QUIZ \#2 (SAMPLE QUESTIONS)

PART 1 (NO CALCULATORS!)

1) Let $f(x)=\frac{4 x}{x^{2}+1}$. Find $f^{\prime}(x)$. Simplify your answer. (6 points)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{Lo} \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{\text { the square of what } ₫ \text { below }} \quad \text { (Quotient Rule) } \\
& =\frac{\left(x^{2}+1\right) \cdot D_{x}(4 x)-(4 x) \cdot D_{x}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right) \cdot(4)-(4 x) \cdot(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x^{2}+4-8 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\mathbf{4}-\mathbf{4} \mathbf{x}^{2}}{\left(\boldsymbol{x}^{2}+\mathbf{1}\right)^{2}}
\end{aligned}
$$

Note 1: Factoring the numerator does not lead to further simplification in this case.
Note 2: You could have rewritten $f(x)$ as $4 x\left(x^{2}+1\right)^{-1}$ and then used the Product and Generalized Power Rules. However, the simplification would have been trickier.
2) Let $f(x)=x^{6}(3 x+1)^{4}$. Find $f^{\prime}(x)$. Simplify your answer. Do not expand out powers; for example, don't work out $(3 x+1)^{4}$. (6 points)

First, use the Product Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left[x^{6}\right] \cdot \underbrace{\left[D_{x}(3 x+1)^{4}\right]}_{\begin{array}{c}
\text { Use the Generalized } \\
\text { Power Rule. }
\end{array}}+\left[D_{x}\left(x^{6}\right)\right] \cdot\left[(3 x+1)^{4}\right] \\
& =\left[x^{6}\right] \cdot[4(3 x+1)^{3} \cdot \underbrace{3}_{\text {tail }}]+\left[6 x^{5}\right] \cdot\left[(3 x+1)^{4}\right]
\end{aligned}
$$

Note: 3 is the tail, because it is $D_{x}(3 x+1)$.

$$
=12 x^{6}(3 x+1)^{3}+6 x^{5}(3 x+1)^{4}
$$

3) Let $y=\sqrt[3]{x}$. Find $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=8} .(9$ points $)$

In other words, find $f^{\prime \prime}(8)$, where $y=f(x)=\sqrt[3]{x}$.

$$
\begin{aligned}
y \text { or } f(x) & =x^{1 / 3} & f^{\prime \prime}(8) & =-\frac{2}{9(\sqrt[3]{8})^{5}} \\
y^{\prime} \text { or } \frac{d y}{d x} \text { or } f^{\prime}(x) & =\frac{1}{3} x^{-2 / 3} & & =-\frac{2}{9(2)^{5}} \\
y^{\prime \prime} \text { or } \frac{d^{2} y}{d x^{2}} \text { or } f^{\prime \prime}(x) & =-\frac{2}{9} x^{-5 / 3} & & =-\frac{2}{9(32)} \\
& =-\frac{2}{9 x^{5 / 3}} & & =-\frac{1}{9(16)} \\
& =-\frac{2}{9(\sqrt[3]{x})^{5}} & & =-\frac{\mathbf{1}}{\mathbf{1 4 4}}
\end{aligned}
$$

4) Let $C(x)$ be a cost function, where x is the number of units produced. Find an expression for the marginal average cost function, and simplify as appropriate. Your answer will include $C(x)$ and $C^{\prime}(x)$. (6 points)
"Average" implies that we divide $C(x)$ by x.
"Marginal" implies that we then take the derivative with respect to x.
$D_{x}\left[\frac{C(x)}{x}\right]=\frac{\mathrm{Lo} \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{\text { the square of what }(9) \text { below }} \quad$ (Quotient Rule)

$$
\begin{aligned}
& =\frac{x \cdot C^{\prime}(x)-C(x) \cdot \overbrace{D_{x}(x)}^{=1}}{x^{2}} \\
& =\frac{\boldsymbol{x} \boldsymbol{C}^{\prime}(\boldsymbol{x})-\boldsymbol{C}(\boldsymbol{x})}{\boldsymbol{x}^{\mathbf{2}}}
\end{aligned}
$$

5) Consider the graph of the function f below. (6 points total; 2 points each)

For each of the following, indicate whether it is positive, negative, zero, or DNE (Does Not Exist).
a) $f^{\prime}(3) \quad$ DNE (Left-hand and right-hand derivatives are mismatched.)
b) $f^{\prime}(5)$ positive $(f$ is increasing at 5.)
c) $f^{\prime \prime}(1)$ negative (f is increasing at 1 , but at a decreasing rate. $)$

PART 2 (USE A SCIENTIFIC CALCULATOR!)

6) The population P of Springfield t years after January $1,1990(0 \leq t \leq 13)$ is given by $3 t^{2}+500$. You do not have to use the limit definition of derivative. Write units.
a) What is the instantaneous rate of change of Springfield's population on January 1, 2000?

$$
\begin{aligned}
P(t) & =3 t^{2}+500 \\
P^{\prime}(t) & =6 t \\
P^{\prime}(10) & =6(10) \\
& =\mathbf{6 0} \frac{\text { people }}{\text { year }}
\end{aligned}
$$

b) How fast is the rate of increase of Springfield's population changing on January 1, 2000?

$$
\begin{aligned}
P^{\prime}(t) & =6 t \\
P^{\prime \prime}(t) & =6 \\
P^{\prime \prime}(10) & =6 \frac{\text { people }}{\text { year }^{2}} \text { (i.e., people per year per year) }
\end{aligned}
$$

