REVIEW: CH. 18

Here, we deal with Cartesian coordinates. (Schey and Marsden discuss other systems.)

VECTOR FIELDS (18.1)

We say a scalar function f is "nice" if its $1^{\text {st }}$-order partial derivatives are continuous (and, therefore, f itself is) "where we care." A vector field \mathbf{F} is "nice" if its components are nice.
$\left.\mathbf{F}\right|_{A}$ is the vector associated with point A.

GRAD, CURL, AND DIV (18.1)

The del (or nabla) operator $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \ldots\right\rangle$
$\operatorname{grad} f=\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \ldots\right\rangle$
(See Sections 16.6 and 16.7 for more on gradients.)
$\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|$
where $\mathbf{F}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$ is a vector field in \mathbb{R}^{3}.
$[\operatorname{curl} \mathbf{F}]_{A}$ is a vector whose \ldots
... direction indicates axis of rotation of field near P (use right-hand rule);
... length indicates strength of rotational effect.
These properties are justified by Stokes's Theorem in Section 18.7.
$\operatorname{div} \mathbf{F}=\nabla \bullet \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \ldots\right\rangle \bullet\langle M, N, \ldots\rangle=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\ldots$
where $\mathbf{F}(x, y, \ldots)=\langle M(x, y, \ldots), N(x, y, \ldots), \ldots\rangle$ is a vector field in \mathbb{R}^{n}.
$[\operatorname{div} \mathbf{F}]_{A}$ is a scalar:
If this is negative, then there is a sink at A.
If this is positive, then there is a source at A.
(Think: Alphabetical order coincides with numerical order. Also, it measures the tendency of a fluid to diverge from A.)

If this is 0 , then A has neither.
These properties are justified by the Divergence (or Gauss's) Theorem in Section 18.6.

Warning: Unlike grad and curl, div actually yields a scalar function, not a vectorvalued function.

Interesting Identities

$\operatorname{div}(\operatorname{curl} \mathbf{F})=0$, where \mathbf{F} is in \mathbb{R}^{3}
$\operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$, where f is a function of x, y, and z

Technical Note: We assume that f and the components of \mathbf{F} have continuous $2^{\text {nd }}$-order partial derivatives.

LINE / PATH INTEGRALS (18.2)

We will integrate along a piecewise-smooth ("ps") path C.
A ps path has no breaks, corners, cusps, or backtracks.
Arrowheads indicate orientation along the path.
Here, we will focus on formulas used for the 2D $x y$-plane.
The formulas below are naturally extended to the 3D $x y z$ case.
Let's say C is parameterized by: $\mathbf{r}(t)=\langle x(t), y(t)\rangle$

We may then rewrite problems in terms of t alone instead of both x and y.
Technical Note: The smoothness condition requires that the tangent VVF $\mathbf{r}^{\prime}(t)$ be non- $\mathbf{0}$ along the path (except possibly at endpoints) and continuous along the path. For ps curves, replace "path" with "pieces of the path."
$d s$, the differential of arc length, can be expressed in many ways:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d y)^{2}} \quad \quad(\text { from Pythagorean Theorem }) \\
& =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad(\text { if } t \text { is increasing, and, therefore, } d t>0)
\end{aligned}
$$

Warning: For now, let's say we are required to parameterize paths (or pieces of paths) in such a way that t is increasing consistently with the orientation. Otherwise, we replace $d t$ with $|d t|$ or $-d t$ in these formulas.

Because of this issue, we typically avoid using something like \int_{2}^{1} in our initial formulas (though they may appear after using, say, u-substitutions); we would want to parameterize so that the higher number is always on top. This requirement will be removed later on, when we deal with integrals involving vector fields.

Recall that $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, so $\mathbf{r}^{\prime}(t)=\mathbf{v}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$, and we have:

$$
\begin{aligned}
d s & =\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\|\mathbf{v}(t)\| d t
\end{aligned}
$$

"Infinitesimal" Idea: $($ distance covered $)=($ speed $) \times($ change in time $)$

Line / Path Integral: $\int_{C} f(x, y) d s$

Examples / Applications

Lateral Surface Area

Case: f gives the height of a "wall" built upon C.
We require: $f(x, y) \geq 0$ on C.

