CH.7: EIGENVALUES and EIGENUECTORS
IL: INTRO
(A) Definitions

A- nan
The scalar dedal "lambda") is an eigenvalue icel) $A \Leftrightarrow$ there exists $\vec{x} \neq \overrightarrow{0}$ such that $A \vec{x}=\lambda \vec{x}$.
\vec{x} is then an eigenvector (evec) of A corresp to λ.

Idea
If we apply

shanks if
$\lambda=\frac{1}{2}$

(B) Verifying Evals, Evens
6.1.20F Ex Verify that $\lambda=3$ is an eval of $A=\left[\begin{array}{cc}5 & -3 \\ -4 & 9\end{array}\right]$ and that $\vec{x}=(3,2)$ is a corresp, even.
Solution

$$
\begin{aligned}
A \vec{x} & =\left[\begin{array}{cc}
5 & -3 \\
-4 & 9
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
& =\left[\begin{array}{l}
9 \\
6
\end{array}\right] \\
\lambda \vec{x} & =3\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text { same } \\
& =\left[\begin{array}{l}
9 \\
6
\end{array}\right]
\end{aligned}
$$

So, $A \vec{x}=d \vec{x}$ where $d=3, \vec{x}=(3,2)$.
3 is a stretching
factor. factor.

6.16-20f Ex Is $\vec{x}=(1,-2,1)$ an evec. of

$$
A=\left[\begin{array}{lll}
3 & 6 & 7 \\
3 & 3 & 7 \\
5 & 6 & 5
\end{array}\right] \text { ? It so, find its }
$$

corresp. eval.

$$
\begin{aligned}
& A \vec{x}=\left[\begin{array}{lll}
3 & 6 & 7 \\
3 & 3 & 7 \\
5 & 6 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
-2 \\
4 \\
-2
\end{array}\right] \\
& \left(\begin{array}{c}
15 \\
\text { this a scalar muluple } \\
\\
\text { of } \vec{x}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] ? \text { yes }
\end{array}\right) \\
& =\left(\begin{array}{ll}
-2 \vec{x} & \text { or }
\end{array}\right)-\begin{array}{c}
2\left[\begin{array}{c}
1 \\
-2 \\
1 \\
\uparrow
\end{array}\right. \\
\vec{x} \text { is an evec } \\
\text { its coresp. eval } \\
\text { is }-2
\end{array}
\end{aligned}
$$

eval-evec pair
(C) Eigenspaces

If $A(n \times n)$ has an eval λ, then

$$
E_{\lambda}=\{\begin{array}{l}
\text { all } \\
\text { execs of } \lambda\} \\
\text { throw in } \overrightarrow{0}
\end{array} \underbrace{\cup\{\overrightarrow{0}\}}
$$

is the eigenspace (erase) of λ.
a subspace of \mathbb{R}^{n}
Ex
espace for $\lambda=2$

Proof: E_{λ} is a subspace of \mathbb{R}^{n}
$E_{\lambda} \neq \phi, E_{\lambda} \leq \mathbb{R}^{n}$
 Show $\vec{x}_{1}+\vec{x}_{2}$ is in \vec{t}_{λ}. (ie, $A\left(x_{1}+\vec{x}_{2}\right)=\lambda\left(\dot{x}_{1}+\vec{x}_{2} 川\right)$

$$
A\left(\vec{x}_{1}+\vec{x}_{2}\right)=A \vec{x}_{1}+A \vec{x}_{2}=\vec{x}_{1}+\lambda \vec{x}_{2}=\lambda\left(\vec{x}_{1}+\vec{x}_{2}\right)
$$

Show $\left(\vec{x}_{1}\right.$ is in E_{λ} (c is any scalar) $\left(\right.$ ire, $\left.A\left(c \vec{x}_{1}\right)\right)=\lambda(\vec{x}, \mid)$

$$
A\left(\left(\stackrel{\rightharpoonup}{x}_{1}\right)=c\left(A \vec{x}_{1}\right)=c\left(\lambda \vec{x}_{1}\right)=\lambda\left(c \vec{x}_{1}\right)\right.
$$

(D) Finding Evals, Ever
$A-n \times n$
When does $A \vec{x}=d \vec{x}$ have nontrivial soling \vec{x} (eves)?

