FINAL (SAMPLE OUESTIONS)

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers; write units where appropriate!

No notes or books allowed.

USE A SCIENTIFIC CALCULATOR!

1) Approximate the area under the graph of $f(x)=\ln x$ from $a=4$ to $b=10$ by finding a Left Riemann Sum using 3 rectangles of the same width. Round off to four decimal places whenever you need to round off. (10 points)
2) Find the integrals. Simplify wherever possible. (32 points total)
a) $\int_{1}^{5}\left(3 x^{-1}-3 x^{2}\right) d x$
(6 points)
b) $\int x\left(x^{2}-4\right)^{6} d x$ (6 points)
c) $\int e^{x^{3}+6 x-1}\left(x^{2}+2\right) d x$ (6 points)
d) $\int \frac{\ln x}{x} d x$ (6 points)
e) $\int_{1}^{2} \frac{x^{2}}{x^{3}+4} d x$
(8 points)
3) The weight of a blob increases at the rate of $0.3 e^{0.2 t}$ pounds per day, where t is measured in days. Find the total increase in the blob's weight from $t=3$ to $t=6$. (6 points)
4) Find the average value of $f(x)=x^{3}$ on the interval $[0,3]$. (6 points)
5) Find the area bounded by the graphs of $y=5 x^{2}+x-11$ and $y=3 x^{2}-3 x+5$. (16 points)
6) Find the domain of $f(x, y)=\frac{\ln x}{y}$. (2 points)
7) Let $f(x, y)=x^{2} y^{3}+e^{x y}$. (6 points total)
a) Find $f_{x}(x, y)$.
b) Find $f_{x}(3,1)$.
8) Let $f(x, y, z)=x \ln \left(2 x^{3}+4 y\right)+z^{2}$. Find $f_{y}(x, y, z)$. (5 points)
9) Let $f(x, y)=2 x^{2}-6 x y-14 x+3 y^{2}+18 y+7$. Find any critical points, and classify each critical point (as corresponding to a Relative Maximum Point, a Relative Minimum Point, or Neither). Find any relative extreme values. (17 points total)

Note: This problem relates to Section 7.3, which we may or may not cover in our class.

