{div} \vec{F}]_{A}>0$, then there is a source at A.

$$
\stackrel{x}{\hat{k}} \underset{\rightarrow}{\rightarrow} \quad \stackrel{A}{\longrightarrow}
$$

$$
\text { If }[\operatorname{div} \vec{f}]_{A}=0 \Rightarrow \text { neither. } \quad \rightarrow \stackrel{A}{\rightarrow}
$$

incl water,
prot ty much
If $\operatorname{div} \vec{F}=0$ throughout $D \Rightarrow \vec{F}$ is divergence free.
Ex incompressible fluids, solenoidal dectromaynetic fields (EM)
$\frac{\text { (6) When is a Vector Field, } \vec{F} \text {, Conservative? }}{\text { (Assume } \vec{F} \text { is "nice.)" }}$
Marsdem ged p.551;
$\ln \mathbb{R}^{2}, \vec{F} a_{n}$ beconserv. even it unset. at a finite \# of pts. (provided ff also under. there.
Exceptional plo. not

$$
\Leftrightarrow \overrightarrow{\text { carl }} \vec{f}=\overrightarrow{0} \quad\left(\text { if } \vec{f} \text { nice in } \mathbb{R}^{3}\right)
$$

(You'll prove \Rightarrow in $H W$! Converse (\Leftrightarrow) proven later in 18.7 on Stokes's The.

Larson: This is related to conservation of energy, for a particle moving in a conservative force field, the sum of its kinetic energy due to motion and its potential energy due to position
is constant.
(1) Inverse Square Fields are Conservative

Ex Gravity, Electric force (Coulomb's Law)
\qquad
The magnitude of the force between there is inversely proportional to the square of the distance between them. Let one be at 0 .
$2 \times$ distance $\Rightarrow \frac{1}{4}$ of force

$\vec{F}(x, y, z)=\underbrace{\left(\frac{c}{\|\vec{r}\|^{2}}\right.}) \underbrace{\left(\frac{\vec{r}}{}\right)}_{\text {unit vector in direction of } \vec{r}}$ for some constant of proortionalion, c. ensures that $\|\vec{F}(x, y, z)\|=\frac{|c|}{\mid\left\|^{2}\right\|^{2}}$

$$
=\frac{c \vec{r}}{\|l \vec{H}\|^{3}} \text {, provided } \vec{r} \neq \vec{O}
$$

If $c>0$, repulsion (away $\begin{gathered}\text { anam } \\ \text { tron }\end{gathered}$ if $c<0$, attraction (towards)

These vectors are \perp to $\underbrace{\text { sinter at } 0}_{\text {spheres surfaces of potential }}$.
$\ln \mathbb{R}^{3}$, so ox that' 0 is an exceptional pt.
\qquad Spelaut,
If comps f)
have cont.

(I) Interesting $1 D_{5}\left(i n \mathbb{R}^{3}\right)$
\qquad

$$
\begin{aligned}
& \operatorname{div}((\overrightarrow{\operatorname{url} \mid \vec{f})})=0 \\
& \underbrace{(\vec{D} f)}_{\text {is conserve., remember? }}=\overrightarrow{0} \quad \text { (see } 18.13 \text { figure) } \\
& \text { is }
\end{aligned}
$$

div, $\overrightarrow{\text { cur }} \mid$ critical to Maxwell's Laws in EM !!
(J) Flow Lines

Marsden
(or Streamlines or Integral Curves)
If F is a velocity field, then a particle placed in the field will trace out a flow line.
(See 15.2,2)

Flow line carries "invisible" speed info.
If that's the path we want, how much does \vec{F} help us?
What if we want another path?
Even if there's a flow line from pt. A to pt. B, can we do better?
We'll discuss Work in 18.2 (€),

- 18.2: LINE (PAT H)/S

We'll do 20, but this extends to 3D easily.
(A) Smooth Curves
$\vec{r}(t)=\langle x(t), y(t)\rangle$ gives a smooth parameterization of a curve, $C, \underbrace{\text { on }[a, b]}$ ie., when $a \leq t \leq b$

$\Leftrightarrow \vec{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d p}{d t}\right\rangle$, a tangent VVF, is
(1) cont. on $[a, b]$, and
(2) never $\overrightarrow{0}$ on (a, b)

Then, C is a smooth curve with no breaks, corners, or cusps. \vec{r} can't backtrack.
(B) Piecewise -Smooth $\binom{$ my notation }{ (} Curves
can be partitioned into a finite \# of smooth curves.

$$
C=C_{1} \cup C_{2} \cup C_{3}
$$

(C) Mass, m, of a ps Wire, C

Recall (15.1)
$d s=$ differential of arc length "s"

In Δt time,

$$
\begin{aligned}
& \ln 30 \\
& \sqrt{\ldots+(d z)^{2}} \\
& \sqrt{\ldots+\left(\frac{d z}{d t}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{(d x)^{2}+(d y)^{2}} \quad \text { (Informal) } \\
& =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad(\mid f+\pi \text {; otherwise, "|lt|") } \\
& =\left\|r^{\prime}(t)\right\| d t \text { or } \underbrace{\|\vec{v}(t)\| d t}_{\text {speed }} \underbrace{\| t}_{\text {distance covered }}
\end{aligned}
$$

Arc Length of $C=\int_{c} d s$

$$
=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d t
$$

Now
Let $\delta(x, y)$ be the linear mass density. of a wire at (x, y).
(Assume density is constant in a cross-section.)
Idea
Break C into tiny arcs.

is any point on C_{k}.

$$
\delta \approx \text { constant on } C_{k} \text { tiny! }
$$

C_{k} : cover length Δs_{k} in time Δt_{k}

$$
\text { Mass of } \begin{aligned}
C_{k} & \approx\left(\text { Density at } P_{k}\right)\left(\text { Arc length of } C_{k}\right) \\
& =\left[\delta\left(x_{k}, y_{k}\right)\right]\left[\Delta s_{k}\right]
\end{aligned}
$$

Mass, m, of $C=\int_{c} \delta(x, y) d s$
Why?

This is an example of a_{\ldots}

Stewart
5 Se , CT 1062 :
invented in
early 19 c to
study forces,
Aid flow, EM

If $f(x, y)=1 \Rightarrow$ Arc length of C
If $f(x, y)=\delta(x, y) \rightarrow$ Mass of C
Lateral Surface Area ("Wall")

$$
\text { if } f(x, y) \geq 0 \text { along } C
$$

DETAILS...
Note I: (We assume C is ps, and f is cont.)

Note 2: We get the same value for $\int_{c} f(x, y) d s$, regardless of how we parameterize C. if smooth Even the orientation doesn't matter:

Expand using $|d t|$
Always the: $\Delta s_{k} \geq 0$, mass ≥ 0
We flip sign if we had $d x,(d y)$...

$$
\left(\begin{array}{c}
e_{s}, \int_{c} f(t) d t=-\int_{-c} f(t) d t \\
t: a \rightarrow a \\
t: b a \\
\text { for otherwise same param }
\end{array}\right)
$$

like $E x 3$ Ex Find the mass of a wire C if the density at $P(x, y)$ is directly proportional to its distance from the x-axis, and C is parameterized by $x=-3 \cos t, y=3 \sin t ; 0 \leq t \leq \pi$.
(Assume $t: 0 \rightarrow \pi ;+\Longrightarrow$ consistently wlorientation)
Solon
What is C? (Optionall)
If we had $\left\{\begin{array}{l}x=3 \cos t \\ y=3 \sin t\end{array} \Rightarrow x^{2}+y^{2}=9\right.$

Here, $\left\{\begin{array}{l}x=\theta 3 \cos t \\ y=3 \sin t\end{array}\right.$

Good: No overlapping.
What is $\delta(x, y)$?

