QUIZ \#2 (SECTIONS 2.4, 2.5, 2.6, 2.7) SOLUTIONS

PART 1 (USE A SCIENTIFIC CALCULATOR!): 31 points

1) The position function of a particle in inches is given by $s(t)=5 t^{3}+4 t$, where t is time in seconds. Write units! (13 points total)
a) What is the position of the particle at time $t=2$? (3 points)

$$
\begin{aligned}
s(t) & =5 t^{3}+4 t \\
s(2) & =5(2)^{3}+4(2) \\
& =5(8)+8 \\
& =40+8 \\
& =\mathbf{4 8} \text { inches }
\end{aligned}
$$

b) What is the velocity of the particle at time $t=2$? (5 points)

$$
\begin{aligned}
s(t) & =5 t^{3}+4 t \\
v(t) & =s^{\prime}(t) \\
& =15 t^{2}+4 \\
v(2) & =15(2)^{2}+4 \\
& =15(4)+4 \\
& =60+4 \\
& =\mathbf{6 4} \frac{\text { inches }}{\text { second }}
\end{aligned}
$$

c) What is the acceleration of the particle at time $t=2$? (5 points)

$$
\begin{aligned}
v(t) & =15 t^{2}+4 \\
a(t) & =v^{\prime}(t) \\
& =30 t \\
a(2) & =30(2) \\
& =\mathbf{6 0} \frac{\text { inches }_{\text {second }^{2}}(\text { or } \mathbf{6 0} \text { inches per second per second })}{} \text {) }
\end{aligned}
$$

2) A computer company's cost function is $C(x)=400 x+5000$ in dollars, where x is the number of computers produced. (18 points total)
a) Find the average cost function, $A C(x)$.

$$
\begin{aligned}
A C(x) & =\frac{C(x)}{x} \\
& =\frac{400 x+5000}{x} \\
& =\frac{400 x}{x}+\frac{5000}{x} \\
& =400+\frac{5000}{x} \text { or } 400+5000 x^{-1}
\end{aligned}
$$

(Various forms are appropriate.)
b) Find $\lim _{x \rightarrow \infty} A C(x)$.

$$
\lim _{x \rightarrow \infty}(400+\underbrace{\frac{5000}{x}}_{\rightarrow 0})=\mathbf{4 0 0}
$$

c) Find the marginal average cost function, $\operatorname{MAC}(x)$.

$$
\begin{aligned}
A C(x)= & 400+\frac{5000}{x} \text { or } 400+5000 x^{-1} \\
M A C(x) & =D_{x}[A C(x)] \\
& =-\mathbf{5 0 0 0} \boldsymbol{x}^{-2} \text { or }-\frac{\mathbf{5 0 0 0}}{\boldsymbol{x}^{2}}
\end{aligned}
$$

d) Evaluate $M A C(40)$ and interpret your answer.

$$
\begin{aligned}
\operatorname{MAC}(40) & =-\frac{5000}{(40)^{2}} \\
& =-3.125
\end{aligned}
$$

When 40 computers have been produced, the average cost is decreasing by about $\$ 3.125$ (about $\$ 3.13$) per computer for each additional computer produced.

PART 2 (NO CALCULATORS!): 74 points

3) Let $f(x)=\frac{x^{2}-3}{x^{3}+2}$. Find $f^{\prime}(x)$. Simplify your answer. (10 points)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{Lo} \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{\text { the square of what's below }} \quad(\text { Quotient Rule) } \\
& =\frac{\left(x^{3}+2\right) \cdot\left[D_{x}\left(x^{2}-3\right)\right]-\left(x^{2}-3\right) \cdot\left[D_{x}\left(x^{3}+2\right)\right]}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\left(x^{3}+2\right) \cdot(2 x)-\left(x^{2}-3\right) \cdot\left(3 x^{2}\right)}{\left(x^{3}+2\right)^{2}} \\
& =\frac{2 x^{4}+4 x-\left(3 x^{4}-9 x^{2}\right)}{\left(x^{3}+2\right)^{2}} \\
& =\frac{2 x^{4}+4 x-3 x^{4}+9 x^{2}}{\left(x^{3}+2\right)^{2}} \\
& =\frac{-\boldsymbol{x}^{4}+\mathbf{9} \boldsymbol{x}^{2}+\mathbf{4 x}}{\left(\boldsymbol{x}^{3}+\mathbf{2}\right)^{2}}
\end{aligned}
$$

You could also factor $-x$ out of the numerator, but it does not lead to further simplification in this case.
4) Find $\frac{d^{2}}{d x^{2}}\left(4 x^{3}-3 x^{2}+2\right)$. (6 points $)$

In other words, we want to find $f^{\prime \prime}(x)$, where $f(x)=4 x^{3}-3 x^{2}+2$.

$$
\begin{aligned}
f^{\prime}(x), \text { or } \frac{d}{d x}\left(4 x^{3}-3 x^{2}+2\right) & =12 x^{2}-6 x \\
f^{\prime \prime}(x), \text { or } \frac{d^{2}}{d x^{2}}\left(4 x^{3}-3 x^{2}+2\right) & =\mathbf{2 4 x}-\mathbf{6}
\end{aligned}
$$