Arc Length of C

$$
\begin{aligned}
& \text { Case: } f(x, y)=1 \\
& L=\int_{C} d s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

where $t=a$ corresponds to the initial endpoint of C,
$t=b$ corresponds to the terminal endpoint of C, and $a<b$.

Mass of C

Case: $f(x, y)=\delta(x, y)$, linear mass density

$$
m=\int_{C} \delta(x, y) d s
$$

There are various acceptable ways to smoothly parameterize [pieces of] C. Know how to parameterize pieces of circles, ellipses, lines, etc.

A Work Integral as a Line Integral of a ["Nice"] Vector Field, F

Let $W=$ the work done by \mathbf{F} on a particle moving along C (in the direction of orientation). Think: How much does \mathbf{F} help out?
$W=\int_{C} \mathbf{F} \bullet \mathbf{T} d s$

Note: $\mathbf{F} \bullet \mathbf{T}$ is a scalar function representing the tangential component of \mathbf{F} along C. It may be considered a very special case of $f(x, y)$.

Note (on the parameterization of the motion of the particle): The particle's speed is still irrelevant to the value of W, but reversing the orientation (meaning that we replace C with $-C$) changes the sign of W (if it is nonzero):

$$
\int_{C} \mathbf{F} \bullet \mathbf{T} d s=-\int_{-C} \mathbf{F} \bullet \mathbf{T} d s
$$

This is because \mathbf{T} in the second integral is actually $-(\mathbf{T}$ in the first integral), because the orientation is reversed. It is convenient (though somewhat sloppy) to retain the \mathbf{T} notation.

Surprise: In these work problems (and the like), something like \int_{2}^{1} may be permitted in our initial formulas, so long as \mathbf{T} is directed appropriately. This is a change from before.

We did not encounter this sign flip in the previously mentioned surface area, arc length, mass problems, and the like, which makes geometric sense. For those problems:

$$
\int_{C} f(x, y) d s=\int_{-C} f(x, y) d s
$$

Technical Note: Remember that, when $d s$ is unraveled in those problems, we may need to use $|d t|$, which would equal $-d t$ if t is decreasing and, thus, $d t<0$.

Different Ways of Expressing a Work Integral

$$
\begin{aligned}
& W=\int_{C} \mathbf{F} \bullet \mathbf{T} d s \\
& W=\int_{C} \mathbf{F} \bullet \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\| \mathbf{r}^{\prime}(t) \| d t} \\
& W=\int_{C} \mathbf{F} \bullet \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

The above may be the best formula if \mathbf{F} and \mathbf{r} are given in terms of t, in which case \mathbf{F} may only be known for points along C.

Let's now play with the notation: $\mathbf{r}^{\prime}(t) d t=\frac{d \mathbf{r}}{d t} d t=d \mathbf{r}$

$$
W=\int_{C} \mathbf{F} \bullet d \mathbf{r}
$$

The above is our "shortest" formula.
Let's say we have:

$$
\begin{aligned}
& \qquad \mathbf{F}=\langle M(x, y), N(x, y)\rangle, \text { continuous in a region containing } C \\
& d \mathbf{r}=\langle d x, d y\rangle \\
& W=\int_{C}\langle M(x, y), N(x, y)\rangle \bullet\langle d x, d y\rangle \\
& W=\int_{C} M d x+N d y
\end{aligned}
$$

This last form, differential form, is often used in problems.
It is OK to have something like \int_{2}^{1} in your initial formulas.
For example, in the second formula, if t is decreasing, then we may want to replace $d t$ with $-d t$. However, $\mathbf{r}^{\prime}(t)$ would also be replaced by $-\mathbf{r}^{\prime}(t)$, so we have a "double negative" that preserves the correctness of that formula.

Sections 18.3, 18.4, and 18.7 offer shortcuts for computing W in special cases.

INDEPENDENCE OF PATH (IP) (18.3)

Throughout Ch.18, we assume that D is a connected (i.e., "one-piece") region in which \mathbf{F} is continuous and that C is a ps path in D.