$$
\delta(x, y)=k y
$$

What is m ?

$$
\begin{aligned}
& m=\int_{c} \delta(x, y) d s \\
& =\int_{0}^{\pi} k y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& x=-3 \cos t, y=3 \sin t \\
& =\int_{0}^{\pi} k(3 \sin t) \underbrace{=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t}=\sqrt{9(1)}}_{=\sqrt{(3 \sin t)^{2}+(3 \cos t)^{2}}}=\sqrt{23} d t \quad \frac{d x}{d t}=3 \sin t, \frac{d y}{d y}=3 \cos t \\
& =9 k[-\cos t]_{0}^{\pi} \\
& =\begin{array}{l}
=9 k \\
=18 k \\
(-\underbrace{-\frac{\cos \pi}{(-1)}}_{i}-\underbrace{(-\cos 0)}_{(-1)})
\end{array}
\end{aligned}
$$

If C lies on the graph of $y=f(x) ; a \leq x \leq b \Rightarrow$
(et $x=t, y=f(t) ; a \leq t \leq b$. (Similarly for $x=f(y)$.)
Redo Previous Ex (SKIPPED IN (LASS ?)

$$
\begin{aligned}
& y=\sqrt{9-x^{2}},-3 \leq x \leq 3 \\
& x=t, y \\
&=\sqrt{9-t^{2}} \text { or }\left(9-t^{2}\right)^{1 / 2} \\
& \frac{d x}{d t}=1,=\frac{d}{d t}\left(9-t^{2}\right)^{-1 / 2}(-2 t) \\
&=-\frac{t}{-t^{2+t^{2}}}
\end{aligned}
$$

$m=\int_{c} \delta(x, y) d s$
$=\underbrace{\int_{-3}^{3}}_{\text {or } 2 \int_{0}^{3} \text { by sym. of } c, \delta(x, y)=k y \text { even in } x} k_{y} d\left(\frac{d x}{\left(\frac{d}{t}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d t\right.$

$$
\left(\begin{array}{l}
\text { we basically } \\
\text { cult Rave. } \\
\text { used dx. }
\end{array}\right)
$$

$$
\text { about } x=0
$$

$$
=2 \int_{0}^{3} k \sqrt{9-t^{2}} \sqrt{(1)^{2}+\left(-\frac{t}{\sqrt{9-t^{2}}}\right)^{2}} d t
$$

$$
=2 \int_{0}^{3} k \sqrt{9-t^{2}} \sqrt{1+\frac{t^{2}}{9-t^{2}}} d t
$$

$$
=2 \int_{0}^{3} k \sqrt{\left(\frac{\left.9-t^{2}\right)\left(1+\frac{t}{9-t^{2}}\right.}{-2}\right)} d t
$$

$$
=2 \int_{0}^{3} k \sqrt{9-t^{2}+t^{2}} d t
$$

$$
=2 \int_{0}^{3} 3 k d t
$$

$$
=6 k \int_{0}^{3} d t
$$

$$
=6 \mathrm{k}[t]_{0}^{3}
$$

$$
=6 k(3)
$$

$=18 \mathrm{k}$
(E) Line \int of a Vector Field, \vec{E}

Let $W=$ the work done by \vec{F} on a particle moving along C '[in the direction of orientation].
C_{k}, a tiny arc on C :

$= \pm$ magnitude of force acting in the direction of \vec{T}

$$
\begin{aligned}
& =\frac{\vec{F} \cdot \vec{T}}{N_{2}} \\
& =\vec{F} \cdot \vec{T}
\end{aligned}
$$

This depends on \vec{F} and C, but not the particle's speed along C.
(Were measuring the impact that \vec{F} has on the particle as it moves along (C.)

Recall Calc II
If F is a constant scalar force, then $W=F d$ here:

Now Curvy, \vec{F} nonconstant
On tiny $C_{k}, \vec{F} \cdot \vec{T} \approx$ constant.

$$
\text { Work done along } C_{k} \approx \underbrace{(\vec{F} \cdot \vec{r})}_{\begin{array}{c}
\text { "fore } \\
\text { impact" }
\end{array}} \underbrace{\Delta s_{k}}_{\begin{array}{c}
\alpha_{r} \text { of length } \\
\text { of }
\end{array}}
$$

$$
W=\int_{c} \underbrace{\vec{F} \cdot \vec{T}}_{\text {scalar fund }} d s
$$

Stewart
Sod ET,
to 1070
scalar function: special case of $f(x, y)$
Note $\int_{c} \vec{F} \cdot \vec{T} d s=\Theta \int_{-c} \vec{F} \cdot \vec{T} d s$
actually - (old \vec{t})
$\underset{\text { new }}{\overrightarrow{7}} \quad$ Orientation matters!

$$
\leqslant \text { if }+\lambda \text {, but formula still ok if } t \downarrow \text { (!!) }
$$

(see review notes)
$W=\int_{c} \vec{F} \cdot \underbrace{\vec{r}^{\prime}(t) d t}$ Maybe best form if \vec{F}, \vec{r} given
in terms of t. (t) only known for points along C (22)

$$
=\langle M(x, y), N(x, y)\rangle \text {, cont. in a region containing } C
$$

$$
\begin{aligned}
& \rightarrow{ }^{7} \\
& =\int_{c} \vec{F} \cdot \underbrace{\frac{\vec{J}^{\prime}(t)}{\| F^{\prime}(t)} \underbrace{}_{=d s}}_{=\vec{T}(t)} \underbrace{}_{\vec{r}^{\prime}(t) \| d t} \\
& =\frac{d \vec{d}}{d t} d t \\
& =" d \vec{r} \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{M_{\text {O }}}{W} W=\int_{c} M d x+N d y
\end{aligned}
$$

Idea
$\xrightarrow[\sim T]{T H} \quad W \gg 0 \quad$ The force is with you!

$$
\vec{F} \cdot \vec{T}>0 \quad \angle \vec{F} \vec{T}
$$

NH W N No help/harm.

$$
\vec{F} \cdot \vec{T}=0 \quad \vec{F}_{\underline{T}} \rightarrow \vec{T}
$$

$\%$ WK $W \ll 0$ Forces conspiring against you!

$$
\vec{F} \cdot \vec{T}<0 \quad \vec{F} \circledast \rightarrow \vec{T}
$$

Swot fri
Also:ft.-16s. $U_{\text {nits }}$ If \vec{F} lengths in Newtons, ${ }^{y}$ (meneters)

$$
\Rightarrow W \text { in Newton-meters, or joules (J) }
$$

I joule is the force needed to accelerate a $/ \mathrm{kg}$ mass by $/ \frac{\mathrm{m}}{\mathrm{sec}^{2}}$.

