
A century-old observation concerning the distribution of

significant digits is now being used to help detect fraud.

The Difficulty of Faking Data
Theodore P. Hill

Most people have preconceived notions of randomness which often differ substantially

from true randomness. A classroom favorite is the counterintuitive fact that in a randomly-

selected group of 23 people, the probability is bigger than 50% that at least two share the

same birthday. A more serious example concerning “false-positives” in medical testing is

this: Suppose that a person is selected at random from a large population of which 1%

are drug users, and that a drug test is administered which is 98% reliable (i.e., drug users

test positive with probability 0.98, and non-users test negative with probability 0.98). The

somewhat surprising fact is that if the test result is positive, then the person tested is

nevertheless more than twice as likely to be a non-user than a user. Similar surprises

concerning unexpected properties of truly random data sets make it difficult to fabricate

numerical data successfully.

Misperceptions of Randomness

To demonstrate this to beginning students of probability, I often ask them to do the

following homework assignment the first day. They are either to flip a coin 200 times and

record the results, or merely pretend to flip a coin and fake the results. The next day I

amaze them by glancing at each student’s list and correctly separating nearly all the true

from the faked data. The fact in this case is that in a truly random sequence of 200 tosses

it is extremely likely that a run of six heads or six tails will occur (the exact probability is

somewhat complicated to calculate), but the average person trying to fake such a sequence

will rarely include runs of that length.

This is but one example of the well-documented observation that most people cannot

generate truly random numerical data. A study published in 1953 by psychologist A. Cha-

panis describes his experiment in which subjects were asked to write out long sequences of
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numbers (digits 0 through 9) in random order. His results showed that different individuals

exhibit marked preferences for certain decimal digits, and that repetitive pairs or triplets

such as 222, 333 are avoided, whereas preferred triplets usually are made up of digits all

of which are different, e.g., 653 or 231. This tendency to avoid long runs and include too

many alternations, as in my class demonstration, has been confirmed by many researchers.

Most recently it has played a role in the arguments of cognitive psychologists Gilovich,

Vallone, and Tversky that the “hot hand” in basketball is nothing more than a popular

misperception, since long streaks in truly random data are much more likely to occur than

is commonly believed.

Such misperceptions of randomness of data can be capitalized on. In the Mas-

sachusetts Numbers Game, players bet on a 4-digit number of their choice, after which

a 4-digit number is selected at random (by computer or mechanical device), and those

who had bet on the winning number share the tax-depleted pot equally. At first glance it

seems to many people that any 4-digit number is as good as any other, but a moment’s

reflection reveals that numbers such as 1776 or 1960 are probably more likely to be bet

on than numbers such as 7716 or 9061. Since all 4-digit numbers are equally likely to be

winners, it is therefore desirable to bet on numbers which very few other people choose,

since when such numbers win, their owners will not have to share the pot with many other

people. Several years after the Massachusetts Numbers Game began operating in 1976,

M.I.T. statistician H. Chernoff used newspaper announcements of the winning numbers

and payoffs to empirically determine lists of numbers with positive expected payoffs.

(His 1981 article also contained a “birthday-problem” calculation to show that the

probability of no duplication of a 4-digit number in 500 random trials is about 0.000003,

whereas an article in the Boston Globe giving an update of the Game reported that, as

was to be expected (since there are ten thousand possible numbers), none of the first 500

randomly selected four digit numbers had been repeated. In a letter to the Editor, the

Commissioner of the State Lottery corrected the original report, pointing out that there

had been a number of duplications in the short history of the game.)
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True versus Fabricated Data

Determining whether real numerical data has been fabricated or altered is often of

great importance: verifying experimental scientific data, such as medical trials, upon which

crucial decisions depend; census data which helps determine political boundaries and gov-

ernmental subsidies; and tax-return data submitted to the IRS by individuals and cor-

porations. The varied techniques used in detection of fraud or fabrication include both

deterministic and statistical methods.

One example of a deterministic method is analysis of round-off approximations. In

an article on rounding percentages in 1979 in the Journal of the American Statistical

Association, statisticians P. Diaconis and D. Freedman’s analysis of numerical data in a

well-known paper

“raises the suspicion that [the author] manipulated the data to make the rows

round properly. This suspicion is not hard to verify.” . . . “The percentage of

numbers with leading digit 7 is reported as 5.5, with a total of 335 cases. The

only proportions compatible with 5.5 are 18/335, which rounds to 5.4, or 19/335,

which rounds to 5.7. There is no proportion possible that rounds to 5.5.”