What does it mean to have IP for \mathbf{F} in D ?
The value of $W=\int_{C} \mathbf{F} \bullet d \mathbf{r}$ is the same for any ps path in D that has the same initial point (A) and terminal point (B) as C does. We can then write:

$$
W=\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{A}^{B} \mathbf{F} \bullet d \mathbf{r}
$$

To compute W, we can then:

- Choose an "easier" path in D and use 18.2 methods, or ...
- Find a potential function f (such that $\mathbf{F}=\nabla f$) and apply the Fundamental Theorem for Line Integrals (FTLI):

$$
W=\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{A}^{B} \mathbf{F} \bullet d \mathbf{r}=[f]_{A}^{B}=\left.f\right|_{B}-\left.f\right|_{A}
$$

- If C is a closed curve, then we can make $A=B$, and we have:

$$
W=\int_{C} \mathbf{F} \bullet d \mathbf{r}=0
$$

WHEN IS F CONSERVATIVE? EQUIVALENT STATEMENTS (18.1 / 18.3 / 18.7):

In a connected region D (in which \mathbf{F} is continuous) ...

1) \mathbf{F} is conservative (i.e., $\mathbf{F}=\nabla f$ for some scalar potential function f)
2) We have IP: $\int_{C} \mathbf{F} \bullet d \mathbf{r}$
3) $\int_{C} \mathbf{F} \bullet d \mathbf{r}=0$ for $\underline{\text { every }}$ simple closed curve C in D

A simple closed curve only self-intersects at one point, which is both its initial point (A) and its terminal point (B).

4a) $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$ throughout $D\left(\right.$ if \mathbf{F} is "nice" in $\left.\mathbb{R}^{2}\right)$
where $\mathbf{F}=\langle M, N\rangle$, in which case:

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{C} M d x+N d y
$$

If we start with statement 4 a), then we require that D be simply connected, meaning it is in "one piece" and has no holes.

4b) curl $\mathbf{F}=\mathbf{0}$ throughout D (if \mathbf{F} is "nice" in \mathbb{R}^{3})
In other words, \mathbf{F} is $\underline{\text { irrotational [in a local sense]. }}$
If we start with statement 4b), then we require that D be simply connected. See pp.1017-8 in Swokowski and my Notes 18.7.4 for a definition of simply connected regions in \mathbb{R}^{3}.

You may consider 4a) to be a special case of 4 b) in which $\mathbf{F}(x, y)=\langle M(x, y), N(x, y), 0\rangle$.

Note: Inverse square fields such as those used to study gravity and electromagnetism are conservative. (See my Notes 18.1.8)

GREEN'S THEOREM (18.4)

Assume:

We are in \mathbb{R}^{2}.
C is a ps simple closed curve that forms the boundary of R, which is a closed subset of an open region D.
C is oriented in the positive direction - this is indicated by \oint_{C} - meaning that R is always on the left as we look down on the $x y$-plane and travel along C in this direction.

$$
\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle \text { in } \mathbb{R}^{2} \text {, where } M \text { and } N \text { are "nice" in } D .
$$

Then,

$$
\begin{aligned}
W= & \oint_{C} \mathbf{F} \bullet d \mathbf{r}=\oint_{C} M d x+N d y \text { equals, by Green's Theorem, } \\
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
\end{aligned}
$$

In fact,
Area of $R=\frac{1}{2} \oint_{C}-y d x+x d y=\oint_{C}-y d x=\oint_{C} x d y$
It may be easier to remember: Area of $R=\frac{1}{2} \oint_{C} x d y-y d x$
If R is not simply connected (i.e., it has holes), then try slitting R. Make sure orientations remain positive.

SURFACE INTEGRALS (18.5)

Assume: f is "nice" (i.e., is continuous and has continuous $1^{\text {st }}$-order partial derivatives "where we care.")

Let S be the graph of $z=f(x, y)$. It corresponds to a "projection region" $R_{x y}$ in the $x y$-plane. We have analogous formulas when S is the graph of $y=f(x, z)$ or of $x=f(y, z)$.

You may need to take a given equation and solve for z, for example.
$\underline{\text { Surface Area of } S}=\iint_{S} d S$

$$
=\iint_{R_{x y}} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

$$
\begin{aligned}
\underline{\text { Mass of } S} & =\iint_{S} \underbrace{\delta(x, y, z)}_{\begin{array}{c}
\text { Area mass } \\
\text { density }
\end{array}} d S \\
& =\iint_{R_{x y}} \delta(x, y, f(x, y)) \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
\end{aligned}
$$

Flux (Flow) of a Vector Field, F, across S :

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \bullet \mathbf{n} d S, \text { where } \\
& \qquad \quad g(x, y, z)=z-f(x, y)
\end{aligned}
$$

$$
\text { (Observe that } z=f(x, y) \Leftrightarrow \underbrace{z-f(x, y)}_{g(x, y, z)}=0 \text {, so } S \text { is a level surface of } g \text {) }
$$

and
$\mathbf{n}=\frac{\nabla g}{\|\nabla g\|}=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}}$, the upper unit normal to S.