Like \#4
Ex $\vec{F}(x, y)=\langle\underbrace{y}_{M(x, y)}, \underbrace{x+y}_{N(x, y)}\rangle$.
C is the graph of $y=x^{2}+2 x$ directed from $(0,0)$ to (3,8$)$. Find the work, W, done by \vec{F} on a particle moving along C.
Solon
Draw ((Optional) $\quad \frac{8 / 4}{\frac{1}{2}}{ }_{0}$
$C: y=\underbrace{x^{2}+2 x}_{f(x)} ; x: 0 \rightarrow 2$ (x is our parameter.)
(Also nice: $x=f(y) ; y: a \rightarrow b$)
Use Differential form:

$$
\left.\begin{array}{rl}
W & =\int_{c} M d x+N d y \\
& =\int_{c} y d x+(x+y) d y \\
y=x^{2}+2 x \\
d y=(2 x+2) d x
\end{array}\right)\left(\begin{array}{r}
\text { Write } \left.\begin{array}{r}
x=\ldots \\
d x=\ldots
\end{array} \quad \text { if } x=f(y)\right) \\
\\
=\int_{0}^{2} \underbrace{\left(x^{2}+2 x\right)}_{y} d x+[x+\underbrace{\left(x^{2}+2 x\right)}_{y}) \underbrace{d y}_{(2 x+2) d x} \\
\\
=\int_{0}^{2}\left[x^{2}+2 x+\left(x^{2}+3 x\right)^{(2 x+2)}\right] d x \\
\\
\\
\end{array}\right.
$$

Note: If $\psi_{0} \frac{\psi_{2}}{}$, then $x: 2 \rightarrow 0$, and $W=\int_{2}^{0} \cdots=-48$. Makes sense! OK if $x \downarrow$ in direction of motion.

$$
\begin{aligned}
& \text { Ex } \vec{F}(x, y)=\left\langle x y^{2}, e^{2 y}\right\rangle . \\
& C=C_{1} v C_{2}:
\end{aligned}
$$

Find W.
Method! (Know both methods!): Use t as a parameter.
(a) Parameterize C_{1}, C_{2}
(c)

$$
\begin{aligned}
& C_{1}:\left\{\begin{array} { l }
{ x = 2 } \\
{ y = t }
\end{array} \Rightarrow \left\{\begin{array}{l}
d x=0 \\
d y=d t
\end{array}\right.\right. \\
& t: 1 \rightarrow 3
\end{aligned}
$$

(C2) Initial Point: $P_{2}(2,3)$

$$
\begin{aligned}
& \text { Displacement Vector: } \vec{P}_{2} P_{3}=\langle-2-2,1-3\rangle \\
& =\langle-4,-2\rangle \\
& C_{2}:\left\{\begin{array} { l }
{ x = 2 - 4 t } \\
{ y = 3 - 2 t }
\end{array} \Rightarrow \left\{\begin{array}{l}
d x=-4 d t \\
d y=-2 d t
\end{array}\right.\right. \\
& \begin{array}{cc}
t: 0 \rightarrow 1 \\
p_{2} & \\
p_{3}
\end{array} \\
& t=\text { fraction of the way you've gone } \\
& P_{3}{ }_{t=1}{ }_{t=0,0,55}
\end{aligned}
$$

(b) Find W

$$
\begin{aligned}
& W=\int_{C_{1}} M d x+N d y+\int_{C_{2}} M d x+N d y \\
&=\int_{C_{1}} x y^{2} d x+e^{2 y} d y \\
&= \int_{1}^{3} \underbrace{(2 t-v a l u)^{4}(t)}_{=0} \underbrace{(0)}+e^{2(t)} d t \\
& \quad+\int_{0}^{1}\left(2 y^{2} d x+e^{2 y} d y\right. \\
& \approx 198-209 \\
&=-11
\end{aligned}
$$

Method 2 : Use x andlor y as parameters.
(c)

$$
C_{1}: \begin{aligned}
& x=2 \\
& y: 1 \rightarrow 3
\end{aligned} \Rightarrow d x=0
$$

(C2) Point: $(2,3)$

$$
\text { Slope }=\frac{1-7}{-2-2}=\frac{1}{2}
$$

Pt. Slope form: $y^{-3}=\frac{1}{2}(x-2)$
\Rightarrow Slope-funt. form: $y=\frac{1}{2} x+2$

$$
\begin{aligned}
C_{2}: & x: 2 \rightarrow-2 \\
& y
\end{aligned}=\frac{1}{2} x+2 \Rightarrow d y=\frac{1}{2} d x
$$

$$
\begin{aligned}
& W=\int_{C_{1}} M d x+N d y \quad+\quad \int_{C_{2}} M d x+N d y \\
& =\int_{c_{1}} x y^{2} d x+e^{2 y} d y+\int_{c_{2}} x y^{2} d x+e^{2 y} d y \\
& =\int_{1}^{3^{\text {by }}} \underbrace{(2) y^{2}(0)}_{=0}(0)+e^{2 y} d y+\int_{2}^{-2^{4}} x\left(\frac{x}{2} x+\text {-values } \leftrightarrows\right)^{2} d x+e^{2\left(\frac{1}{2} x+2\right), \frac{1}{2} d x}
\end{aligned}
$$

≈-11; same as for Method I
18.3: INDEPENDENCE OF PATH (IP)
(A) Assumptions
C is ps.
D is a simply connected open region containing C.

$\ln \mathbb{R}^{3}$, can

Simply
connected
D_{5} in $\mathbb{R}^{?}$?
discussed
in 18.7
Lpp.1017-8).
Dias no holes (if in \mathbb{R}^{2}).
ie, No simple closed curve in D encloses points not in D.

$$
\frac{1}{r}(a)=\vec{r}(b) \text {, and }
$$

the only self -intersection point is there.

No

Well extend
(6) into 30
then, anyway \vec{F} is cont. in D.
(B) Indef of Path (IP)

Find $\int_{c} \vec{F} \cdot d \vec{r}$.
What if (is hard to parameterize? No Can we use \rightarrow, instead?
We have indef. of path for \dot{F} in $D \Longleftrightarrow$
For any pair of points A and B in D, Sc \vec{F}-dry yields the same \#, regardless' of which ps curve C in D from A to B we use.

We can then say: $\int_{A}^{g} \vec{F} \cdot d \vec{r}$.
(C) Showing Indep, of Path for \vec{F} in D by Finding a Potential Function, f

Note: D need not be simply connected. ${ }^{*}$ Need

Like \#y Ex $\vec{F}(x, y)=\left\langle 2 x e^{2 y}+4 y^{3}, 2 x^{2} e^{2 y}+12 x y^{2}-2 y\right\rangle$.
Show that $\int_{c} \vec{F} \cdot d \vec{r}$ is indep of path throughout $\mathbb{R}_{(\mid P)}$?
Sol
Find a potential, f, such that

$$
\begin{aligned}
\vec{\nabla} f & =\vec{f} \\
\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle & =\left\langle 2 x e^{2 y}+4 y^{3}, \frac{2 x^{2} e^{2 y}+12 x y^{2}-2 y}{(4)}\right\rangle
\end{aligned}
$$

Partially $\int f_{x}$ wot $x \quad f_{x}{ }^{\text {Af }}$ (Could $f_{f_{y}}$ sur t $^{\text {f }}$)

$$
\begin{aligned}
\int f_{x}(x, y) d x & =\int\left(2 x e^{2 y}+4 y^{3}\right) d x \\
f(x, y) & =2 e^{2 y}\left(\frac{x^{2}}{2}\right)+4 y^{3} x+\underbrace{g(y)}_{0_{x}[g(y)]=0} \\
f(x, y) & =x^{2} e^{2 y}+4 x y^{3}+g(y)
\end{aligned}
$$

Dy both sides $\quad{ }_{\mathrm{f}_{\mathrm{f}}}$

$$
\begin{aligned}
f_{y}(x, y) & =D_{y}\left[x^{2} e^{2 y}+4 x y^{3}+g(y)\right] \\
& =x^{2}\left(2 e^{2 y}\right)+4 x\left(3 y^{2}\right)+g^{\prime}(y) \\
& =2 x^{2} e^{2 y}+12 x y^{2}+9^{\prime \prime}(y)
\end{aligned}
$$

Compare with (A) $\left.\Rightarrow f_{y}(x, y)=2 x^{2} e^{2 y}+12 x y^{2}-2 y\right)$
$\int($ mo $)$ wi ty to get $g(y)$

$$
\begin{aligned}
& \int g^{\prime}(y) d y=\int-2 y d y \\
& g(y)=-y^{2}+\underbrace{K}_{\text {"C"ulready used }}
\end{aligned}
$$

Write out $f(x, y)$ Use $\$ \phi 力)$.