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x} \\
\Leftrightarrow & A \vec{x}=\lambda(I \vec{x}) \quad \text { More precisely, } I=I_{n} . \\
\Leftrightarrow & \overrightarrow{0}=\lambda I \vec{x}-A \vec{x} \\
\Leftrightarrow & \text { or: } A \vec{x}-\lambda I \vec{x}=\overrightarrow{0} \\
\Leftrightarrow & \overrightarrow{0}=(\lambda I-A) \vec{x} \\
& (A-\lambda I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

When does $\underbrace{(I-A)}_{n x_{n}} \vec{x}=\overrightarrow{0}$ have nontrivial soling \vec{x} ?

How do we find evals?
Solve $\underbrace{\operatorname{det}(\lambda I-A)}_{\text {characteristic }}=0$ for λ.
polynomial
characteristic
equation
of A

How do we find the evecs corresp to λ ?
We take the nonzero solins of

$$
(\lambda I-A) \vec{x}=\overrightarrow{0}
$$

Ex. Find the evals and corresp. evecs of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.

Find evals apedy ERDS now! EROs do not necessavily
preserve evals.
Solve $|\lambda I-A|=0$

$$
\left|\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\right|=0
$$

Here, in p.amuple, youcan. and $^{\prime \prime \prime}$ tallemp abre taiding abrut
dets.

Sonethme (hody)
iearim cexf.;

vr. $|A-\lambda I|$

$$
\left|\begin{array}{cc}
\lambda-1 & -2 \\
-3 & \lambda-2
\end{array}\right|=0
$$

$$
\begin{array}{r}
(\lambda-1)(\lambda-2)-6=0 \\
\lambda^{2}-3 \lambda+2-6=0
\end{array}
$$

$$
\underbrace{\lambda^{2}-3 \lambda-4^{6}}_{\text {char. poly. }}=0
$$

of A
of A

$$
\begin{aligned}
& (\lambda-4)(\lambda+1)=0 \\
& \lambda_{1}=4, \lambda_{2}=-1
\end{aligned}
$$

Find the eves for $\lambda_{1}=4$
Find the nonzero soling of

Wart 4I It.

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
4-1 & 0-2 & 0 \\
0-3 & 4-2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
3 & -2 & 0 \\
-3 & 2 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{cc|c}
3 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \text { \&you better have a row of "0"s! } \\
& \stackrel{\operatorname{RxE}}{\sim}\left[\begin{array}{rr|r}
1 & -\frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \left\{\begin{array}{r}
x_{1}-\frac{2}{3} x_{2}=0 \\
0 \leq 0
\end{array}\right. \\
& \left\{x_{1}=\frac{2}{3} x_{2}\right. \\
& \text { Let } x_{2}=t
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}=\frac{2}{3} t \\
x_{2}=t
\end{array}\right. \\
& \vec{x}=\begin{array}{r}
t\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right], t \neq 0
\end{array} \\
& \quad(\overrightarrow{0} \text { isn't an even })
\end{aligned}
$$

Shortunt when I free var:

Find the eves for $\lambda_{2}=-1$

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
(-1) I-A & \overrightarrow{0}
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
-1-1 & 0-2 & 0 \\
0-3 & -1-2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
-3 & -3 & 0
\end{array}\right]} \\
& \stackrel{R R E}{ }\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x_{1}+x_{2}=0 \\
& \Rightarrow x_{1}=-x_{2} \\
& \text { Let } x_{2}=t \\
& \left\{\begin{array}{l}
x_{1}=-t \\
x_{2}=t
\end{array}\right.
\end{aligned}
$$

$\vec{x}=t\left[\begin{array}{c}-1 \\ 1\end{array}\right], t \neq 0$
Shortcut:
$(-1)[0]+(1)(0)]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

In general, the char. poly is $n^{\text {th }}$-degree in d.
If $n \geq 3$, I will give you the evals, unless...
(E) Triangular Matrices

Their evals are the
main diagonal entries.
EX

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
4 & -2 & 0 \\
5 & 9 & 0
\end{array}\right]
$$

is lower triangular).
Evals: 1, -2,0
Why?

