QUIZ \#1 (SECTIONS 2.1, 2.2, 2.3) SOLUTIONS

MATH 121 - FALL 2003 - KUNIYUKI
105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0} \%$

PART 1 (NO CALCULATORS!): 82 points

1) These instructions apply to questions a) through i):

Find the following limits without making a table. Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE". Box in your final answers. (16 points total)
a) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+2 x-8}$
(6 points)

$$
=\lim _{x \rightarrow 2} \frac{x-2}{(x+4)(x-2)}
$$

We can cancel the $(x-2)$ factors.

$$
=\lim _{x \rightarrow 2} \frac{1}{x+4}
$$

Now, use direct substitution.

$$
\begin{aligned}
& =\frac{1}{(2)+4} \\
& =\frac{1}{6}
\end{aligned}
$$

b) $\lim _{x \rightarrow 2} \frac{x+3}{x-4}$
(3 points)
(Direct substitution works, since 2 is in the domain of this rational function.)

$$
\begin{aligned}
& =\frac{(2)+3}{(2)-4} \\
& =\frac{5}{-2} \\
& =-\frac{5}{2}
\end{aligned}
$$

For problems c) through f), refer to the graph of f below.
Answer only is fine.

c) $\lim _{x \rightarrow 3^{-}} f(x)$
(1 point)
d) $\lim _{x \rightarrow 3^{+}} f(x)$
$=\mathbf{2}$ (left-hand limit)
(1
$=\mathbf{1}$ (right-hand limit; it doesn't matter that the point $(3,1)$ is deleted)
e) $\lim _{x \rightarrow 3} f(x)$
(1 point)
f) $\lim _{x \rightarrow 6} f(x)$

DNE (because the left-hand and right-hand limits do not match up)

$$
=4
$$

For problems \mathbf{g}) through \mathbf{i}), refer to the graph of the rational function f below. Answer only is fine.

g) $\lim _{x \rightarrow 2} f(x)$
(1 point)
h) $\lim _{x \rightarrow 5^{+}} f(x)$
(1 point)

$$
=-\infty
$$

i) $\lim _{x \rightarrow 5} f(x)$
2) A function f is continuous at c if and only if the following three conditions hold:

Condition 1) $f(c)$ is defined.
Condition 2) $\lim _{x \rightarrow c} f(x)$ exists.
Condition 3) $\lim _{x \rightarrow c} f(x)=f(c)$.
In the graphs below, f is not continuous at c. For each graph, indicate the first of the above three conditions $(1,2$, or 3$)$ that fails. (9 points total; 3 points each)

\qquad

3

3) True or False: All polynomial functions of x are continuous at all real values of x. Circle one: (2 points)

True
False
4) Let $f(x)=\frac{3 x^{2}}{(x+9)(x-6)}$. Give all x-values where f is discontinuous. (3 points)
-9 and 6, because this rational function is continuous only on its domain.
These two values make the denominator equal to 0 , so they can't be in the domain.
5) Let $f(x)=x^{2}-4 x$. Find $f^{\prime}(x)$ using the limit definition of derivative. Show all steps! (15 points)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-4(x+h)\right]-\left[x^{2}-4 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[x^{2}+2 x h+h^{2}-4 x-4 h\right]-\left[x^{2}-4 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\overbrace{x^{2}}^{\text {Bye! }}+2 x h+h^{2} \overbrace{-4 x}^{\text {Bye! }}-4 h-\overbrace{}^{2}+4 x}{h} \overbrace{h \rightarrow 0}^{\text {Bye! }} \overbrace{h y e!}^{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-4 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\underbrace{h}_{\text {Bye! }}(2 x+h-4)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+\underbrace{h-4)}_{\rightarrow 0} \text { (Now, you can plug in } h=0 .) \\
& =\mathbf{2 x} \boldsymbol{x}-\mathbf{4}
\end{aligned}
$$

6) Let $f(x)=\frac{5}{x}$. Find $f^{\prime}(x)$ using the limit definition of derivative. Show all steps! (15 points)

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{5}{x+h}-\frac{5}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5}{x+h}-\frac{5}{x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{\underset{\text { Bye! }}{h}[\frac{-5 \overbrace{h}^{\text {Bye! }}}{x(x+h)}], ~} \\
& =\lim _{h \rightarrow 0} \frac{-5}{x(x+\underset{\rightarrow 0}{h})} \quad(\text { Now, plug in } h=0 \text {.) } \\
& \text { LCD is } x(x+h) \text {. } \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{5}{(x+h)} \cdot \frac{x}{x}-\frac{5}{x} \cdot \frac{(x+h)}{(x+h)}\right] \\
& =\frac{-5}{x(x+0)} \\
& =-\frac{5}{\boldsymbol{x}^{2}} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{5 x-5(x+h)}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\overbrace{\frac{5 x-5 x}{}-5 h}^{x(x+h)}]
\end{aligned}
$$