In fact, this $=$ $\int f_{y}(x, y) d y$

$$
f(x, y)=x^{2} e^{2 y}+4 x y^{3}-y^{2}+K \quad \text { Can } D_{x}, D_{y} \text { to } .
$$

Min carse, | as for an |
| :---: |
| Know |

Alternative Method (Don't use, though)

$$
\begin{aligned}
& \int f_{x}(x, y) d y=\ldots=x^{2} e^{2 y}+4 x y^{3}+g(y) \\
& \int f_{y}(x, y) d y=\ldots=x^{2} e^{2 y}+4 x y^{3}-y^{2}+h(x)
\end{aligned}
$$

Form a guess: $f(x, y)=x^{2} e^{2 y}+4 x y^{3}-y^{2}+K$ D_{x}, D_{y} to \checkmark.

Ex Find a potential, f, for $\vec{F}(x, y, z)=\langle\underbrace{8 x}_{f_{x}}, \underbrace{-9 q_{z}}_{f_{y}}, \underbrace{-9 y+3 z^{2}}_{f_{z}}\rangle$.
Sol'n

$$
f_{x}^{\sqrt{x}}: 8 x
$$

$$
f: \int 8 x d x=4 x^{2}+\underbrace{g(y, z)}_{\text {could have } y, z, \text { both, or neither }}
$$

$$
\begin{align*}
g y(y, z) & =-9 z \\
g(y, z) & =\int-9 z d y \\
& =-9 z y+h(z)
\end{align*}
$$

$f: 4 x^{2}-9 y z+h(z)$
$f_{z}: \quad-9 y+h^{\prime}(z)$

$$
f_{z}=-9 y+3 z^{2}
$$

$$
\begin{aligned}
-9 y+h^{\prime}(z) & =-9 y+3 z^{2} \\
h^{\prime}(z) & =3 z^{2} \\
h(z) & =\int 3 z^{2} d z \\
h(z) & =z^{3}+K
\end{aligned}
$$

$$
\text { (A) } \Rightarrow f(x, y, z)=4 x^{2}-9 y z+z^{3}+K
$$

Alternative Method (Dan't use!)

$$
\left.\begin{array}{l}
\int f_{x}(x, y, z) d x=4 x^{2}+g(y, z) \\
\int f_{y}(x, z) d y=-9 y z+h(x, z) \\
\int f_{z}(x, y, z) d z=-9 y z+z^{3}+l(x, y)
\end{array}\right\} \Rightarrow \text { Guess: } f(x, y, z)=4 x^{2}-9 y z+z^{3}+K
$$

stewart calls
(D) Fundamental The for line \int_{5} (FTLI) -extends FTC from
 Calk I

If \vec{F} is conservative in D with potential $f(\vec{F}=\vec{D} f)$, then

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & \left.=\int_{A}^{B} \vec{F} \cdot d \vec{r} \quad \text { (by Indef. of Path for } \vec{F} \text { in } D\right) \\
& =[f(x, y)]_{A}^{B} \text { or }[f(x, y, z)]_{A}^{B} \\
& =\left.f\right|_{B}-\left.f\right|_{A}
\end{aligned}
$$

Physical Interpretation
The work done by a conservative force field \vec{F} along any path C from A to B
$=$ The difference in potentials between A and B.

Doesn't matter where yo 1 fall circuit 51) same net effect,

$$
\Omega:-0=0
$$

"Simple" helios. Orientation
unclear for ©
this pt.?

What if $A=B$?
closed curve $\rightarrow \underset{c}{A \rightarrow}$

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =\int_{A}^{A} \vec{F} \cdot d \vec{r} \\
& =\left.f\right|_{A}-\left.f\right|_{A} \\
& =0
\end{aligned}
$$

True "Converse":
If $\int_{c} \vec{F} \cdot d \vec{r}=0$ for every simple closed curve C in D_{1} then F is conservative, and we have indep. of path for $\vec{F}_{\text {in }} D$.

Why?

$$
\begin{aligned}
\overbrace{c_{2}}^{c_{1}} & \text { If } \int_{c^{2}} \vec{F} \cdot d \vec{r}=0 \\
& \Rightarrow \int_{c_{1}} \cdot{ }^{\prime}+\int_{-c_{2}} \cdot \prime=0 \\
& \Rightarrow f_{c_{1}} \cdot,-\int_{c_{2}} \cdot '=0 \\
& \Rightarrow \quad f_{c_{1}} \cdot{ }^{\prime}=f_{c_{2}}
\end{aligned}
$$

Ex From (c): $\vec{F}(x, y)=\left\langle 2 x e^{2 y}+4 y^{3}, 2 x^{2} e^{2 y}+12 x y^{2}-2 y\right\rangle$.
(${ }^{\mathrm{k}}$ conservative in \mathbb{R}^{2}).
Evaluate $\int_{(l, 2)}^{(3,4)} \vec{F} \cdot d \vec{r}$.
Methodl:Use FTLI.

$$
752+9 e^{8}
$$

$$
-\left(28+e^{4}\right)
$$

$$
\begin{aligned}
& =[f(x, y)]_{(1,2)}^{(3,4)} \\
& =\left[x^{2} e^{2 y}+4 x y^{3}-y^{2}\right]_{(1,2)}^{(3,4)} \quad \text { from (1) } \\
& \text { Don't need } 1+K .{ }^{4} \\
& =\left[(3)^{2} e^{2(4)}+4(3)(4)^{3}-(4)^{2}\right] \\
& -\left[(1)^{2} e^{2(2)}+4(1)(2)^{3}-(2)^{2}\right] \\
& =9 e^{8}-e^{4}+724
\end{aligned}
$$

whether we

Method 2: Use (E) $\Rightarrow 18.2$ method for "easy" x C
(1)
(E) Showing Indep, of Path for \vec{F} in D (Method 2)

If $\tilde{F}=\langle M, N\rangle$, and $\frac{\vec{F} R^{2}}{M, N \text { is "have cont. } 1^{5 t} P D_{5}(\infty) \text { on } D \text {, }}$ and if D is simply connected, then
'noholes
$\# / \bar{F}: \vec{F}=\left(M_{1}, N_{1} P\right)$

$$
\begin{aligned}
& M_{y}=H_{x}, M_{z}=P_{x} \\
& N_{2}=P_{y}
\end{aligned}
$$

$$
N_{2}=P_{4}
$$

vs. $\frac{2 \mu}{21}=\frac{2 N}{2 x}$
My order better
for 18.4
$\int_{c} \vec{F} \cdot d \vec{r}=\int M d x+N d y$ is indef. of path (IP)
$\Longleftrightarrow \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \quad$ for all (x, y) in D

Proof Idea
$(\Rightarrow) \quad \mathbb{P} \Rightarrow$ There exists f :

$$
\vec{F}: \begin{aligned}
& D_{x} f^{f} \backslash D_{y} \\
& M \\
& D_{y} y_{y} / D_{x} \\
& M_{y} N_{x}
\end{aligned}
$$

because $f_{x y}=f_{y x}$ it (4)
\Leftrightarrow Hard! Requires that D be simply connected.