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
d_{1} & & O \\
2^{2} & 0
\end{array}\right] \\
& |\lambda I-A|=\left|\begin{array}{lll}
d_{n} & d_{n} \\
\sum_{1} \lambda-d_{2} & & O
\end{array}\right|
\end{aligned}
$$

$$
\begin{gathered}
=\left(\lambda-d_{1}\right)\left(\lambda-d_{2}\right) \cdots\left(\lambda-d_{n}\right) \underline{\underline{x}+} 0 \\
\lambda=d_{1}, \lambda=d_{2}, \ldots, \lambda=d_{n}
\end{gathered}
$$

Similarly for 07
(F) More Exs.
8.1.20 Ex $\lambda=7$ is one of the evals of

$$
A=\left[\begin{array}{rrr}
7 & -4 & 4 \\
-4 & 5 & 0 \\
4 & 0 & 9
\end{array}\right]
$$

Find the evecs corresp to $\lambda=7$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
\lambda & I & -A & 0 \\
7 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
7-7 & 0-(-4) & 0 & -4 \\
0 & 0 \\
0-4 & 7-5 & 0 & -0 \\
0 & 0-0 & 7-9 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
0 & 4 & -4 & 0 \\
4 & 2 & 0 & 0 \\
-4 & 0 & -2 & 0
\end{array}\right]} \\
& \stackrel{\text { RRE }}{\sim}\left[\begin{array}{ccc|c}
1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}+\frac{1}{2} x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}=-\frac{1}{2} x_{3} \\
x_{2}=x_{3}
\end{array}\right.
\end{aligned}
$$

Let $x_{3}=t$

$$
\left\{\begin{array}{l}
x_{1}=-\frac{1}{2} t \\
x_{2}=t \\
x_{3}=t
\end{array}\right.
$$

${ }^{-1}\left[\begin{array}{c}1 \\ 0\end{array}\right]+$

(Espaces don't have to $\left.{ }^{b e} /-\operatorname{dim}!!\right)$
Ex 6 (p 386)

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & -10 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 3
\end{array}\right]
$$

Find evals (l"dgre them)
Solve $|\lambda I-A|=0$

$$
(\lambda-1)^{(2)}(\lambda-2)(\lambda-3)=0
$$

$1=1$ algebraic),
$\lambda_{1}=1$ has multiplicity,

$$
\begin{aligned}
& \lambda_{2}^{1}=2 \\
& \lambda_{3}^{2}=3
\end{aligned}
$$

The espace for $d_{1}=1$ could be

$$
\text { space or } 2 \text { - } d_{m}^{\lambda_{1}-t}
$$

When you solve

$$
\begin{aligned}
& {\left[\begin{array}{l|l|l}
(t) I-A & \overrightarrow{0}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex }\left[\begin{array}{lll}
1 & \cdots & 2 \\
& 4 & \vdots \\
0 & 4 & 7
\end{array}\right] \\
& \lambda=4 \text { has multiplicity } 3 \\
& \text { Its space can have dim. 1, dor } 3 \text {. } \\
& \text { geometric mult'y. }
\end{aligned}
$$

Anton 353 ?-alyeb-ax mulct. anvieponce $)=$
zeonerive ult Cotn'runterctistuang? chat world dim of
space space be?

MATH 254: NOTES ON 7.1

How do we find eigenvalues for large matrices?

If a matrix is upper or lower triangular, its eigenvalues are simply the entries along the main diagonal.

In Example 6 on pp.386-7, we get relatively lucky with the matrix A. Cofactor expansions can be used to expand $|\lambda I-A|$. If you exploit " 0 "s along the way, the expansion is quick and easy. It turns out that $|\lambda I-A|$ is simply the product of the diagonal entries of $\lambda I-A$. Of course, we're not always so lucky!

7.1, \#21

We will find the eigenvalues of $A=\left[\begin{array}{ccc}0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4\end{array}\right]$.
This problem is similar to Example 8 on p.389. We luck out in that the third row has a couple of " 0 "s, so we can use it as our "magic row" in our cofactor expansion.

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{ccc}
\lambda & 3 & -5 \\
4 & \lambda-4 & 10 \\
0 & 0 & \lambda-4
\end{array}\right| \\
& =+(\lambda-4)\left|\begin{array}{cc}
\lambda & 3 \\
4 & \lambda-4
\end{array}\right| \\
& =(\lambda-4)[\lambda(\lambda-4)-12] \\
& =(\lambda-4)\left(\lambda^{2}-4 \lambda-12\right) \\
& =\underbrace{(\lambda-4)(\lambda-6)(\lambda+2)}_{\text {characteristic polynomial }}
\end{aligned}
$$

The eigenvalues of A are the roots of its characteristic polynomial: 4, 6, and -2 .