5) For each of the following, find $f^{\prime}(x)$. Simplify your answer. All exponents must be positive in your final answer. Do not expand out powers; for example, don't work out $(9 x+4)^{6}$. $(36$ points total)
a) $f(x)=\sqrt[3]{x^{2}+5 x}$
(8 points)

$$
\begin{aligned}
f(x) & =\left(x^{2}+5 x\right)^{1 / 3} \\
f^{\prime}(x) & =\frac{1}{3}\left(x^{2}+5 x\right)^{-2 / 3} \cdot D_{x}\left(x^{2}+5 x\right) \quad \text { (by the Generalized Power Rule) } \\
& =\frac{1}{3}\left(x^{2}+5 x\right)^{-2 / 3}(2 x+5) \\
& =\frac{\mathbf{2 x} \boldsymbol{x}}{\mathbf{3}\left(\boldsymbol{x}^{2}+\mathbf{5 x}\right)^{2 / 3}}
\end{aligned}
$$

b) $f(x)=\frac{1}{(9 x+4)^{6}}$
(8 points)

$$
f(x)=(9 x+4)^{-6}
$$

$$
f^{\prime}(x)=-6(9 x+4)^{-7} \cdot D_{x}(9 x+4) \quad(\text { by the Generalized Power Rule })
$$

$$
=-6(9 x+4)^{-7} \cdot(9)
$$

$$
=-54(9 x+4)^{-7}
$$

$$
=-\frac{54}{(9 x+4)^{7}}
$$

c) $f(x)=x^{3}(4 x-2)^{6} \quad$ (8 points)

Overall, we have a product of functions of x (that can't be combined easily), so use the Product Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[D_{x}\left(x^{3}\right)\right] \cdot\left[(4 x-2)^{6}\right]+\left[x^{3}\right] \cdot \underset{\substack{\text { Use the Generalized } \\
\text { Power Rule. }}}{\left[D_{x}(4 x-2)^{6}\right]} \\
& =\left[3 x^{2}\right] \cdot\left[(4 x-2)^{6}\right]+\left[x^{3}\right] \cdot[6(4 x-2)^{5} \cdot \underbrace{4}_{\text {taiil }}]
\end{aligned}
$$

Note: 4 is the tail, because it is $D_{x}(4 x-2)$.

$$
=3 x^{2}(4 x-2)^{6}+24 x^{3}(4 x-2)^{5}
$$

You could factor out $3 x^{2}(4 x-2)^{5}$.
d) $f(x)=\left(7 x^{2}+3\right)^{4}(3 x-10)^{5} \quad(12$ points $)$

Overall, we have a product of functions of x (that can't be combined easily), so use the Product Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\underbrace{\left[D_{x}\left(7 x^{2}+3\right)^{4}\right] \cdot\left[(3 x-10)^{5}\right]+\left[\left(7 x^{2}+3\right)^{4}\right] \cdot \underbrace{\left[D_{x}(3 x-10)^{5}\right]}_{\substack{\text { Use the Generalized } \\
\text { Power Rule. }}}}_{\substack{\text { Use the Generalized } \\
\text { Power Rule. }}} \\
& =[4\left(7 x^{2}+3\right)^{3} \cdot \underbrace{14 x}_{\text {tail }}] \cdot\left[(3 x-10)^{5}\right]+\left[\left(7 x^{2}+3\right)^{4}\right] \cdot[5(3 x-10)^{4} \cdot \underbrace{3}_{\text {tail }}]
\end{aligned}
$$

Note: $14 x$ is the first tail, because it is $D_{x}\left(7 x^{2}+3\right)$.
3 is the second tail, because it is $D_{x}(3 x-10)$.

$$
=56 x\left(7 x^{2}+3\right)^{3}(3 x-10)^{5}+15\left(7 x^{2}+3\right)^{4}(3 x-10)^{4}
$$

You could factor out $\left(7 x^{2}+3\right)^{3}(3 x-10)^{4}$.
6) Find functions f and g such that the function represented by $\sqrt[3]{x^{2}+5 x}$ is the composition $f(g(x))$. (4 points)

$$
\begin{aligned}
g(x) \text { or } u & =x^{2}+5 x \quad(\text { "Inside") } \\
f(u) & =\sqrt[3]{u}
\end{aligned}
$$

7) Consider the graph of the function f below. (18 points total; 3 points each)

For each of the following, circle one. DNE means "Does Not Exist."
a) $f^{\prime}(2)$ is ...
positive zero negative DNE
(f is increasing at 2.)
b) $f^{\prime \prime}(2)$ is ...
positive zero negative DNE
(f is increasing at an increasing rate at 2.)
c) $f^{\prime}(4)$ is ...
positive zero negative DNE
(f is increasing at 4.)
d) $f^{\prime \prime}(4)$ is ...
positive zero negative DNE
(f is increasing at a decreasing rate at 4.)
e) $f^{\prime}(5)$ is \ldots
positive zero negative DNE
(Left-hand and right-hand derivatives are mismatched.)
f) $f^{\prime}(6)$ is ...
positive zero negative DNE
$(f$ is decreasing at 6.$)$