Show that $\int_{c} \vec{F} \cdot d \vec{r}$ is indef. of path (IP) throughout \mathbb{R}^{2}.
(In ©) we did this by finding a potential.)
Solon

$$
\frac{\partial N}{\partial x}=4 x e^{2 y}+12 y^{2}
$$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =2 x\left(2 e^{2 y}\right)+12 y^{2} \\
& =4 x e^{2 y}+12 y^{2} \\
\Rightarrow \frac{\partial N}{\partial x} & =\frac{\partial M}{\partial y}
\end{aligned}
$$

$\Rightarrow \int_{c} \vec{F} \cdot d \vec{r}$ is \mathbb{P} throughout \mathbb{R}^{2}.
If C in D;
here, $D=\mathbb{R}^{2}$.
Note: To compute $\int_{(1,2)}^{(3,4)} \vec{F}$.d rr , we can use 18.2 on $(1,2)(3,4)\left(\begin{array}{l}x=1+2 t \\ y=2+2 t \\ t: 0 \rightarrow 1\end{array}\right)$

Note 1
Cian't pass
gite andre." \quad If $\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$ at any (x, y) in D,
then we do not have \mathbb{P} for \vec{F} in D.
Like \#"?

$$
\langle-1\rangle
$$

Note 2 (How to Ace the Rest of Calculus, ,pp. 234-5) (Skim in class)
\vec{F} is an approx. "kitchen sink" fred. Vector longer ar mir l $\xrightarrow{90 e 5} \rightarrow 0$ from

$$
\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \text {, except at }(0,0) \text {. }
$$

$\vec{F}_{\text {in }}^{n}$ indef.
This is "quproximately" a sink, water,
doesn't move in does t mare in!

$$
\text { If } \vec{F}(x, y)=\left\langle\frac{y}{x^{2}+y^{2}},-\frac{x}{x^{2}+y^{2}}\right\rangle \text {, then }
$$

$$
\int_{c} \vec{F} \cdot d \vec{r}=2 \pi \neq 0
$$

Using 18.2 .
\vec{F} is not conservative on any region containing C.
If you attempt to construct a potential, f, you may get $-\tan ^{-1}\left(\frac{y}{x}\right)$, but observe that this is undefined when $x=0$.

Note 3
In 18.7, we will extend (E) to 30 .
(Typed in review:)
(F) When is \vec{F} Conservative in \mathbb{R}^{2} ? Equivalent Statements: In a connected region D (in which \vec{F} is cont.)... "in one piece"
(1) \vec{F} is conservative (ie, $\vec{F}=\vec{D} f$ for some scalar potential tunc. f)
(2) We have $I P: \int_{c} \vec{F} \cdot d \vec{r}$
(3) $\int_{c} \vec{F} \cdot d \vec{r}=0$ for every simple closed curve C in D
(4a) $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$ throughout D
if $\vec{F}=\langle M, N\rangle$ is "nice."
Note: $\int_{c} \vec{F} \cdot d \vec{r}=\int_{c} M d x+N d y$
If we start with (Ha), then we require that D be $\frac{\text { simply connected. }}{\text { notholes }}$ io holes
(in $\left.R^{2}\right)$

When we discuss the \mathbb{R}^{3} case in 18.7, we will replace (ta) with (46).

- 18.4: GREEN'S THEOREM

George Green (1793-1841) was an English mathematical physicist who published this theorem in an EM paper in 1828. Self-taught!
(A) Prelims
$\ln \mathbb{R}^{2}$;
Let C be a ps simple closed curve that is the bound rory of $R=C$ interior of C.
C is boundary
of $R: C=2 R$$\quad D$ is an open region containing R.
(in $\left(\mathbb{R}^{2}\right)$

Let $\vec{F}=\langle M, N\rangle$, where M, N are "nice" throughout D. ie., are cont. and have cont. 1^{5+} DDs
csunterilockinire unless hole; See (c)
$\oint \begin{gathered}\text { also } \\ \text { used }\end{gathered}$
R always on the left
(B) Green's Thu

Green's The. an extension of FTC.

$$
\begin{aligned}
& \oint_{c} \vec{F} \cdot d \vec{r}=\oint_{c} M d x+N d y \\
&=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& \underbrace{\text { loot if and only it }}_{=0 \text { if } \vec{F} \text { is censer }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { of } f \text { in conservative throughout } D \\
& \text { (not" if and only if: could be } 0 \text { even it }{ }^{\text {isn't }} \text {) }
\end{aligned}
$$

(C) Area of R

Note If you use $\vec{F}(x, y)=\left\langle\begin{array}{c}M, ~ N \\ -y, x\end{array}\right\rangle$, then

$$
\begin{aligned}
\oint_{L} \vec{F} \cdot d \vec{r} & =\iint(1-(-1)) d A \\
& =2 \iiint_{R} d A \\
& =2 \cdot(\text { Area of } R)
\end{aligned}
$$

$$
\Rightarrow \text { Area of } R=\frac{1}{2} \phi-v d x+x d^{2}<\begin{aligned}
& \text { Often easier to use } \\
& \text { then: Area }=6_{x} d_{v}
\end{aligned}
$$

$$
\Rightarrow \text { Area of } R=\frac{1}{2} \oint_{c}-y d x+x d y \text { than: Area }=6 x d y
$$

How to Ace: You can judge a book by its cover!

$$
\left({\text { Area o } o R^{\prime}}^{c}\right.
$$

Carson Se
ser
1023
Try this: Show that the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b,(a>0, b>0)$

Hint: See my $13_{1} /$ Notes.
May be easier to remember:

$$
\text { Area of } R=\frac{1}{2} \oint_{c} x d y-y d x
$$

(D) Ex (\#6)

Evaluate $\oint_{c} y^{2} d x+x^{2} d y$, where
C is the boundary of the region bounded by the semicircle $y=\sqrt{4-x^{2}}$ and the x-axis.
Solon
Draw C

$$
\begin{aligned}
\oint_{c} y_{M}^{2} d x+x^{2} d y & =\iiint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\iint_{R}(2 x-2 y) d A
\end{aligned}
$$

In Cartesian coords.,

$$
\begin{aligned}
& =\underbrace{\int_{x=-2}^{x=2} \int_{y=0}^{y=\sqrt{4-x^{2}}}(2 x-2 y) d y d x}_{\text {NO } \Rightarrow 2 \int_{0}^{2} \text {, because not even in } x .} \underbrace{(2)}
\end{aligned}
$$

Not bad, but...
$P C_{s}$ easier!

$$
\begin{aligned}
\iint_{R}(2 x-2 y) d A & =\int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=2}(2 r \cos \theta-2 r \sin \theta) r d r d \theta \\
& =2 \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=2} r(\cos \theta-\sin \theta) r d r d \theta \\
& =2\left[\int_{0}^{2} r^{2} d r\right]\left[\int_{0}^{\pi}(\cos \theta-\sin \theta) d \theta\right] \\
& =2\left(\left[\frac{r^{3}}{3}\right]_{0}^{2}\right)\left([\sin \theta+\cos \theta]_{0}^{\pi}\right) \\
& =2\left(\frac{8}{3}\right)(\underbrace{[\sin \pi}_{=0}+\underbrace{\cos \pi}_{=-1}]-\underbrace{[\sin 0}_{=0}+\underbrace{\cos \theta]}_{1}) \\
& =\frac{16}{3}(-1-1) \\
& =-\frac{32}{3}
\end{aligned}
$$

Note 1: If $\rightarrow \int_{\substack{\text { in } \\ \text { neg. }}} y^{2} d x+x^{2} d y=\frac{32}{3}$ direction

Note 2: 18.2 Method longer

(c) Extension

$$
\begin{align*}
\oint_{C_{1}} \vec{F} \cdot d \vec{r} & +\oint_{C_{2}}{ }^{2} \text { stays on left } \\
& =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
\end{align*}
$$

Why?
Make a slit.

$$
(\not)=\oint_{c_{1}} \vec{F} \cdot d \vec{r}+\underbrace{\oint_{c_{3}}{ }^{\prime}{ }^{\prime}+\phi_{c_{2}}{ }^{\prime}{ }^{\prime}+\underbrace{\oint_{c_{4}}}{ }^{\prime}}_{\text {sum }=0} \text { by } G_{r e e n .} .
$$

18. S: SURFACE INTEGRALS
(A) Review Surface Area (17,4)

(Assume f is "nice" - cont, and has cont. $1^{5+} P D_{s}$ on $R_{x y}$. If there is a problem at the boundary, we may need an improper integral.)

