Name:

QUIZ \#1 (SECTIONS 2.1, 2.2, 2.3)

MATH 121 - FALL 2003 - KUNIYUKI
105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0 \%}$
Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers; write units where appropriate!

No notes or books allowed.

PART 1 (NO CALCULATORS!): 82 points

1) These instructions apply to questions a) through i):

Find the following limits without making a table. Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE". Box in your final answers. (16 points total)
a) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+2 x-8}$
(6 points)
b) $\lim _{x \rightarrow 2} \frac{x+3}{x-4}$
(3 points)

For problems c) through f), refer to the graph of f below.
Answer only is fine.

c) $\lim _{x \rightarrow 3^{-}} f(x)$
(1 point)
d) $\lim _{x \rightarrow 3^{+}} f(x)$
(1 point)
e) $\lim _{x \rightarrow 3} f(x)$
(1 point)
f) $\lim _{x \rightarrow 6} f(x)$
(1 point)

For problems g) through i), refer to the graph of the rational function f below. Answer only is fine.

g) $\lim _{x \rightarrow 2} f(x)$
(1 point)
h) $\lim _{x \rightarrow 5^{+}} f(x)$
(1 point)
i) $\lim _{x \rightarrow 5} f(x)$
(1 point)
2) A function f is continuous at c if and only if the following three conditions hold:

Condition 1) $f(c)$ is defined.
Condition 2) $\lim _{x \rightarrow c} f(x)$ exists.
Condition 3) $\lim _{x \rightarrow c} f(x)=f(c)$.
In the graphs below, f is not continuous at c. For each graph, indicate the first of the above three conditions $(1,2$, or 3$)$ that fails. (9 points total; 3 points each)

\qquad
3) True or False: All polynomial functions of x are continuous at all real values of x. Circle one: (2 points)

True
False
4) Let $f(x)=\frac{3 x^{2}}{(x+9)(x-6)}$. Give all x-values where f is discontinuous. (3 points)
5) Let $f(x)=x^{2}-4 x$. Find $f^{\prime}(x)$ using the limit definition of derivative. Show all steps! (15 points)
6) Let $f(x)=\frac{5}{x}$. Find $f^{\prime}(x)$ using the limit definition of derivative. Show all steps! (15 points)

Use the figure below to answer 7) and 8):

7) What is the slope of the tangent line at the point P ? Circle one: (2 points)
Positive
Zero
Negative
8) What is the slope of the tangent line at the point Q ? Circle one: (2 points)
Positive
Zero
Negative
9) If $f(x)=\frac{2}{x^{7}}-\sqrt[4]{x^{3}}+4$, find $f^{\prime}(x)$. Write your answer so that it has no negative exponents. (7 points)
10) If $f(x)=5 x^{2}-4 x+2$, find $f^{\prime}(3)$. (4 points)
11) If $f(x)=\sqrt{x}$, find $\left.\frac{d f}{d x}\right|_{x=9} .(7$ points $)$

QUIZ \#1 (SECTIONS 2.1, 2.2, 2.3)

MATH 121 - FALL 2003 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100\%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers; write units where appropriate!

No notes or books allowed.

PART 2 (USE A SCIENTIFIC CALCULATOR!): 23 points

12) A company's profit function is given by $P(x)=3 x^{2}-4 x-400$ in dollars, where x is the number of units produced and sold. Find the marginal profit when 200 units have been produced and sold, and interpret your answer. (6 points)
13) The number of people living on Elm Street is given by $f(t)=1000-0.4 t^{3}$, where t is measured in days $(0 \leq t \leq 13)$. Write units! (17 points total)
a) Find the number of people on Elm Street at $t=5$. (3 points)
b) Find the average rate of change of the number of people on Elm Street from $t=3$ to $t=8$. (8 points)
c) What is the instantaneous rate of change of the number of people on Elm Street at $t=5 ?(6$ points)