SEE BACK

7.1, \#19

$$
\begin{aligned}
& \text { We will find the eigenvalues of } A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-2 & 5 & -2 \\
-6 & 6 & -3
\end{array}\right] . \\
& |\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & -2 & 2 \\
2 & \lambda-5 & 2 \\
6 & -6 & \lambda+3
\end{array}\right|
\end{aligned}
$$

We can expand along the first row.

$$
\begin{aligned}
& =+(\lambda-1)\left|\begin{array}{cc}
\lambda-5 & 2 \\
-6 & \lambda+3
\end{array}\right| \quad-(-2)\left|\begin{array}{cc}
2 & 2 \\
6 & \lambda+3
\end{array}\right|+(2)\left|\begin{array}{cc}
2 & \lambda-5 \\
6 & -6
\end{array}\right| \\
& =(\lambda-1)[(\lambda-5)(\lambda+3)-(-12)]+2[(2)(\lambda+3)-12]+2[-12-(6)(\lambda-5)] \\
& =(\lambda-1)\left[\lambda^{2}-2 \lambda-15+12\right]+2[2 \lambda+6-12]+2[-12-6 \lambda+30] \\
& =(\lambda-1)\left[\lambda^{2}-2 \lambda-3\right]
\end{aligned}+2[2 \lambda-6] \quad+2[18-6 \lambda] \quad \$
$$

Expanding this mess out and combining like terms, we get....
$=\underbrace{\lambda^{3}-3 \lambda^{2}-9 \lambda+27}_{\text {characteristic polynomial }}$

SHORT WAY

We get lucky with this polynomial, believe it or not!
Factoring by grouping works nicely here....

$$
\begin{aligned}
\lambda^{3}-3 \lambda^{2}-9 \lambda+27 & =\left(\lambda^{3}-3 \lambda^{2}\right)+(-9 \lambda+27) \\
& =\lambda^{2}(\lambda-3)-9(\lambda-3)
\end{aligned}
$$

We can now factor out $(\lambda-3)$.

$$
\begin{aligned}
& =\underbrace{\left(\lambda^{2}-9\right)}_{\text {Factor }}(\lambda-3) \\
& =(\lambda+3)(\lambda-3)(\lambda-3) \\
& =(\lambda+3)(\lambda-3)^{2}
\end{aligned}
$$

Therefore, -3 is an eigenvalue of multiplicity 1 , and 3 is an eigenvalue of multiplicity 2 (which makes a two-dimensional eigenspace possible).

LONG WAY (but more general)

Rational Zero Test, or Rational Roots Theorem

Hopefully, you saw this in Math 141 (Precalculus).
If a polynomial $a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}$ (where the " a_{i} "s are real coefficients, $a_{n} \neq 0$, and $a_{0} \neq 0$) has rational roots, those roots can be obtained from the form $\pm \frac{p}{q}$, where p is a factor of a_{0}, and q is a factor of a_{n}.

Characteristic polynomials are monic (i.e., their leading coefficient, a_{n}, is always 1), so their rational roots can be obtained from $\pm p$, where p is a factor of a_{0}, the constant term.

In our example, the characteristic polynomial is $\lambda^{3}-3 \lambda^{2}-9 \lambda+27$.
Therefore, any rational roots of this polynomial (i.e., any rational solutions to the characteristic equation $\left.\lambda^{3}-3 \lambda^{2}-9 \lambda+27=0\right)$ must be in the following list of factors of 27:

$$
\pm 1, \pm 3, \pm 9, \pm 27
$$

By trial-and-error, it turns out that 3 is a root of the polynomial (plug it in and see!) Therefore, $(\lambda-3)$ is a factor of the polynomial. We can use long or synthetic division to find the other factor.