$$
\begin{aligned}
\text { Surface Area } & =\iint d S \\
& =\int_{R_{x y}} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
\end{aligned}
$$

Similar if $y=f(x, z) ; x=f(y, z)$.
(B) Mass, m, of a Surface, S

$$
\begin{align*}
& \text { Mass of Sticky } T_{k} \approx \underbrace{\delta\left(x_{k}, y_{k}, f\left(x_{k}, y_{k}\right)\right)}_{\substack{\text { Area mass density } \\
\text { at } \\
\varepsilon \text { frame }}} \underbrace{\Delta T_{k}}_{\substack{\text { Ara of } \\
\text { Stick }}} \tag{-2}\\
& \begin{array}{l}
\text { at } B_{k} \text { (} \sim \text { same } \\
\text { throughout Stinky }) ~ s t i c k y ~ \\
T_{k}
\end{array} \\
& \text { (Units like } 9 / \mathrm{m}^{2} \text {) (Units like } \mathrm{m}^{2} \text {) } \\
& m=\text { Mass of } S=\lim _{A \rho \rightarrow 0} \sum_{k}(A) \\
& =\int_{5}^{f} \delta(x, y, z) d S \\
& =\int_{R_{x y}}^{\int} \delta(x, y, f(x, y)) \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
\end{align*}
$$

Ex (like \#1-solutions manual flawed)
Find the mass of \int, if $\delta(x, y, z)=x^{2}$, and S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2},(a>0)$.

Sol'n
Rewrite the eq, for \int in the form $z=f(x, y)$.

$$
\begin{align*}
x^{2}+y^{2}+z^{2} & =a^{2} \quad \quad \text { a } \tag{a>0}\\
z & =\underset{ }{ \pm} \begin{aligned}
& a^{2}-x^{2}-y^{2} \\
& \text { we take the upper halt } \\
& \text { of the sphere }
\end{aligned}
\end{align*}
$$

Find m

$$
\begin{aligned}
& m=\iint_{x_{x y}} \delta \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A \\
& f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}} \\
&=\left(a^{2}-x^{2}-y^{2}\right)^{1 / 2} \\
& f_{x}(x, y)=\frac{1}{2}\left(a^{2}-x^{2}-y^{2}\right)^{-1 / 2}(-2 x) \\
&=-\frac{x}{\sqrt{a^{2}-x^{2}-y^{2}}} \\
& {\left[f_{x}(x, y)\right]^{2} }=\frac{x^{2}}{a^{2}-x^{2}-y^{2}}
\end{aligned}
$$

$f(x, y)$ is symmetric in x and y (ie., $f(x, y)=f(y, x)$).

$$
\Rightarrow\left[f_{y}(x, y)\right]^{2}=\frac{y^{2}}{a^{2}-y^{2}-x^{2}}
$$

$$
\begin{aligned}
m & =\iint_{R_{x y}} x^{2} \sqrt{1+\frac{x^{2}}{a^{2}-x^{2}-y^{2}}+\frac{y^{2}}{a^{2}-x^{2}-y^{2}}} d A \\
& =\iint_{R_{x y}} x^{2} \sqrt{1+\frac{x^{2}+y^{2}}{a^{2}-x^{2}-y^{2}}} d A \\
& =\iint_{R_{x y}} x^{2} \sqrt{\frac{a^{2}-x^{2}-y^{2}+x^{2}+y^{2}}{a^{2}-x^{2}-y^{2}}} d A \\
& =\iint_{R_{x y}} x^{2}\left(\frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}\right) d A
\end{aligned}
$$

$$
\rightarrow P C_{s}
$$

$$
\begin{aligned}
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=a}(r \cos \theta)^{2}\left(\frac{a}{\sqrt{a^{2}-r^{2}}}\right) r d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=a}\left(r^{2} \cos ^{2} \theta\right)\left(\frac{a}{\sqrt{a^{2}-r^{2}}}\right) r d r d \theta \\
& =a \underbrace{\left[\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right]}_{\stackrel{P R x}{P x} \int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2}}[\underbrace{\left.\int_{0}^{a} \frac{r^{3}}{a^{2}-r^{2}} d r\right]}_{\text {Improper })!} \\
& =\frac{1}{2}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]_{0}^{2 \pi} \quad \text { (Integrand is } \\
& =\frac{1}{2}\left(\left[2 \pi+\frac{1}{2} \sin (4 \pi)\right]-(0)\right] \quad \text { undefined at } \\
& =\pi
\end{aligned}
$$

$$
=\pi a \cdot \lim _{t \rightarrow a^{-}} \underbrace{\int_{0}^{t} \frac{r^{3}}{\sqrt{a^{2}-r^{2}}} d r}
$$

Work out Indefinite $\int, 1^{\text {st }}$.
Trig sub: $r=a \sin \gamma$ (We'vehad θ) or Fancy u-sub

$$
\begin{aligned}
u & =a^{2}-r^{2} \Rightarrow r^{2}=a^{2}-u \\
d u & =-2 r d r \\
\Rightarrow r d r & =-\frac{1}{2} d u
\end{aligned}
$$

$$
\int \frac{r^{3}}{\sqrt{a^{2}-r^{2}}} d r=\int \frac{r^{2} \cdot r}{\sqrt{a^{2}-r^{2}}} d r
$$

$$
=\int \frac{\left(a^{2}-u\right)\left(-\frac{1}{2} d u\right)}{\sqrt{u}}
$$

$$
=-\frac{1}{2} \int\left(a^{2} u^{-\frac{1}{2}}-u^{\frac{1}{2}}\right) d u
$$

$$
=-\frac{1}{2}\left[a^{2}\left(\frac{u^{1 / 2}}{1 / 2}\right)-\frac{u^{3 / 2}}{3 / 2}\right]+C
$$

$$
=-\frac{1}{2}\left[2 a^{2} \sqrt{u}-\frac{2}{3} u^{3 / 2}\right]+C
$$

$$
=-a^{2} \sqrt{a^{2}-r^{2}}+\frac{1}{3}\left(a^{2}-r^{2}\right)^{3 / 2}+C
$$

$$
\begin{aligned}
& =\pi a \cdot \lim _{t \rightarrow a^{-}}\left[-a^{2} \sqrt{a^{2}-r^{2}}+\frac{1}{3}\left(a^{2}-r^{2}\right)^{3 / 2}\right]_{0}^{t} \\
& =\pi a \cdot \lim _{t \rightarrow a^{-}}([-a^{2} \underbrace{\sqrt{a^{2}-t^{2}}}_{\rightarrow 0}+\frac{1}{3} \underbrace{\left.\left(a^{2}-t^{2}\right)^{3 / 2}\right]-[-a^{2} \sqrt{a^{2}}+\frac{1}{3}+\underbrace{\left(a^{2}\right)^{3 / 2} / 2}_{=a^{3}}])}_{\rightarrow 0} \\
& =\pi a\left(a^{3}-\frac{1}{3} a^{3}\right) \\
& =\pi a\left(\frac{2}{3} a^{3}\right) \\
& =\frac{2 \pi a^{4}}{3}
\end{aligned}
$$

Now: 3D

$$
\iint_{S} \vec{F} \cdot \underbrace{\vec{S}}_{d \stackrel{n}{S}}=\text { Flux of } \vec{F} \text { across } S \text {. }
$$

Sample units: //f

Let S be the graph of $z=f(x, y)$. What's \vec{n} ?

$$
\underbrace{z-f(x, y)}_{" g(x, y, z) "}=0
$$

$\Rightarrow S$ is a level surface of g.

