SOLUTIONS TO THE FINAL

MATH 121 – FALL 2003 – KUNIYUKI 126 POINTS TOTAL, BUT 120 POINTS = 100%

1) Approximate the area under the graph of $f(x) = \frac{1}{x}$ from a = 2 to b = 14 by finding a Left Riemann Sum using 4 rectangles of the same width. Round off to four decimal places whenever you need to round off. (14 points)

Step 1: Find Δx , the width of each rectangle.

$$\Delta x = \frac{b-a}{n} = \frac{14-2}{4} = \frac{12}{4} = 3$$

Step 2: Find the left breakpoints.

$$a = x_1 = 2$$
 $\xrightarrow{+3}$ $x_2 = 5$ $\xrightarrow{+3}$ $x_3 = 8$ $\xrightarrow{+3}$ $x_4 = 11$

Step 3: Find the Left Riemann Sum.

$$f(2) \cdot \Delta x + f(5) \cdot \Delta x + f(8) \cdot \Delta x + f(11) \cdot \Delta x$$

$$= \left(\frac{1}{2}\right)(3) + \left(\frac{1}{5}\right)(3) + \left(\frac{1}{8}\right)(3) + \left(\frac{1}{11}\right)(3)$$

$$\approx 1.5 + 0.6 + 0.375 + 0.2727$$

$$= 2.7477 \text{ square units}$$

Note: The exact value is closer to 1.9459.

2) Flubber is consumed at the rate of $f(t) = 3t^2$ tons per year, where t is the number of years since January 1, 2000. How much Flubber is consumed from January 1, 2002 to January 1, 2005? (9 points)

$$\int_{2}^{5} 3t^{2} dt = [t^{3}]_{2}^{5}$$

$$= [(5)^{3}] - [(2)^{3}]$$

$$= 125 - 8$$

$$= 117 \text{ tons}$$

3) Find the integrals. Simplify wherever possible. (50 points total)

a)
$$\int_{1}^{5} \underbrace{\left(x^{3} - 7x^{-2}\right)}_{\text{cont. on }[1,5]} dx$$
 (8 points)

You may write your final answer as a decimal.

$$= \left[\frac{x^4}{4} - 7\left(\frac{x^{-1}}{-1}\right)\right]_1^5$$

$$= \left[\frac{x^4}{4} + \frac{7}{x}\right]_1^5$$

$$= \left[\frac{(5)^4}{4} + \frac{7}{(5)}\right] - \left[\frac{(1)^4}{4} + \frac{7}{(1)}\right]$$

$$= 157.65 - 7.25$$

$$= 150.4 \text{ or } \frac{752}{5} \text{ or } 150\frac{2}{5}$$

b)
$$\int_{0}^{5} \underbrace{\frac{8e^{2x}}{\text{cont.}}} dx$$
 (7 points)
$$= \left[8 \left(\frac{e^{2x}}{2} \right) \right]_{0}^{5}$$

$$= \left[4e^{2x} \right]_{0}^{5}$$

$$= \left[4e^{2(5)} \right] - \left[4e^{2(0)} \right]$$

$$= 4e^{10} - 4e^{0}$$

$$= 4e^{10} - 4$$

c)
$$\int x^{2}(x^{3} + 9)^{7} dx$$
 (9 points)

$$u = x^{3} + 9$$

$$du = 3x^{2} dx$$

$$= \frac{1}{3} \int 3x^{2}(x^{3} + 9)^{7} dx$$

$$= \frac{1}{3} \int u^{7} du$$

$$= \frac{1}{3} \left(\frac{u^{8}}{8}\right) + C$$

$$= \frac{1}{24} u^{8} + C$$

$$= \frac{1}{24} (x^{3} + 9)^{8} + C$$

d)
$$\int \frac{5x+2}{5x^2+4x} dx$$
 (8 points)
$$u = 5x^2 + 4x$$
$$du = (10x+4) dx$$
$$= 2(5x+2) dx$$
$$= \frac{1}{2} \int \frac{2(5x+2)}{5x^2+4x} dx$$
$$= \frac{1}{2} \int \frac{du}{u}$$
$$= \frac{1}{2} \ln|u| + C$$
$$= \frac{1}{2} \ln|5x^2+4x| + C$$

e)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
 (8 points)
$$u = \sqrt{x} = x^{1/2}$$

$$du = \frac{1}{2} x^{-1/2} dx = \frac{1}{2\sqrt{x}} dx$$
$$= 2\int \frac{e^{\sqrt{x}}}{2\sqrt{x}} dx$$
$$= 2\int e^{u} du$$
$$= 2e^{u} + C$$
$$= 2e^{\sqrt{x}} + C$$

f)
$$\int_2^5 \frac{dx}{3 - 4x}$$
 (10 points)