Synthetic Division

Root $=\mathbf{3}$	1	-3	-9	27	\leftarrow List the coefficients here
	$\mathbf{1}$				\leftarrow Bring down the " 1 "

Root $=\mathbf{3}$	1	-3	-9	27	
		3			\leftarrow Multiply the "1" by the Root, 3
	$\mathbf{1}$	$\mathbf{0}$			\leftarrow Add down the column

Root $=\mathbf{3}$	1	-3	-9	27	
		3	0		\leftarrow Multiply the "0 $\mathbf{0}$ " by the Root, $\mathbf{3}$
	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{- 9}$		\leftarrow Add down the column

Root $=\mathbf{3}$	1	-3	-9	27	
		3	0	-27	\leftarrow Multiply the "-9" by the Root, 3
	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{- 9}$	0	\leftarrow Add down the column

The last " 0 " that we get is our remainder, so there is a clean factorization. The boldfaced numbers in the bottom row are the coefficients for the quadratic factor we are looking for: $\lambda^{2}+0 \lambda-9$, or simply $\lambda^{2}-9$.

$$
\begin{aligned}
\lambda^{3}-3 \lambda^{2}-9 \lambda+27 & =(\lambda-3) \underbrace{\left(\lambda^{2}-9\right)}_{\text {Factor }} \\
& \text { The Quadratic Fo } \\
& =(\lambda-3)(\lambda+3)(\lambda-3) \\
& =(\lambda-3)^{2}(\lambda+3)
\end{aligned}
$$

The Quadratic Formula could be used for "worse" quadratics.

Again, 3 is an eigenvalue of multiplicity 2, and -3 is an eigenvalue of multiplicity 1.

ZZ:DIAGONALIZATION
$A-n \times n$
(4) Definition.
A is diagonalizable (diag'e) A is similar to a diagonal matrix i.e., there exsts an invertible $n \times n$ matrix P such that $P^{-1} A P$ is diagonal.

Ex If A is diagonal, $I^{-1} A I=A$ is diagonal, so A is diag"e.
Ex Verify that A is diag'e by showing that $P^{-1} A P^{\prime}$ is diagonal.
P.450\#1

$$
A=\left[\begin{array}{cc}
2 & 1 \\
5 & -2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 1 \\
-5 & 1
\end{array}\right]
$$

mathx mult.
is assoc.

$$
\begin{aligned}
& P^{-1} A P=\frac{\left[\begin{array}{cc}
1 & 1 \\
-5 & 1
\end{array}\right]^{-1}}{\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}
1 & -1 \\
5 & 1
\end{array}\right]_{\text {spith }}^{x+i \operatorname{sinns}}} \frac{\left[\begin{array}{cc}
2 & 1 \\
5 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-5 & 1
\end{array}\right]}{\left[\begin{array}{cc}
-3 & 3 \\
15 & 3
\end{array}\right]} \\
& =\frac{1}{6}\left[\begin{array}{rr}
1 & -1 \\
5 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & 3 \\
15 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}\left[\begin{array}{cc}
-18 & 0 \\
0 & 18
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & 0 \\
0 & 3
\end{array}\right] \quad \begin{array}{l}
\text { diagonal } \\
\text { So, } A \text { is dag ' }
\end{array}
\end{aligned}
$$

evals are muantant under sim.
14 μ. 393
$\left|A I-P{ }^{-1} A P\right|$
$=\mid p-\lambda I p-p-1$ 早 $p \mid$
$=\left|P^{-1}(\lambda I-A) P\right|$
$=|P-1||A I-A||P|$
ceabsere what?
(B) Similar matrices have the same evals.

its evals are same evals on it main.
diagonal

Ex \ln (4)

$$
\begin{aligned}
& \quad\left(A=\left[\begin{array}{cc}
2 & 1 \\
5 & -2
\end{array}\right] \text { is similar to }\right) \\
& A \sim \theta=\left[\begin{array}{cc}
-3 & 0 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

-3 and 3 are the evals of D and of A
(c) When is A diagée.?
\leftrightarrow there exist n (I eves of A

If you have n LT secs in an n-dion spore, they also
(i.e., an evec-basis for \mathbb{R}^{n})
(b) How do you diagonalize A?

We need P, diagonal D such that

$$
D=P^{-1} A P
$$

(1) Find n LI evens of A;

If you can't, then A is not dialiagle.
If you can ...
(2) Let $P=\left[\begin{array}{llll}\vec{p}_{1} & \vec{p}_{2} & \cdots & \vec{p}_{n} \\ \underset{T}{l} & & 1\end{array}\right]$ cols. are the n LI execs
(3) Let $D=P^{-1} A P \quad(D, A$ similar \rightarrow same coals)

Then,

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
0 & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

order corresponds to order of execs in P
inenntwhe (E) LI Theorems
"Different espaces are (I"
Eves corresponding to different evals, form a LI set.
tach eval has its own espace, with only \vec{b} in common.

