1) (28 points). A particular governor wants to know if a majority of likely voters approve of the governor. (A majority means more than 50%.) Test the claim that a majority of likely voters approve of the governor at the 0.05 significance level. **Warning**: Write percents as decimals.

Let \(p \) = the proportion of likely voters who approve of the governor.

Use these hints about the \(z \) distribution:

- a) Write the **setup** for the hypothesis test. The setup will include \(H_0 \), \(H_1 \), identifying which is the claim, and the significance level. (5 points)

- b) Is this test **two-tailed**, **right-tailed**, or **left-tailed**? (2 points)
We gather sample data. We randomly select 1000 likely voters in a poll. 537 of them approve of the governor.

• c) Find the sample proportion \hat{p}. (3 points)

• d) Verify that normal approximations are appropriate in this problem. (2 points)

• e) Compute the z test statistic for our sample and round it off to two decimal places. Show all work, as in class! (7 points)

• f) Find the corresponding P-value. (2 points)

• g) Decide whether or not to reject H_0. (2 points)

• h) Write our conclusion relative to the claim. (5 points)
2) (23 points). A pharmaceutical company makes a pill that is supposed to be 500 micrograms (mcg) by mass. The company claims that the average mass of its pills is 500 mcg. Test this claim at the 0.10 significance level. Assume that the pills (by mass) are approximately normally distributed.

Let \(\mu \) = the mean mass of pills produced by the company.

Use these hints about the \(t \) distribution on 19 degrees of freedom (df):

- a) Write the setup for the hypothesis test. The setup will include \(H_0 \), \(H_1 \), identifying which is the claim, and the significance level. (5 points)

- b) Is this test two-tailed, right-tailed, or left-tailed? (2 points)

We gather sample data. We randomly select 20 pills produced by the company. The sample mean pill mass is 495 mcg and the sample standard deviation (SD) is 18 mcg.

- c) Compute the \(t \) test statistic for our sample and round it off to three decimal places. Show all work, as in class! (6 points)
• d) Find the corresponding \textit{P-value}. (3 points)

• e) \textbf{Decide} whether or not to reject H_0. (2 points)

• f) Write our \textit{conclusion} relative to the claim. (5 points)

3) (19 points). An article on the pharmaceutical company from 2) claims that the population standard deviation (SD) of the company’s pills (by mass) is 25 mcg. Test this claim at the 0.10 significance level. Assume that the pills (by mass) are approximately normally distributed. Use the traditional (classical) method of hypothesis testing.

Let $\sigma = \text{the standard deviation (SD) of the company’s pills (by mass)}$.

Use these hints about the χ^2 distribution on 19 degrees of freedom (df):

• a) Write the \textit{setup} for the hypothesis test. The setup will include H_0, H_1, identifying which is the claim, and the significance level. (5 points)

• b) Is this test \textit{two-tailed, right-tailed, or left-tailed}? (2 points)
We gather sample data. As in 2), we randomly select 20 of the company’s pills. The sample standard deviation (SD) is 12.5 mcg.

• c) Compute the χ^2 test statistic for our sample and round it off to three decimal places. Show all work, as in class! (5 points)

• d) Decide whether or not to reject H_0. (2 points)

• e) Write our conclusion relative to the claim. (5 points)

4) (2 points). We reject a H_0 that is true. What type of error have we made? Box in one:

Type I error
Type II error

5) (21 points). According to a 2017 Gallup Poll, 51% of registered voters in California are Democrats, 30% are Republicans, and 19% are neither. Let’s assume that these proportions are correct. The student newspaper at a college wants to test the claim that the distribution of party preferences among registered voters at their college is the same as for California. Test the newspaper’s claim at the 0.05 significance level.

• a) Write the setup for the hypothesis test. The setup will include H_0, H_1, identifying which is the claim, and the significance level. (5 points)

Let p_D = the proportion of registered voters at the college who are Democrats.

Let p_R = the proportion of registered voters at the college who are Republicans.

Let p_N = the proportion of registered voters at the college who are neither.
• b) Is this test two-tailed, right-tailed, or left-tailed? (2 points)

We gather sample data. We randomly sample 200 registered voters at the college. Among those voters, 120 are Democrats, 60 are Republicans, and 20 are neither.