(The integrand is continuous on [2,5].) New limits:

$$u = 3 - 4x$$

$$du = -4 dx$$

$$= -\frac{1}{4} \int_{x=2}^{x=5} \frac{-4 dx}{3 - 4x}$$

$$= -\frac{1}{4} \int_{u=-5}^{u=-17} \frac{du}{u}$$

$$= -\frac{1}{4} [\ln|u|]_{-5}^{-17}$$

$$= -\frac{1}{4} (\ln|-17| - \ln|-5|)$$

$$= -\frac{1}{4} (\ln 17 - \ln 5)$$

4) Find the average value of $f(x) = 5x^2$ on the interval [1,4]. (10 points)

$$f_{av} = \frac{\int_{a}^{b} f(x) dx}{b - a}$$

$$= \frac{\int_{1}^{4} 5x^{2} dx}{4 - 1}$$

$$= \frac{\left[5\left(\frac{x^{3}}{3}\right)\right]_{1}^{4}}{3}$$

$$= \frac{\left[\frac{5x^{3}}{3}\right]_{1}^{4}}{3}$$

$$= \frac{\left[\frac{5(4)^{3}}{3} - \frac{5(1)^{3}}{3}\right]}{3}$$

$$= \frac{\frac{320}{3} - \frac{5}{3}}{3}$$

$$= \frac{\frac{315}{3}}{3}$$

$$= \frac{105}{3}$$

$$= 35$$

5) Find the area bounded by the graphs of $y = x^2 + 2$ and y = 5 - 2x. (16 points)

We need to set up: $\int_a^b [(top) - (bottom)] dx$.

Step 1: Where are the intersection points?

Solve
$$\begin{cases} y = x^2 + 2 & \text{(parabola)} \\ y = 5 - 2x & \text{(line)} \end{cases}$$
 for x , at least.

$$x^2 + 2 = 5 - 2x$$

$$x^2 + 2x - 3 = 0$$

$$(x+3)(x-1) = 0$$

The intersection points are at x = -3 and x = 1.

Step 2: Who's on top?

Test x = 0, since 0 is between -3 and 1.

$$y = x^{2} + 2 \xrightarrow{x=0} y = 2$$

$$y = 5 - 2x \xrightarrow{x=0} y = 5$$

The graph of the second equation is on top.

Also, observe that the bounded region has to have the line on top and the [upward-opening] parabola on the bottom.

Step 3: Set up the definite integral.

$$\int_{-3}^{1} \left[(5 - 2x) - (x^{2} + 2) \right] dx$$

$$= \int_{-3}^{1} \left[5 - 2x - x^{2} - 2 \right] dx$$

$$= \int_{-3}^{1} \left[-x^{2} - 2x + 3 \right] dx$$

$$= \left[-\frac{x^{3}}{3} - x^{2} + 3x \right]_{-3}^{1}$$

$$= \left[-\frac{(1)^{3}}{3} - (1)^{2} + 3(1) \right] - \left[-\frac{(-3)^{3}}{3} - (-3)^{2} + 3(-3) \right]$$

$$= \left[-\frac{1}{3} - 1 + 3 \right] - \left[9 - 9 - 9 \right]$$

$$= \left[2 - \frac{1}{3} \right] - \left[-9 \right]$$

$$= \left[\frac{5}{3}\right] - \left[-9\right]$$

$$= \frac{5}{3} + 9$$

$$= \frac{5}{3} + \frac{27}{3}$$

$$= \frac{32}{3} \text{ or } 10\frac{2}{3}$$

Note: Here is a graph of the region of interest:

6) Find the domain of $f(x,y) = \frac{\sqrt{x}}{y}$. (3 points)

$$\left\{ \left(x,y\right) \middle| x \geq 0, y \neq 0 \right\}$$

- 7) Let $f(x,y) = \ln(3x + y^3) + xy^2$. (15 points total)
 - a) Find $f_x(x,y)$.

$$f(x,y) = \ln\left(3x + \frac{y^3}{\#}\right) + x\frac{y^2}{\#}$$

$$f_x(x,y) = \frac{1}{3x + y^3} \cdot D_x \left(3x + \frac{y^3}{\#}\right) + y^2$$

$$= \frac{1}{3x + y^3} \cdot 3 + y^2$$

$$= \frac{3}{3x + y^3} + y^2$$

b) Find $f_y(x,y)$.

$$f(x,y) = \ln\left(\frac{3x}{\#} + y^3\right) + \frac{x}{\#}y^2$$

$$f_y(x,y) = \frac{1}{3x + y^3} \cdot D_y\left(\frac{3x}{\#} + y^3\right) + x \cdot 2y$$

$$= \frac{1}{3x + y^3} \cdot 3y^2 + 2xy$$

$$= \frac{3y^2}{3x + y^3} + 2xy$$

c) Find $f_y(1,2)$.

$$f_y(1,2) = \frac{3(2)^2}{3(1) + (2)^3} + 2(1)(2)$$

$$= \frac{12}{11} + 4$$

$$= \frac{12}{11} + \frac{44}{11}$$

$$= \frac{56}{11} \text{ or } 5\frac{1}{11}$$

- 8) Let $f(x,y,z) = yz^4 xe^y$. (9 points total)
 - a) Find f(-2,3,1).

$$f(-2,3,1) = (3)(1)^{4} - (-2)e^{(3)}$$
$$= 3 + 2e^{3}$$

b) Find $f_y(x,y,z)$.

$$f(x,y,z) = y\underline{z}^{4} - \underline{x}e^{y}$$
$$f_{y}(x,y,z) = z^{4} - xe^{y}$$

c) Find $f_{yz}(x,y,z)$.

$$f_{y}(x,y,z) = z^{4} - \underbrace{xe^{y}}_{\#}$$
$$f_{yz}(x,y,z) = 4z^{3}$$