tracheal If A has n different real evals, then A is guaranteed tar ar a
erase:
loan, epact.
to be diag'e, since you can find n LI eves.
(F) Examples

Cum Test p. 435,\#11

Ex Diagonalize

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 3 & 1 \\
0 & -3 & -1
\end{array}\right]
$$

Evals are: $0,1,2$ (given).
A is 3×3. A has $n=3$ different evals, so we know A is diage,
(1) Find $n=3 \quad L I$ evecs of A

$$
d_{1}=0
$$

What are its evecs?

$$
\begin{aligned}
& {[O A-A \mid \vec{O}]} \\
& \vec{x}=t\left[\begin{array}{r}
-1 \\
-1 \\
3
\end{array}\right], t \neq 0
\end{aligned}
$$

Espace for 0 is $1 \cdot d i m$.

Canguab
uny rector shyn wector i-p eppace

Let $\vec{p}_{1}=\left[\begin{array}{l}-1 \\ -1 \\ 3\end{array}\right] \quad\left(\right.$ or $\left[\begin{array}{c}-2 \\ -2 \\ 6\end{array}\right]$, etc. $)$

$$
\begin{aligned}
& d_{2}=1 \\
& {[I I-A \mid \vec{O}]} \\
& \vec{x}=t \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\vec{p}_{2}}, t \neq 0 \\
& \lambda_{3}=2 \\
& {[2 I-A \mid \vec{O}]} \\
& \vec{x}=t \underbrace{\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]}_{\vec{p}_{3}},+\neq 0
\end{aligned}
$$

(2)

$$
\text { Let } \begin{aligned}
P & =\left[\begin{array}{lll}
\vec{p}_{1} & \vec{p}_{2} & \vec{p}_{3}
\end{array}\right] \\
& =\left[\begin{array}{rrr}
-1 & 1 & 1 \\
-1 & 0 & 1 \\
3 & 0 & -1
\end{array}\right]
\end{aligned}
$$

(3) Let $D=P^{-1} A P$

$$
\begin{aligned}
& \text { Von't even } \\
& \text { hane to fond } \\
& \begin{array}{l}
\text { P-1: in HW, } \\
\text { you:-e athed }
\end{array} \\
& \text { to verity } \\
& \text { Ifyou reader } \\
& \vec{p}_{i}^{\prime} ' \text { youmust } \\
& \text { couder dis } \\
& \begin{aligned}
D & =\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Rottom line: Give P,D

$$
\text { Ex Diagonalize } A=\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]
$$

Coincitenc: Evals are $\lambda_{1}=5, \lambda_{2}=4$
(1) Find $n=3$ LI evers of A

$$
\begin{aligned}
& \lambda_{1}=S \\
& {[\begin{array}{l}
S I-A / \overrightarrow{0}] \\
\vec{x}_{1}
\end{array}=+\underbrace{\left[\begin{array}{c}
0 \\
1 \\
0
\end{array}\right]}_{\vec{p}_{1}}+u \underbrace{\left[\begin{array}{r}
-2 \\
0
\end{array}\right]}_{\vec{p}_{2}} \text { Espace is 2-dim. }}
\end{aligned}
$$

$$
\begin{aligned}
& d_{2}=4 \\
& {[4 I-A \mid \vec{O}]} \\
& \vec{x}=+\underbrace{\left[\begin{array}{r}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]}_{\vec{p}_{3}}
\end{aligned}
$$

(2) Let $p=\left[\begin{array}{lll}\vec{p} 1 & \vec{p}_{2} & \vec{p}_{3}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
0 & -2 & -\frac{1}{2} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(3)

$$
\text { Let } \begin{aligned}
D & =P^{-1} A P \\
D & =\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

$$
\underset{\substack{\text { Cum Test } \\
\# l, 0,435}}{ } \quad \text { Ex Diagonalize } A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Only eval is 1 .
Bind $n=3$ LI evens of A

$$
\lambda_{1}=1
$$

$$
[|I-A| \stackrel{\rightharpoonup}{0}]
$$

$$
\vec{x}=\underbrace{t}_{\overrightarrow{p_{1}}}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { Just a } 1-d_{m} \text { espace! }
$$

We cot 4 get
form: CI set.

