THE MAGIC OF PASCAL'S TRIANGLE

PASCAL'S TRIANGLE

This represents a way to write down the "early" binomial coefficients $\binom{n}{r}$ easily.

- Each row begins and ends with " 1 ". (We have a "tent" of " 1 "s.)
- Every other entry equals the sum of the two entries immediately above it.

Here it is:

$$
\begin{aligned}
& 1 \quad \text { Row 0: Contains }\binom{0}{0} \\
& 11 \quad \text { Row 1: Contains }\binom{1}{0},\binom{1}{1} \\
& 12 \begin{array}{llll}
1 & 2 & \text { Row 2: Contains }\binom{2}{0},\binom{2}{1},\binom{2}{2}, ~(3) ~
\end{array} \\
& 1331 \\
& \text { Row 3: Contains }\binom{3}{0},\binom{3}{1},\binom{3}{2},\binom{3}{3} \\
& \text { Row 4: Contains }\binom{4}{0},\binom{4}{1},\binom{4}{2},\binom{4}{3},\binom{4}{4}
\end{aligned}
$$

etc. - The "histograms" of the rows approach a bell-shaped "normal" distribution!
We can observe some basic properties of binomial coefficients:
Symmetry about the center: $\binom{n}{r}=\binom{n}{n-r}$
(The process of choosing r winners is equivalent to the process of choosing $n-r$ losers.)

The "tent" of "1"s: $\binom{n}{0}=\binom{n}{n}=1$
The "inner tent" of natural numbers: $\binom{n}{1}=\binom{n}{n-1}=n$
(There are n ways to get one winner and $n-1$ losers from a group of n people.)

THE PLINKO / PACHINKO APPROACH TO PASCAL'S TRIANGLE

In the game of Plinko on the CBS game show "The Price is Right", contestants won money by standing over a board full of pins and dropping chips. The chips then fell into bins at the bottom of the board; each bin was labeled with a dollar amount that was added to the contestant's winnings.

Now imagine a pinboard shaped like Pascal's triangle:
Player

					\leftarrow After pin is hit, the chip can move left or right.	
	1		1			\leftarrow After a pin is hit, the chip can move left or right.
1		2	1		\leftarrow After a pin is hit, the chip can move left or right.	

It turns out that the number of ways to hit a pin is equal to the number on the pin!

Example

There are 3 ways to hit the boldfaced pin labeled " 3 " above.
One way: LLR

1

A second way: LRL

1							
1		1			$\leftarrow \operatorname{Left}(\mathrm{L})$		
							\leftarrow Right (R)
1		2					
					\leftarrow Left (L)		
1	3		3				
4		6					

A third way: RLL

1

The only way to reach the " 3 " is if there are exactly one "R" and two "L"s in any order. How many ways are there to choose exactly one of the three drops to be an "R"? $\binom{3}{1}$, which the 3 represents!

Likewise, there are 6 ways to hit the " 6 " pin, because out of four drops, we need exactly two of them to be "R"s. There are $\binom{4}{2}=6$ ways to do this.

Remember the construction of Pascal's triangle:

- Each row begins and ends with "1". (We have a "tent" of "1"s.)
- Every other entry equals the sum of the two entries immediately above it.

How does the Plinko model exhibit this?
Example

There is 1 way to hit the " 1 " (all "L"s).
Then, you can move right to hit the "4".
There are 3 ways to hit the " 3 ".
Then, you can move left to hit the " 4 ".
So, there are 4 total ways to hit the "4".
Note: If you go to a science museum that has a "Plinko-type" board with numerous balls being dropped from the top-center, the bottom of the board should look like a bell curve!

Remember that Row n of Pascal's Triangle provides the coefficients for the expansion of $(a+b)^{n}$:

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} b^{n}
$$

Example

$$
(a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
$$

Here's why this expansion of $(a+b)^{3}$ is correct:
You can start by writing down 8 terms, each corresponding to a sequence of choices.

$$
\begin{aligned}
& (a+b)^{3}=\underbrace{a a a}_{a^{3}} a \quad \leftarrow\left\{\begin{array}{l}
\binom{3}{0}=1 \text { way to never } \\
\text { choose " } b^{\prime \prime}
\end{array}\right. \\
& \underbrace{+a a b+a b a+b a a}_{3 a^{2} b} \leftarrow\left\{\begin{array}{l}
\binom{3}{1}=3 \text { ways to choose " } b " \\
\text { exactly once among the } 3 \text { factors }
\end{array}\right. \\
& \underbrace{+a b b+b a b+b b a}_{3 a b^{2}} \leftarrow\left\{\begin{array}{l}
\binom{3}{2}=3 \text { ways to choose " } b " \\
\text { exactly } 2 \text { times among the } 3 \text { factors }
\end{array}\right. \\
& \underbrace{+b b b}_{b^{3}} \leftarrow\left\{\begin{array}{l}
\binom{3}{3}=1 \text { way to always } \\
\text { choose " } b^{\prime \prime}
\end{array}\right. \\
& =a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Notice that choosing the " a " or the " b " from each factor is analogous to dropping "left" or "right" at each step in our Plinko model!