The remainder of this article will focus on statistical methods for detecting fake data,

and the general idea behind such tests is quite simple:

Identify properties of numerical data sets (of particular types) which are

(i) highly likely to occur in true data sets of that type

(ii) highly unlikely to occur in fabricated data sets of that type.

The example above of using the pattern “runs of six or longer” to detect faked data

in strings of 200 coin tosses is exactly such a test, and of course many other similar tests

are available. One of the newest currently being used is a century-old observation called

Benford’s law, or the significant-digit law.

Benford’s Law

The significant-digit law is the empirical observation that in many naturally occurring

tables of numerical data, the leading significant (non-zero) digit is not uniformly distributed
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in {1, 2, . . . , 9} as might be expected, but instead obeys the law

Prob(first significant digit = d) = log10

(
1 +

1

d

)
, d = 1, 2, . . . , 9.

Thus, this law (apparently first discovered by astronomer/mathematician S. Newcomb

in 1881) predicts that a number chosen at random has leading significant digit 1 with

probability log10 2 ∼= 0.301, leading significant digit 2 with probability log10(3/2) ∼= 0.176,

and so on monotonically down to probability 0.046 for leading digit 9. The corresponding

laws for second and higher significant digits, and their joint distributions is

Prob(D1 = d1, . . . , Dk = dk) = log10

1 +

(
k∑
i=1

di × 10k−i

)−1


for d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, 2, . . . , 9}, j > 1. This says for example, that the

probability that the first three significant digits of a number are 3, 1, 4 respectively,

P ((D1, D2, D3) = (3, 1, 4)), is equal to log10

(
1 + 1

314

)
∼= 0.0014.

This logarithmic distribution is the only distribution on the significant digits of real

numbers which is invariant under changes of scale. That is, if you calculate the probabili-

ties of particular leading significant digits (such as P ((D1, D2, D3) = (3, 1, 4)), then these

logarithmic probabilities remain unchanged when the underlying data set is multiplied by

2 or by π, or under any other change of scale (e.g., from English to metric units), and they

are the only probabilities with that invariance property. For example, if the distribution of

the significant digits of a particular data set such as stock prices is (close to) the Benford

distribution, then conversion from dollars per stock to pesos per stock will preserve the

frequencies of the significant digits (Figure 1), whereas all non-Benford distributions will

not (Figure 2).

Clearly the naive guess that the leading digits are equally likely to be one of the num-

bers {1, 2, . . . , 9} does not exhibit scale invariance, since multiplication by 2, for example,

converts all numbers starting with 5, 6, 7, 8, or 9 into numbers starting with 1. This

implies that P (D1 = 1) must equal P (D1 = 5) + P (D1 = 6) + P (D1 = 7) + P (D1 = 8)+

P (D1 = 9) for scale-invariance under multiplication by 2 to hold, which is certainly not

true if P (D1 = k) is the same for all k. (The proof that the logarithmic distribution
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is the only scale-invariant distribution on the significant digits is based on the fact that

the orbit of every point under irrational rotation on the circle is asymptotically uniformly

distributed.) The logarithmic distribution is also the only probability distribution which

is invariant under change of base, e.g., if the underlying data set is converted from base 10

to base 100 or vice versa. The formal statement and proof of this fact is somewhat deeper.

These scale- and base-invariance characterizations of the logarithmic distribution,

however clean mathematically, do not explain the widespread appearance of the distri-

bution in real data, since that simply replaces the question of “why logarithmic?” to “why

scale-invariant?”. In trying to understand the prevalence of the logarithmic distribution

in many real data sets, I noticed that tables which most closely fit the log distribution

are composite samples from various distributions. Using the scale- and base-invariance

ideas together with modern probability tools such as constructions of random measures,

it was not difficult to show that if random samples are taken from random distributions

(in a “neutral” way), then the frequencies of the leading significant digits of the com-

bined sample will always converge to Benford’s law. One possible intuitive explanation is

this. If a single distribution is picked at random, then it is certain (with probability one)

to be scale-dependent, but sampling from different distributions and combining the data

tends to neutralize the dependence on the scales, hence leading to the only scale-invariant

distribution, Benford’s law.

