QUIZ #2 (SECTIONS 2.4, 2.5, 2.6, 2.7) <u>SOLUTIONS</u>

MATH 121 – FALL 2003 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

PART 1 (USE A SCIENTIFIC CALCULATOR!): 31 points

- 1) The position function of a particle in inches is given by $s(t) = 5t^3 + 4t$, where t is time in seconds. Write units! (13 points total)
 - a) What is the position of the particle at time t = 2? (3 points)

$$s(t) = 5t^{3} + 4t$$

$$s(2) = 5(2)^{3} + 4(2)$$

$$= 5(8) + 8$$

$$= 40 + 8$$

$$= 48 \text{ inches}$$

b) What is the velocity of the particle at time t = 2? (5 points)

$$s(t) = 5t^{3} + 4t$$

$$v(t) = s'(t)$$

$$= 15t^{2} + 4$$

$$v(2) = 15(2)^{2} + 4$$

$$= 15(4) + 4$$

$$= 60 + 4$$

$$= 64 \frac{\text{inches}}{\text{second}}$$

c) What is the acceleration of the particle at time t = 2? (5 points)

$$v(t) = 15t^{2} + 4$$

$$a(t) = v'(t)$$

$$= 30t$$

$$a(2) = 30(2)$$

$$= 60 \frac{\text{inches}}{\text{second}^{2}} \text{ (or 60 inches per second)}$$

- 2) A computer company's cost function is C(x) = 400x + 5000 in dollars, where x is the number of computers produced. (18 points total)
 - a) Find the average cost function, AC(x).

$$AC(x) = \frac{C(x)}{x}$$

$$= \frac{400x + 5000}{x}$$

$$= \frac{400x}{x} + \frac{5000}{x}$$

$$= 400 + \frac{5000}{x} \quad \text{or} \quad 400 + 5000x^{-1}$$

(Various forms are appropriate.)

b) Find $\lim_{x\to\infty} AC(x)$.

$$\lim_{x \to \infty} \left(400 + \underbrace{\frac{5000}{x}}_{\to 0} \right) = 400$$

c) Find the marginal average cost function, MAC(x).

$$AC(x) = 400 + \frac{5000}{x}$$
 or $400 + 5000x^{-1}$
 $MAC(x) = D_x[AC(x)]$
 $= -5000x^{-2}$ or $-\frac{5000}{x^2}$

d) Evaluate MAC(40) and interpret your answer.

$$MAC(40) = -\frac{5000}{(40)^2}$$
$$= -3.125$$

When 40 computers have been produced, the average cost is decreasing by about \$3.125 (about \$3.13) per computer for each additional computer produced.

PART 2 (NO CALCULATORS!): 74 points

3) Let $f(x) = \frac{x^2 - 3}{x^3 + 2}$. Find f'(x). Simplify your answer. (10 points)

$$f'(x) = \frac{\text{Lo} \cdot \text{D(Hi)} - \text{Hi} \cdot \text{D(Lo)}}{\text{the square of what's below}} \qquad \text{(Quotient Rule)}$$

$$= \frac{\left(x^3 + 2\right) \cdot \left[D_x \left(x^2 - 3\right)\right] - \left(x^2 - 3\right) \cdot \left[D_x \left(x^3 + 2\right)\right]}{\left(x^3 + 2\right)^2}$$

$$= \frac{\left(x^3 + 2\right) \cdot \left(2x\right) - \left(x^2 - 3\right) \cdot \left(3x^2\right)}{\left(x^3 + 2\right)^2}$$

$$= \frac{2x^4 + 4x - \left(3x^4 - 9x^2\right)}{\left(x^3 + 2\right)^2}$$

$$= \frac{2x^4 + 4x - 3x^4 + 9x^2}{\left(x^3 + 2\right)^2}$$

$$= \frac{-x^4 + 9x^2 + 4x}{\left(x^3 + 2\right)^2}$$

You could also factor -x out of the numerator, but it does not lead to further simplification in this case.

