OUIZ \#2 (SECTIONS 2.4, 2.5, 2.6, 2.7)
 MATH 121 - FALL 2003 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0 \%}$

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers; write units where appropriate!

No notes or books allowed.

PART 1 (USE A SCIENTIFIC CALCULATOR!): 31 points

1) The position function of a particle in inches is given by $s(t)=5 t^{3}+4 t$, where t is time in seconds. Write units! (13 points total)
a) What is the position of the particle at time $t=2$?
b) What is the velocity of the particle at time $t=2$?
c) What is the acceleration of the particle at time $t=2$?
2) A computer company's cost function is $C(x)=400 x+5000$ in dollars, where x is the number of computers produced. (18 points total)
a) Find the average cost function, $A C(x)$.
b) Find $\lim _{x \rightarrow \infty} A C(x)$.
c) Find the marginal average cost function, $M A C(x)$.
d) Evaluate $M A C(40)$ and interpret your answer.

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers; write units where appropriate!

No notes or books allowed.

PART 2 (NO CALCULATORS!): 74 points

3) Let $f(x)=\frac{x^{2}-3}{x^{3}+2}$. Find $f^{\prime}(x)$. Simplify your answer. (10 points)
4) Find $\frac{d^{2}}{d x^{2}}\left(4 x^{3}-3 x^{2}+2\right)$. (6 points $)$
5) For each of the following, find $f^{\prime}(x)$. Simplify your answer. All exponents must be positive in your final answer. Do not expand out powers; for example, don't work out $(9 x+4)^{6}$. $(36$ points total)
a) $f(x)=\sqrt[3]{x^{2}+5 x}$
(8 points)
b) $f(x)=\frac{1}{(9 x+4)^{6}}$
(8 points)
c) $f(x)=x^{3}(4 x-2)^{6}$
(8 points)
d) $f(x)=\left(7 x^{2}+3\right)^{4}(3 x-10)^{5}$ (12 points)
6) Find functions f and g such that the function represented by $\sqrt[3]{x^{2}+5 x}$ is the composition $f(g(x))$. (4 points)
7) Consider the graph of the function f below. (18 points total; 3 points each)

For each of the following, circle one. DNE means "Does Not Exist."
a) $f^{\prime}(2)$ is ...
positive zero negative DNE
b) $f^{\prime \prime}(2)$ is \ldots
positive zero negative DNE
c) $f^{\prime}(4)$ is \ldots
positive zero negative DNE
d) $f^{\prime \prime}(4)$ is ...
positive zero negative DNE
e) $f^{\prime}(5)$ is \ldots
positive zero negative DNE
f) $f^{\prime}(6)$ is \ldots
positive zero negative DNE