We can't get $\vec{p}_{n} \vec{p}_{3}$?! A is not diag ée.

$$
\begin{aligned}
& \text { Ex } 8(p 400) \\
& T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
& T(\vec{x})=A \vec{x} \text {, where } \\
& A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Book:B
Find a basis B^{\prime} for \mathbb{R}^{3} such that the matrix for I relative to B^{\prime} is diagonal.

You diagonalize A.
Think of
$\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ ar anons, ar fixed phurial
entries
entities

$$
P=\underbrace{\left[\begin{array}{rrr}
-1 & 1 & -1 \\
0 & -1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 1 \\
\vec{b}_{1} & \vec{b}_{2} & \vec{a}_{3} \\
\hline
\end{array}\right]}_{B^{\prime}}
$$

Let $D=P^{-1} A P_{1}$
$\vec{b}_{1} \rightarrow\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ ritanew/innew

That athens
the fact that
he frt erect
straitened b
-ta not 2
k"

$$
D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

is the matrix for 7
relative to B!

(4) Symmetic Matices

A-n x_{n}, real
A is symmetric $\Leftrightarrow A^{\top}=A$

Soous- Real Spectral Theorem
If A is Srammetric, then
(1) A is diag'e.
(An eval of mayltiplicity k will A All alg. mults. $\left.\begin{array}{l}\text { have a } k \text {-dim esplace. } \\ \text { You san tind n (I evecs.) }\end{array}\right\}=\begin{aligned} & \text { grem. mults. } \\ & \text { for all evals. }\end{aligned}$
(2) All evals of A are real.
(The set of evals is called the pectram of A.)
(B) Orthogonal Matrices
$\therefore P$ is orthogonal ($O G$)
$T 0$ find the
innerve of an $\stackrel{\text { Definition }}{\Rightarrow} P$ is invertible and $P^{-1}=P^{\top}$ - Nice property it you heed to find P^{-1} : athogonal mathis, you simply tate

We generality
ifnd't many
to mess will
See Ex 54071
$\xrightarrow{\text { Theron }}$
its column rectors form an
erthoponal set, $n x_{n}$
(pairwise) orthogonal unit vectors
WARNING: An orthogonal matrix is a square matrix with orthonormal sols.
(c) A is orthagenally diagonalizable
$\stackrel{\text { olefin }}{\longleftrightarrow}$ there exists an erthopenal matrix P such that $D=P^{\prime} A P$

$$
\text { miner diagonal }_{\text {matrix }}
$$

If F is 06 ,han
cur we
rewrite $P \rightarrow A p$?
Reminder:
to evert P,
you just take
its traayouse

$$
\left(D=P^{\top} A P\right)
$$

$\xrightarrow{\text { Theorem }} A$ is symmetric.
(0) How do you or thogonally diagonalize a (real) symmetric matrix A ?
what eire
must un e do?

Diagonalize A as usual, except you must normalize the \vec{p}_{i} 's.

Read Ex 8 (p,410)

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
-2 & 2 \\
2 & 1
\end{array}\right] \\
& \lambda_{1}=-3 \rightarrow \vec{p}_{1}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \longrightarrow \vec{u}_{1}=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right] \\
& \lambda_{2}=2 \rightarrow \vec{p}_{2}=\left[\begin{array}{c}
1 \\
2
\end{array}\right] \longrightarrow \vec{u}_{2}=\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
P & =\left[\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 / \sqrt{5} & 1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]
\end{aligned}
$$

The: If A is symmetric, evecs conesponding
to different evils are 1 , $t_{x} \tau_{\lambda_{\lambda 2}}$ to different ovals are 1. $\epsilon_{\infty} \frac{T_{\lambda_{\lambda}} J_{\lambda_{1}}, ~}{\epsilon_{1}}$

$$
\vec{u}_{1} \perp \vec{u}_{2}
$$

What if an espace has dm 22 ?

What can we
are to get
bethe

it ${ }^{\text {it a cay }}$?
to invert
your st thane
the harpopse
Bymurave
to now out

Basis $\xrightarrow{\text { Gram-xhmidt }}$ Orthonormal basis
(Not in this class, at least for a Ch. 7 problem.)
Let $D=P^{-1} A P \quad$ You don't have to work out!
$p^{T^{2}} A P$
Then, $D=\left[\begin{array}{rr}-3^{\lambda_{1}} & 0 \\ 0 & 2\end{array}\right]$

Just list the evals in a diagonal matrix like so)