4) Find
$$\frac{d^2}{dx^2} (4x^3 - 3x^2 + 2)$$
. (6 points)

In other words, we want to find f''(x), where $f(x) = 4x^3 - 3x^2 + 2$.

$$f'(x)$$
, or $\frac{d}{dx}(4x^3 - 3x^2 + 2) = 12x^2 - 6x$
 $f''(x)$, or $\frac{d^2}{dx^2}(4x^3 - 3x^2 + 2) = 24x - 6$

5) For each of the following, find f'(x). Simplify your answer. All exponents must be positive in your final answer. Do <u>not</u> expand out powers; for example, don't work out $(9x + 4)^6$. (36 points total)

a)
$$f(x) = \sqrt[3]{x^2 + 5x}$$
 (8 points)
 $f(x) = (x^2 + 5x)^{1/3}$
 $f'(x) = \frac{1}{3}(x^2 + 5x)^{-2/3} \cdot D_x(x^2 + 5x)$ (by the Generalized Power Rule)
 $= \frac{1}{3}(x^2 + 5x)^{-2/3}(2x + 5)$
 $= \frac{2x + 5}{3(x^2 + 5x)^{2/3}}$

b)
$$f(x) = \frac{1}{(9x+4)^6}$$
 (8 points)
 $f(x) = (9x+4)^{-6}$
 $f'(x) = -6(9x+4)^{-7} \cdot D_x(9x+4)$ (by the Generalized Power Rule)
 $= -6(9x+4)^{-7} \cdot (9)$
 $= -54(9x+4)^{-7}$
 $= -\frac{54}{(9x+4)^7}$

c)
$$f(x) = x^3 (4x-2)^6$$
 (8 points)

Overall, we have a product of functions of x (that can't be combined easily), so use the Product Rule.

$$f'(x) = [D_x(x^3)] \cdot [(4x-2)^6] + [x^3] \cdot [D_x(4x-2)^6]$$
Use the Generalized Power Rule.
$$= [3x^2] \cdot [(4x-2)^6] + [x^3] \cdot [6(4x-2)^5 \cdot 4]$$
Note: 4 is the tail, because it is $D_x(4x-2)$.
$$= 3x^2(4x-2)^6 + 24x^3(4x-2)^5$$

You could factor out $3x^2(4x-2)^5$.

d)
$$f(x) = (7x^2 + 3)^4 (3x - 10)^5$$
 (12 points)

Overall, we have a product of functions of x (that can't be combined easily), so use the Product Rule.

$$f'(x) = \underbrace{\left[D_x(7x^2 + 3)^4\right] \cdot \left[\left(3x - 10\right)^5\right] + \left[\left(7x^2 + 3\right)^4\right] \cdot \left[D_x(3x - 10)^5\right]}_{\text{Use the Generalized Power Rule.}}$$

$$= \underbrace{\left[4\left(7x^2 + 3\right)^3 \cdot \underbrace{14x}_{\text{tail}}\right] \cdot \left[\left(3x - 10\right)^5\right] + \left[\left(7x^2 + 3\right)^4\right] \cdot \left[5\left(3x - 10\right)^4 \cdot \underbrace{3}_{\text{tail}}\right]}_{\text{Note: } 14x \text{ is the first tail, because it is } D_x(7x^2 + 3).}$$

$$3 \text{ is the second tail, because it is } D_x(3x - 10).$$

$$=56x(7x^2+3)^3(3x-10)^5+15(7x^2+3)^4(3x-10)^4$$

You could factor out $(7x^2 + 3)^3 (3x - 10)^4$.

6) Find functions f and g such that the function represented by $\sqrt[3]{x^2 + 5x}$ is the composition f(g(x)). (4 points)

$$g(x)$$
 or $u = x^2 + 5x$ ("Inside")
$$f(u) = \sqrt[3]{u}$$

7) Consider the graph of the function f below. (18 points total; 3 points each)

For each of the following, circle one. DNE means "Does Not Exist."

a) f'(2) is ...

positive zero negative DNE (f is increasing at 2.)

b) f''(2) is ...

positive zero negative DNE (f is increasing at an increasing rate at 2.)

c) f'(4) is ...

positive zero negative DNE (f is increasing at 4.)

d) f''(4) is ...

positive zero **negative** DNE (f is increasing at a decreasing rate at 4.)

e) f'(5) is ...

positive zero negative **DNE** (Left-hand and right-hand derivatives are mismatched.)

f) f'(6) is ...

positive zero **negative** DNE (f is decreasing at 6.)