Empirical Evidence of Benford’s Law

In 1881, Newcomb explained that his discovery of the significant-digit law was moti-

vated by an observation that the pages of a book of logarithms were dirtiest in the beginning

and progressively cleaner throughout. In 1938 General Electric physicist F. Benford re-

discovered the law based on this same observation, and went on to spend several years

collecting data from sources as different as atomic weights, baseball statistics, numerical

data from Reader’s Digest, and areas of rivers. Newcomb’s article having been long for-

gotten, Benford’s name came to be associated with the significant-digit law. Since then

Benford’s Law has been found to be a very good fit to such varied sets as stock market

data (Dow Jones, Standard and Poor), 1990 census populations of the 3141 countries in
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the United States, and numbers appearing in newspapers (see Figure 3). Thus there is

evidence that many classes of true data sets follow Benford’s Law, and in many of those

classes such as stock market tables, census data and numbers gleaned from newspaper arti-

cles, a plausible theoretical explanation for the appearance of the logarithmic distribution

is the random-samples-from-random-distributions theorem.

Detection of Fraud Using Benford’s Law

Another class of data sets which has recently been found to be a good fit to Benford’s

law is true tax data. According to accounting Professor M. Nigrini’s 1996 article in the

Journal of the American Taxation Association, the IRS ’s own model files for the line

items “Interest Paid” and “Interest Received” indicate that the significant digits for these

items are an exceedingly close fit to Benford in true tax data (Figure 4). Nigrini has

substantial evidence that in most fabricated tax data, however, the significant digits are

not close to Benford, and his article describes a goodness-of-fit-to-Benford test to help

identify fraudulent financial data. This test is a partial negative test, in that conformity

does not necessarily imply true data, but nonconformity indicates some level of suspicion.

The Wall Street Journal (July 10, 1995) reported that the chief financial investigator

for the district attorney’s office in Brooklyn, N.Y., Mr. R. Burton,

“used [Nigrini’s] program to analyze 784 checks issued by seven companies and

found that check amounts on 103 checks didn’t conform to expected patterns [see

Figure 4]. ‘Bingo, that means fraud,’ says Mr. Burton. The district attorney has

since caught the culprits, some bookkeepers and payroll clerks, and is charging

them with theft.”

Since then, according to a recent article in the New York Times (August 4, 1998),

“The income tax agencies of several nations and several states, including

California, are using detection software based on Benford’s Law, as are a score of

large companies and accounting businesses.”
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With the current exponentially increasing availability of digital data and computing

power, the trend toward use of subtle and powerful statistical tests for detection of fraud

and other fabricated data is also certain to increase dramatically. Benford is only the

beginning.

References and Further Reading

Benford, F. (1938), “The Law of Anomalous Numbers,” Proceedings of the American Philo-
sophical Society 78, 551–572.

Chapanis, A. (1953), “Random-number Guessing Behavior,” American Psychologist 8, 332.

Chernoff, H. (1981), “How to Beat the Massachusetts Numbers Game,” Mathematical
Intelligencer 3, 166–172.

Gilovich, T., Vallone, R., and Tversky, A. (1985), “The Hot Hand in Basketball: On the
Misperception of Random Sequences,” Cognitive Psychology 17, 295–314.

Hill, T. (1996), “A Statistical Derivation of the Significant-Digit Law,” Statistical Science
10, 354–363.

Newcomb, S. (1881), “Note on the Frequency of Use of the Different Digits in Natural
Numbers,” American Journal of Mathematics 4, 39–40.

Nigrini, M. (1996), “A Taxpayer Compliance Application of Benford’s Law,” Journal of
the American Taxation Association 18, 72–91.

7



Biographical Sketch

Ted Hill is professor of mathematics at the Georgia Institute of Technology. His

education has included a bachelor’s degree from West Point, a master’s in operations

research from Stanford, a Fulbright Scholarship at Göttingen, and a Ph.D. in mathematics

from the University of California at Berkeley. Since coming to Georgia Tech, he has

also been a visiting professor at the University of Leiden, the University of Tel-Aviv, the

Free University of Amsterdam, the University of Costa Rica, the University of Göttingen,

and the Mexican Mathematics Research Center (CIMAT). His research interests include

probability and measure theory, optimal-stopping theory, fair-division problems, and limit

laws.

e-mail: hill@math.gatech.edu