$$
\Rightarrow \vec{\nabla}_{g} \perp S
$$

\Rightarrow We use

$$
\vec{n}=\frac{\stackrel{\rightharpoonup}{\nabla} g}{\|\vec{\nabla} g\|}
$$

as our upper unit normal to S

$$
\begin{array}{ll}
=\frac{\left\langle\frac{\partial g}{\partial x,} \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle}{\|\nabla g\|} \\
=\frac{\left\langle-f_{x},-f_{y}, \mid\right\rangle}{\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}} & \underbrace{z-f(x, y)}_{g(x, y, z)}=0
\end{array}
$$

Book does \rightarrow

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \vec{n} d S & =\iint_{R_{x y}} \vec{F} \cdot \frac{\left(\frac{\left.\left(1-f_{x}-f_{y} 1\right)\right)^{2}}{\sqrt{1+\left(1+f_{x}+E^{2}\left(t_{4}\right)^{2}\right.}}\right.}{} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A \\
& =\iint_{R_{x y}} \vec{F} \cdot \vec{\sigma}_{g} d A
\end{aligned}
$$

Ex Find the flux of \vec{F} across S, where $\vec{F}(x, y, z)=\langle z, 2, y\rangle$, and
S is the first-octant portion of the plane

$$
z=-4 x-8 y+8
$$

Solon

$$
\underbrace{z+4 x+8 y-8}_{g(x, y, z)}=0
$$

$\vec{\nabla}_{g}(x, y, z)=\langle 4,8,1\rangle$
(This is a normal vector to this plane; see (Ch. 14 (14.S).)

$$
\begin{aligned}
\text { Flux } & =\iint_{R_{x y}} \vec{F} \cdot \vec{\nabla} g d A \\
& =\iint_{R_{x y}}\langle z, 2, y\rangle \cdot\langle 4,8,1\rangle d A \\
& =\iint_{R_{x y}}\left(4 Z_{\text {write out in terms of } x, y}+16+y\right) d A \\
& =\iint_{R_{x y}}[4(-4 x-8 y+8)+16+y] d A \\
& =\iiint_{R_{x y}}[-16 x-31 y+48] d A
\end{aligned}
$$

What is $R_{x y}$?

$$
\begin{aligned}
z & =-4 x-8 y+8 \text { in Octant I } \\
4 x+8 y+z & =8
\end{aligned}
$$

Intercept Method for Graphing a Plane

Intercept form:

$$
\begin{aligned}
\frac{x}{2}+y & =1 \\
y & =1-\frac{1}{2} x
\end{aligned}
$$

$$
\begin{aligned}
\text { Flux } & =\int_{x=0}^{x=2} \int_{y=0}^{y=1-\frac{1}{2} x}[-16 x-31 y+48] d y d x \\
& \vdots \\
& =27
\end{aligned}
$$

Units: maybe $\frac{m^{3}}{\mathrm{sec}}$?

Note 1: We require that \vec{n} be continuous over S, except on the boundary (ie,, S is arientable).
Note 2: We assume 5 has 2 sides (here: top, bottom). The Mobius strip is 1 -sided and is not orientable. see p. 1003

We can parameterize such a surface:

$$
\begin{aligned}
& \vec{r}(u, v)=\langle(4-v \sin u) \cos (2 u), \\
&(4-v \sin u) \sin (2 u), \\
&v \cos u\rangle \\
& 0 \leq u \leq \pi,-1 \leq v \leq 1
\end{aligned}
$$

Note 3: If 5 is closed, we have outer and inner normals.

If $<0 \Rightarrow \quad \sin k$
If $=0 \Rightarrow \quad$ neither

$$
\text { Flux }\left(\Theta^{\text {upper }}\right)+\text { Flux }\left(Q_{\text {laver }}\right)
$$

A general advanced method can employ spherical coords. directly.
18.6: DIVERGENCE THEOREM'S ${ }^{\text {(or Giicovered via electrostatics }}$ also named after Carl Gauss (German mather. "., 1777-1855) Michel Ostrogradsky (Russian mather, 1801-61)

Often better than 18.5 for closed surfaces!
$\ln 18.5$,

Let \int be a closed surface bounding a $3 D$ region, Q. Let \vec{n} be the unit outer normal.
Let \vec{F} have cont. $P D_{5}$ on Q.
Then,

$$
\begin{equation*}
\underbrace{\int_{\vec{F}} \cdot \vec{n} d S}_{\substack{\int_{S} \text { flux of } \vec{F} \\ \text { across } S}}=\iiint_{Q}(\operatorname{div} \vec{F}) d V \tag{3}
\end{equation*}
$$

Sample Units for Right -Hand Side

Note 1: (20) F lux $=\oint_{c} \vec{F} \cdot \vec{N} d s=\iint(\operatorname{div} \vec{F}) d A$ by Green's

Note 2:

Actually, the idea of $\left[\mathrm{div} \mathrm{F}_{\mathrm{F}} \rho\right.$ $\substack{\text { cones } \\ \text { form } \\ 18.6}$
\vec{F} vectors

Here, $\operatorname{div} \vec{F}>0$ throughout Q
\Rightarrow flux across $S>0$
\Rightarrow Source in Q

Ex (\#8)
Find the flux of $\vec{F}(x, y, z)=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$ through S, where S is the surface of the region between the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$ and between the planes $z=-1$ and $z=2$.

Sol'n

$$
\begin{aligned}
\text { Flux } & =\iint \vec{F} \cdot \vec{n} d S \\
& =\iiint_{Q}(\operatorname{div} \vec{F}) d V \\
\operatorname{div} \vec{F} & =\frac{\partial}{\partial x}\left(x y^{2}\right)+\frac{\partial}{\partial y}\left(y z^{2}\right)+\frac{\partial}{\partial z}\left(z x^{2}\right) \\
& =y^{2}+z^{2}+x^{2} \\
& =\underbrace{x^{2}+\operatorname{oords} .}_{=r^{2} \operatorname{in}\left(y \cdot y^{2}+z^{2}\right.} \\
& =r^{2}+z^{2} \\
& =\iiint\left(r^{2}+z^{2}\right) r d r d \theta d z
\end{aligned}
$$

$R_{x y}$;

Note
toilet paper roll

$$
\begin{aligned}
& R_{x y}^{R y} \\
& \begin{aligned}
&=\int_{\theta=0}^{\theta=2 \pi} \int_{r=2}^{r=3}\left[\int_{z=-1}^{z=2}\left(r^{2}+z^{2}\right) r d z\right] d r d \theta \\
&=\int_{z=-1}^{z=2}\left(r^{3}+r z^{2}\right) d z
\end{aligned} \\
& =\left[r^{3} z+r\left(\frac{z^{3}}{3}\right)\right]_{z=-1}^{z=2} \\
& =\left(\left[2 r^{3}+\frac{8}{3} r\right]-\left[-r^{3}-\frac{1}{3} r\right]\right) \\
& =\left(3 r^{3}+3 r\right) \\
& =3\left(r^{3}+r\right) \\
& =\left[\int_{0}^{2 \pi} d \theta\right]\left[\int_{2}^{3} 3\left(r^{3}+r\right) d r\right] \\
& =2 \pi\left[3\left(\frac{r^{4}}{4}+\frac{r^{2}}{2}\right)\right]_{2}^{3} \\
& =6 \pi(\left[\frac{8}{4}+\frac{9}{2}\right]-\underbrace{[4+2]}_{=6}) \\
& =6 \pi\left(\frac{81+18-24}{4}\right) \\
& =6 \pi\left(\frac{35}{4}\right) \\
& =\frac{225 \pi}{2} \text { (flux units) }
\end{aligned}
$$

Why Does the Theorem Work?
Roughly break Q into cubes.