• c) Write the Observed (O) Table and the Expected (E) Table. Note that each of the E values is at least 5, so we may apply the methods of this Lesson. (7 points)

<table>
<thead>
<tr>
<th>Party preference</th>
<th>Observed (O) Frequencies</th>
<th>Expected (E) Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democrats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• d) The χ^2 test statistic is about 11.703. Decide whether or not to reject H_0. (2 points)

Use these hints about the χ^2 distribution on 2 degrees of freedom (df):

• e) Write our conclusion relative to the claim. (5 points)
6) (14 points). An article claims that student participation in an exam preparation program is independent of whether or not students pass the exam. Test the article’s claim at the 0.05 significance level.

- a) Write the setup for the hypothesis test. The setup will include H_0, H_1, identifying which is the claim, and the significance level. (5 points)

- b) Is this test two-tailed, right-tailed, or left-tailed? (2 points)

We gather sample data, summarized in the two-way Observed (O) Table below:

<table>
<thead>
<tr>
<th>Participation status</th>
<th>Pass the exam</th>
<th>Fail the exam</th>
<th>Exam result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students in the program</td>
<td>175</td>
<td>125</td>
<td>300</td>
</tr>
<tr>
<td>Students not in the program</td>
<td>325</td>
<td>275</td>
<td>600</td>
</tr>
<tr>
<td>↑ Participation status</td>
<td>500</td>
<td>400</td>
<td>900</td>
</tr>
</tbody>
</table>

The Expected (E) Table is below:

<table>
<thead>
<tr>
<th>Participation status</th>
<th>Pass the exam</th>
<th>Fail the exam</th>
<th>Exam result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students in the program</td>
<td>166.667</td>
<td>133.333</td>
<td>300</td>
</tr>
<tr>
<td>Students not in the program</td>
<td>333.333</td>
<td>266.667</td>
<td>600</td>
</tr>
<tr>
<td>↑ Participation status</td>
<td>500</td>
<td>400</td>
<td>900</td>
</tr>
</tbody>
</table>
• c) The χ^2 test statistic is about 1.406. We use 1 df. Decide whether or not to reject H_0. (2 points)

Use these hints about the χ^2 distribution on 1 degree of freedom (df):

• d) Write our conclusion relative to the claim. (5 points)

7) (2 points). Fill in the blank: If a regression line for sample data is given by

$\hat{y} = 40 + 10x$, then along the regression line, for every increase of 1 unit in x,

there is an increase of _____ units in y.

8) (1 point). A student scores two standard deviations above the mean on Midterm 1 in a math class. According to the principle of regression to the mean, which of the following is the most likely outcome for the student on Midterm 2 in that class? Box in one:

a) The student will score three standard deviations above the mean on Midterm 2.
b) The student will score one standard deviation above the mean on Midterm 2.
c) The student will score two standard deviations below the mean on Midterm 2.
9) (2 points). Given sample bivariate data involving two variables, \(x\) and \(y\), we obtain \(r = 0.8\) and find the corresponding least squares regression model \(\hat{y} = b_0 + b_1 x\). What proportion of the variance of \(y\) is accounted for by \(x\) and the regression model? Box in the best answer below, based on the class notes and homework:

a) 8%
 b) 16%
 c) 64%
 d) 80%
 e) 160%

10) (8 points). (Matching)
For each variable, the average is 50 and the standard deviation is 10.

For one of the graphs below, \(r = -0.90\).
For one of the graphs below, \(r = 0.00\).
For one of the graphs below, \(r = 0.80\).
For one of the graphs below, \(r = 0.95\).

Fill in the blanks:

a) \(r\) for the graph below is ______.
 b) \(r\) for the graph below is ______.

\[
\begin{array}{cc}
\text{y} & \text{y} \\
100 & 100 \\
60 & \\
40 & \\
20 & \\
0 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{y} & \text{y} \\
100 & 100 \\
60 & \\
40 & \\
20 & \\
0 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]

\[
\begin{array}{cc}
\text{x} & \text{x} \\
0 & 100 \\
20 & \\
40 & \\
60 & \\
80 & \\
100 & \\
\end{array}
\]