Note: $\mathbf{F} \bullet \mathbf{n}$ is a scalar function representing the normal component of \mathbf{F} as we sweep over S.

Note: If S is a closed surface, we take the unit outer normal.

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S & =\iint_{R_{x y}} \mathbf{F} \bullet \frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A \\
& =\iint_{R_{x y}} \mathbf{F} \bullet \nabla g d A
\end{aligned}
$$

We often need to replace z with $f(x, y)$.

DIVERGENCE (OR GAUSS'S) THEOREM (18.6)

This can help us compute the flux across a closed surface.
Let S be a closed surface bounding a 3D region Q.
Let \mathbf{n} be the unit outer normal to S.
Let \mathbf{F} be a vector field in \mathbb{R}^{3} that is "nice" throughout Q.
Then,

$$
\text { Flux }=\iint_{S} \mathbf{F} \bullet \mathbf{n} d S=\iiint_{Q}(\operatorname{div} \mathbf{F}) d V
$$

This leads to the interpretation of div in terms of sinks and sources on Quiz 5 - R2.
Note: In 2D, by Green's Theorem, if C is the kind of simple closed curve described in Green's Theorem, then:

$$
\text { Flux }=\oint_{C} \mathbf{F} \bullet \mathbf{N} d s=\iint_{R}(\operatorname{div} \mathbf{F}) d A
$$

Note: This can be extended to regions with holes inside, provided \mathbf{n} is always chosen correctly.

STOKES'S THEOREM (18.7)

This can help us compute a work integral by using a surface integral.
Think: Green in 3D.
Assume:
S has equation $z=\underbrace{f(x, y)}_{\text {"nice" }}$ and is a capping surface for a ps simple closed curve C.
F is "nice" throughout an open region containing S.
The projection of C in the $x y$-plane, C_{1}, bounds a region R as described in Green's Theorem.

We take the positive orientation of C and the choice of the unit normal \mathbf{n} to be the ones corresponding to a "walk" in which S always lies to your left.

Then,
Work $W=\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{S}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{n} d S$
(This is the flux of curl \mathbf{F} across S.)
(This is the surface integral of the normal component of $\mathbf{c u r l} \mathbf{F}$ over S.)
If we adopt the setup in 18.5 , this equals: $\iint_{R}(\operatorname{curl} \mathbf{F}) \bullet \nabla g d A$
Given C, observe that different choices may be made for the capping surface S. ("Bubble blowing")

This leads to the "paddlewheel" interpretation of curl on Quiz 5 - R1. (See pp.1013-4 in Swokowski.)

GENERAL OBSERVATIONS AND TRICKS

When integrating, it may help to go to polar, cylindrical, or spherical coordinates.
Symmetry can be a useful tool, but make sure you can use it!
Check the integrand and the region of integration for symmetry. You may be able to rewrite an integral using " 0 "s as limits of integration.

If $f(x, y)$ is symmetric in x and y, then f_{x} and f_{y} will have analogous forms.
Green's Theorem is used to compute the work integral $\oint_{C} \mathbf{F} \bullet \mathbf{T} d s$ for a simple closed curve C, while the Divergence (Gauss's) Theorem is used to compute the flux integral $\iint_{S} \mathbf{F} \bullet \mathbf{n} d S$ for a closed surface S.

Both Green's Theorem and Stokes's Theorem allow us to use double integrals to

 compute the work integral $\oint_{C} \mathbf{F} \bullet \mathbf{T} d s$ along a simple closed curve C. However, the settings are different: \mathbb{R}^{2} vs. \mathbb{R}^{3}. Stokes's Theorem, which states:$$
\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{S}(\operatorname{curl} \mathbf{F}) \bullet \mathbf{n} d S
$$

may be viewed as a 3D extension of the " 2 D " Green's Theorem, which can be expressed in "vector form" as:

$$
\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{R}(\mathbf{c u r l} \mathbf{F}) \bullet \mathbf{k} d A .
$$

