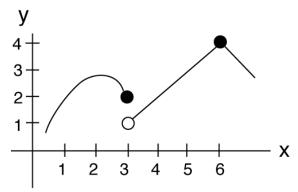
QUIZ #1 (SECTIONS 2.1, 2.2, 2.3)

MATH 121 – FALL 2003 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers; write units where appropriate!

No notes or books allowed.


PART 1 (NO CALCULATORS!): 82 points

- 1) These instructions apply to questions a) through i): Find the following limits <u>without</u> making a table. Write ∞ or -∞ when appropriate. If a limit does not exist, and ∞ and -∞ are inappropriate, write "DNE". **Box in your final answers.** (16 points total)
 - a) $\lim_{x \to 2} \frac{x-2}{x^2 + 2x 8}$ (6 points)

b)
$$\lim_{x \to 2} \frac{x+3}{x-4}$$

(3 points)

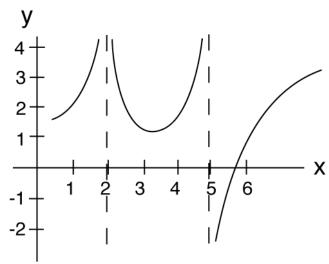
For problems c) through f), refer to the graph of f below. Answer only is fine.

c) $\lim_{x \to 3^{-}} f(x)$

(1 point)

 $d) \lim_{x \to 3^+} f(x)$

(1 point)


e) $\lim_{x \to 3} f(x)$

(1 point)

f) $\lim_{x \to 6} f(x)$

(1 point)

For problems g) through i), refer to the graph of the rational function f below. Answer only is fine.

g) $\lim_{x\to 2} f(x)$

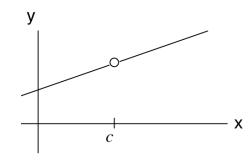
(1 point)

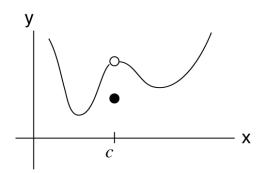
 $h) \lim_{x \to 5^+} f(x)$

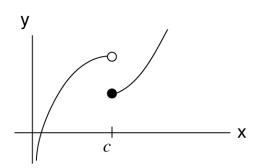
(1 point)

i) $\lim_{x \to 5} f(x)$

(1 point)


2) A function f is continuous at c if and only if the following three conditions hold:


Condition 1) f(c) is defined.

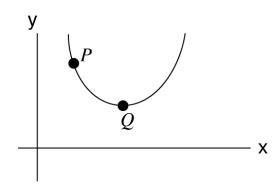

Condition 2) $\lim_{x \to c} f(x)$ exists.

Condition 3) $\lim_{x \to c} f(x) = f(c)$.

In the graphs below, f is <u>not</u> continuous at c. For each graph, indicate the <u>first</u> of the above three conditions (1, 2, or 3) that fails. (9 points total; 3 points each)

3) True or False: All polynomial functions of *x* are continuous at all real values of *x*. Circle one: (2 points)

True


False

4) Let $f(x) = \frac{3x^2}{(x+9)(x-6)}$. Give all x-values where f is discontinuous. (3 points)

5) Let $f(x) = x^2 - 4x$. Find f'(x) using the limit definition of derivative. Show all steps! (15 points)

6) Let $f(x) = \frac{5}{x}$. Find f'(x) using the limit definition of derivative. Show all steps! (15 points)

Use the figure below to answer 7) and 8):

7) What is the slope of the tangent line at the point P? Circle one: (2 points)

Positive

Zero

Negative

8) What is the slope of the tangent line at the point Q? Circle one: (2 points)

Positive

Zero

Negative

9) If $f(x) = \frac{2}{x^7} - \sqrt[4]{x^3} + 4$, find f'(x). Write your answer so that it has no negative exponents. (7 points)

10) If
$$f(x) = 5x^2 - 4x + 2$$
, find $f'(3)$. (4 points)

11) If
$$f(x) = \sqrt{x}$$
, find $\frac{df}{dx}\Big|_{x=9}$. (7 points)

QUIZ #1 (SECTIONS 2.1, 2.2, 2.3)

MATH 121 – FALL 2003 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers; write units where appropriate!

No notes or books allowed.

PART 2 (USE A SCIENTIFIC CALCULATOR!): 23 points

12) A company's profit function is given by $P(x) = 3x^2 - 4x - 400$ in dollars, where x is the number of units produced and sold. Find the marginal profit when 200 units have been produced and sold, and interpret your answer. (6 points)

- 13) The number of people living on Elm Street is given by $f(t) = 1000 0.4t^3$, where t is measured in days $(0 \le t \le 13)$. Write units! (17 points total)
 - a) Find the number of people on Elm Street at t = 5. (3 points)
 - b) Find the average rate of change of the number of people on Elm Street from t = 3 to t = 8. (8 points)

c) What is the instantaneous rate of change of the number of people on Elm Street at t = 5? (6 points)