7) What is the slope of the tangent line at the point P ? Circle one: (2 points)
Positive Zero Negative

The tangent line at P slopes downward.
8) What is the slope of the tangent line at the point Q ? Circle one: (2 points)

$$
\begin{array}{cl}
\text { Positive } & \text { Zero } \\
& \text { The tangent line at } Q \text { is horizontal. }
\end{array}
$$

9) If $f(x)=\frac{2}{x^{7}}-\sqrt[4]{x^{3}}+4$, find $f^{\prime}(x)$. Write your answer so that it has no negative exponents. (7 points)

First, rewrite $f(x)$:

$$
\begin{aligned}
f(x) & =2 x^{-7}-x^{3 / 4}+4 \\
f^{\prime}(x) & =-14 x^{-8}-\frac{3}{4} x^{-1 / 4} \\
& =-\frac{\mathbf{1 4}}{\boldsymbol{x}^{8}}-\frac{\mathbf{3}}{\mathbf{4} \boldsymbol{x}^{1 / 4}}
\end{aligned}
$$

10) If $f(x)=5 x^{2}-4 x+2$, find $f^{\prime}(3)$. (4 points)

$$
\begin{aligned}
f^{\prime}(x) & =10 x-4 \\
f^{\prime}(3) & =10(3)-4 \\
& =\mathbf{2 6}
\end{aligned}
$$

11) If $f(x)=\sqrt{x}$, find $\left.\frac{d f}{d x}\right|_{x=9} .(7$ points $)$

$$
\begin{aligned}
f(x) & =x^{1 / 2} & \text { Then, }\left.\frac{d f}{d x}\right|_{x=9} \text { or } f^{\prime}(9) & =\frac{1}{2 \sqrt{9}} \\
& =\frac{1}{2 x^{1 / 2}} & & =\frac{1}{2(3)} \\
& =\frac{1}{2 \sqrt{x}} & & =\frac{\mathbf{1}}{\mathbf{6}}
\end{aligned}
$$

PART 2 (USE A SCIENTIFIC CALCULATOR!): 23 points

12) A company's profit function is given by $P(x)=3 x^{2}-4 x-400$ in dollars, where x is the number of units produced and sold. Find the marginal profit when 200 units have been produced and sold, and interpret your answer. (6 points)

$$
\begin{aligned}
& M P(x)=P^{\prime}(x)=6 x-4 \\
& M P(200)=P^{\prime}(200)=6(200)-4=\mathbf{1 1 9 6}
\end{aligned}
$$

When 200 units have been produced and sold, the profit is increasing by about $\$ 1196$ per unit (i.e., for each additional unit).
13) The number of people living on Elm Street is given by $f(t)=1000-0.4 t^{3}$, where t is measured in days $(0 \leq t \leq 13)$. Write units! (17 points total)
a) Find the number of people on Elm Street at $t=5$. (3 points)

$$
\begin{aligned}
f(5) & =1000-0.4(5)^{3} \\
& =\mathbf{9 5 0} \text { people }
\end{aligned}
$$

b) Find the average rate of change of the number of people on Elm Street from $t=3$ to $t=8$. (8 points)

$$
\begin{aligned}
\frac{f(8)-f(3)}{8-3} & =\frac{\left[1000-0.4(8)^{3}\right]-\left[1000-0.4(3)^{3}\right]}{5} \\
& =\frac{795.2-989.2}{5} \\
& =-38.8 \frac{\text { people }}{\text { day }}
\end{aligned}
$$

(i.e., decreasing by 38.8 people per day, on average.)

That Freddy!
c) What is the instantaneous rate of change of the number of people on Elm Street at $t=5$? (6 points)

$$
\begin{aligned}
f(t) & =1000-0.4 t^{3} \\
f^{\prime}(t) & =-1.2 t^{2} \\
f^{\prime}(5) & =-1.2(5)^{2} \\
& =-\mathbf{3 0} \frac{\text { people }}{\text { day }}
\end{aligned}
$$

(i.e., decreasing by 30 people per day.)