Again, FTC idea hereboundary!! same flaw or as Green, Shoes,
ATLI. ATLI.
larson (ed $_{1054} \rightarrow$ Extension

Stewart 1133
shed 67
Used The. to
prove
pornuple

$$
\begin{aligned}
& \iiint_{Q}(\operatorname{div} \vec{F}) d V \\
= & \iint_{S_{1}} \vec{F} \cdot \vec{n}_{1} d S+\iint_{S_{2}} \vec{F} \cdot\left(-\vec{n}_{2}\right) d S
\end{aligned}
$$ will be at the boundary, S.

again, FTC idea here
only net change of trow throughout Q

- 18.7: STOKES's IHEOREM ("Green in 30")
published in 1854 by George Stokes (hishy, mathem. physicist, 1819-1903). Lord Kelvin also key in both thms.; wate letter to Stakes in 1850 .

Stokes explains "paddlewheel" interpretation for curl. (18.1.5) 18.7 .2
Ex (\#6)
If $\vec{F}(x, y, z)=\langle y z, x y, x z\rangle$, and $($ is the square with vertices $(0,0,2),(1,0,2),(1,1,2)$ and $(0,1,2)$, use Stokes' theorem to evaluate $\phi_{c} \overrightarrow{F \cdot d \vec{r}}$.

Without Stokes

With Stokes

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\operatorname{cur} \mid \vec{F}} & =\left|\begin{array}{ccc}
\frac{\vec{i}}{\partial x} & \vec{j} & \vec{b} \\
\partial y & \frac{\partial}{\partial z} \\
y z & x y & x z
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y}(x z)-\frac{\partial}{\partial z}(x y),-\left[\frac{\partial}{\partial x}(x z)-\frac{\partial}{\partial z}(y z)\right], \frac{\partial}{\partial x}(x y)-\frac{\partial}{\partial y}(y z)\right\rangle \\
& =\langle 0-0,-[z-y], y-z\rangle \\
& =\langle 0, y-z, y-z\rangle
\end{aligned}
$$

flies on the graph of $z=2$.

$$
\begin{aligned}
& \underbrace{z-2}_{g(x, y, z)}=0 \\
& \vec{\nabla} g(x, y, z)=\langle 0,0,1\rangle \quad(=\vec{k})
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{c} \vec{F} \cdot d \vec{r}=\iint_{B_{x y}}(\overrightarrow{\operatorname{curl} \mid} \vec{F}) \cdot \vec{\nabla} g d A \\
& =\iint_{R_{x y}}\langle 0, y-z, y-z\rangle \cdot\langle 0,0,1\rangle d A \\
& =\iint_{R_{x y}}(y-z) d A \\
& =\int_{0}^{1} \int_{0}^{1}(y-2) d x d y \\
& \text { we end up with } \\
& \text { Green's Tum. } \\
& \text { Can you show this? } \\
& =\underbrace{\left[\int_{0}^{1} d x\right]}_{=1}]\left[\int_{0}^{1}(y-2) d y\right] \\
& =\left[\frac{y^{2}}{2}-2 y\right]_{0}^{1} \\
& =\left[\frac{(1)^{2}}{2}-2(1)\right]-[0] \\
& =-\frac{3}{2}
\end{aligned}
$$

(Typed in review:)
When is \vec{F} Conservative in \mathbb{R}^{3} ? Equivalent statements:
In a connected region D (in which \vec{F} is cont.)... "in one piece"

replace
(4a) \rightarrow (46) $\overrightarrow{\text { curl }} \vec{F}=\overrightarrow{0}$ throughout D (ie., $\vec{F}_{\vec{A}}$ is inrotational) if $\vec{F}=\langle M, N, P\rangle$ is "nice."
Note: $\int_{c} \vec{F} \cdot d \vec{r}=\int_{c} M d x+N d y+P d z$
If we start with (46), then we require that D be simply connected,
'different idea
from \mathbb{R}^{2} case
See pp. 1017-8.
This is s.c.:

A donut (torus) is not.
Schey ${ }^{3 e d} 100$ There ere simple closed curves in it that don't have capping surfaces.

Note (46) is a very natural extension of (ta) into \mathbb{R}^{3} !!

$$
\begin{aligned}
\overrightarrow{\text { curl }} \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & \hat{N} & P
\end{array}\right| \\
& =\left\langle\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z},-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right), \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right\rangle \\
& =\left\langle\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}, \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}, \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right\rangle
\end{aligned}
$$

Observe:

$$
\overrightarrow{\text { curl }} \vec{F}=\overrightarrow{0} \Longleftrightarrow \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \text {, and } \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
$$

from (ta) for \mathbb{R}^{2} :"

A/50:
If $\vec{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ is "nice " in \mathbb{R}^{2}, we can $g o$ to the \mathbb{R}^{3} case by writing:

$$
\vec{F}(x, y)=\langle M(x, y), N(x, y), 0\rangle
$$

Then, curl $\vec{f}=\left\langle 0,0, \frac{\frac{\partial N}{\partial x}-\frac{z M}{\partial y}}{\text { "scalar cu }^{\text {cu }}}\right.$
This is $\overrightarrow{0} \Leftrightarrow \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$

ADDITIONAL NOTES AND REVISIONS

SECTION 18.6: DIVERGENCE (GAUSS'S) THEOREM

Instead of doing my Example in my notes (\#8), I will do the following Example:

Example

Find the flux of $\mathbf{F}(x, y, z)=\left\langle 2 x, x^{2} z^{3}, 5 z\right\rangle$ through any sphere S of radius 4.

Solution

$$
\begin{aligned}
& \text { Flux }=\iint_{S} \mathbf{F} \bullet \mathbf{n} d S=\iiint_{Q}(\operatorname{div} \mathbf{F}) d V, \text { where } \\
& \begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial}{\partial x}(2 x)+\frac{\partial}{\partial y}\left(x^{2} z^{3}\right)+\frac{\partial}{\partial z}(5 z) \\
& =2+0+5 \\
& =7
\end{aligned}
\end{aligned}
$$

and Q is the region bounded by S.

$$
\begin{aligned}
\text { Flux } & =\iiint_{Q} 7 d V \\
& =7 \iiint_{Q} d V \\
& =7(\text { Volume of } Q) \\
& =7\left(\frac{4}{3} \pi(4)^{3}\right)
\end{aligned}
$$

$$
\text { since the volume of a sphere of radius } r \text { is } \frac{4}{3} \pi r^{3}
$$

$$
=7\left(\frac{256 \pi}{3}\right)
$$

$$
=\frac{1792 \pi}{3}
$$

SECTION 18.7: STOKES'S THEOREM

I will skip my Example (\#6).
I may show in class why Green's Theorem is merely a special case of Stokes's Theorem.

We will make the usual assumptions for Stokes's Theorem.
According to the theorem,

$$
\text { Work } W=\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{S}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{n} d S
$$

If S is a region of the $x y$-plane, we can call it R, and we use $\mathbf{n}=\mathbf{k}$:

$$
\text { Work } W=\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{R}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{k} d A
$$

This is called the vector form of Green's Theorem. Why?
Let $\mathbf{F}(x, y, 0)=\langle M(x, y), N(x, y), 0\rangle$.
You will find that $(\operatorname{curl} \mathbf{F}) \bullet \mathbf{k}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}$.
We then have:

$$
\text { Work } \begin{aligned}
W & =\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{R}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{k} d A \\
& =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
\end{aligned}
$$

The last expression should look familiar!

"COMING FULL CIRCLE" IN CALCULUS

The Generalized Stokes's Theorem covers all of the major vector calculus theorems in this chapter, as well as the classic Fundamental Theorem of Calculus (FTC) from Calculus I.

What did the FTC say?
If f is integrable on the interval $[a, b]$ with antiderivative F on that interval,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =[F(x)]_{a}^{b} \\
& =F(b)-F(a)
\end{aligned}
$$

The FTC relates an integral over an interval to information at the endpoints (the "boundary") of that interval.

In Chapter 18, we related a higher-dimensional integral over a region to a lower-dimensional integral over the boundary of the region.

Calculus III is a very natural extension of Calculus I!!

