CHAPTER 7:

Systems and Inequalities

SECTIONS 7.1-7.3: SYSTEMS OF EQUATIONS

1)
 a) 1

 b) \(\{(-1, 6)\} \). Hint: If the first equation is solved for \(y \) in terms of \(x \), we eventually obtain
 \[5x - 3(5 - x) = -23. \]

 c) \(\{(-1, 6)\} \). Hint: If we multiply both sides of the first equation by 3, we obtain
 \[
 \begin{align*}
 3x + 3y &= 15 \\
 5x - 3y &= -23
 \end{align*}
 \]

2)
 a) \(\{(-1, 1)\} \)

 b)

 ![Graph of a circle and a line](image)

3)
 a) a circle and a parabola [that opens upward], respectively

 b) 2

 c) \(\left\{ \left(1, \frac{\sqrt{2}}{2}\right), \left(-1, \frac{\sqrt{2}}{2}\right) \right\} \).

 Warning: ‘±’ notation could be considered ambiguous. Checks may be necessary to eliminate extraneous solutions.
4)
 a) a parabola [that opens to the right] and a parabola [that opens to the left], respectively.

 b) 2

 c) \[\{(2, \sqrt{2}), (2, -\sqrt{2})\}\].

 Warning: ‘±’ notation could be considered ambiguous.

5)
 a) Hint: Rewrite \[x^2 + y = 0\] as \[y = -x^2\]. Rewrite \[y - x^2 = 1\] as \[y = x^2 + 1\].

 b) \(\emptyset\). (Observe that the two graphs in a) do not intersect.)

 c) \(\emptyset\). You may obtain the equation \[x^2 = -\frac{1}{2}\], which has no real solutions for \(x\).

6)
 a) \[\{(-4,52), (2,10)\}\]

 b) \[\left\{\left(-\frac{7}{5}, -\frac{1}{10}\right), \left(-1, \frac{1}{2}\right)\right\}\]

 c) \(\emptyset\). You may obtain the equation \[x^2 = \frac{5}{2}\], but then there are no corresponding real values for \(y\).

7) Additional Problem: \(\emptyset\)
SECTION 7.4: PARTIAL FRACTIONS

1)
 a) \[\frac{A}{x+4} + \frac{B}{x-3} + \frac{Cx+D}{x^2+1} \]
 b) \[\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x-1} + \frac{E}{(x-1)^2} + \frac{Fx+G}{x^2+3} + \frac{Hx+I}{(x^2+3)^2} \]
 c) \[\frac{A}{t} + \frac{B}{t^2} + \frac{C}{2t+5} + \frac{D}{(2t+5)^2} + \frac{E}{(2t+5)^3} + \frac{Ft+G}{2t^2+5} + \frac{Ht+I}{t^2+t+1} \]

2)
 a) \[\frac{4}{x-3} - \frac{1}{x-2} \]
 b) \[\frac{3}{x+5} - \frac{2}{x+1} + \frac{1}{x-2} \]
 c) \[\frac{2}{x} + \frac{6}{x^2} + \frac{5}{2x+1} \]
 d) \[\frac{1}{x-4} + \frac{5}{(x-4)^2} \]
 e) \[\frac{6}{x+2} + \frac{2x+3}{x^2+1} \]
 f) \[\frac{4}{x-5} + \frac{x}{x^2+3} \]
 g) \[-\frac{3}{x} - \frac{-2x-5}{x^2+x+1}, \text{ or, equivalently, } -\frac{3}{x} - \frac{2x+5}{x^2+x+1} \]
 h) \[\frac{5t-1}{t^2+4} - \frac{4}{(t^2+4)^2} \]

3) No, because the rational expression on the left-hand side is improper. (The student should multiply out the denominator and then perform Long Division; the idea of using repeated Synthetic Division can be confusing.)
CHAPTER 8:
Matrices and Determinants

SECTION 8.1: MATRICES and SYSTEMS OF EQUATIONS

1) a) \(3 \times 2\), 6 entries; b) \(4 \times 5\), 20 entries; c) \(3 \times 3\) (order 3 square), 9 entries

2) a)
\[
\begin{bmatrix}
3 & -1 & 18 \\
1 & 2 & -1 \\
\end{bmatrix}
\]

b) \(2 \times 2\) (order 2 square)

c) \(2 \times 1\)

d)
\[
\begin{bmatrix}
1 & 2 & -1 \\
3 & -1 & 18 \\
\end{bmatrix}
\]

e)
\[
\begin{bmatrix}
1 & 2 & -1 \\
0 & -7 & 21 \\
\end{bmatrix}
\]

f)
\[
\begin{bmatrix}
1 & 2 & -1 \\
0 & 1 & -3 \\
\end{bmatrix}
\]

g) \[
\begin{align*}
x + 2y &= -1 \\
y &= -3
\end{align*}
\]

h) \(\{(5, -3)\}\)

i)
\[
\begin{align*}
3(5) - (-3) &= 18 \\
(5) + 2(-3) &= -1
\end{align*}
\]

3) \(\left\{\left(\frac{1}{2}, -\frac{5}{2}\right)\right\}\)

4) \(\{-2, -7\}\)
5) Additional Problem: \(\left\{ \left(\frac{2}{3}, -\frac{4}{3} \right) \right\} \)

6) \(\emptyset \)

7) The system has infinitely many solutions.
 Note 1: The solutions correspond to the points on the line \(x + 3y = 6 \) in the \(xy \)-plane.
 Note 2: The solution set can be given by: \(\{(x, y) \in \mathbb{R}^2 \mid x + 3y = 6\} \).

8) \(\{(2, 4, -5)\} \)

9) \(\{(7, -2, 1)\} \)

10) \(\left\{ \left(-\frac{1}{2}, 0, \frac{3}{2} \right) \right\} \)

11) \(\{(1, -1, -3)\} \)

12) \(\emptyset \)

13) a) Yes; b) Yes

14) a) Yes; b) No

15) a) No; b) No

16) a) No; b) No

17) Additional Problem: a) \(\{(3, -2)\} \); b) \(\{(4, 8, 1)\} \); c) \(\{(-1, 5, 3)\} \)
SECTION 8.2: OPERATIONS WITH MATRICES

1) a) \[
\begin{bmatrix}
6 & 3 \\
10 & 1 \\
-2 & \pi + \sqrt{5}
\end{bmatrix}
\]; b) \[
\begin{bmatrix}
-31 & 9 \\
-26 & 24 \\
57 & 3\pi - 4\sqrt{5}
\end{bmatrix}
\]

2) \[22\], or simply the scalar 22 (depending on context)

3) a) \[
\begin{bmatrix}
7 & -2 \\
-7 & 6
\end{bmatrix}
\]; b) \[
\begin{bmatrix}
4 & -1 \\
-8 & 9
\end{bmatrix}
\]; c) No

4) a) \[
\begin{bmatrix}
16 & 5 & 8 \\
-15 & 9 & 0
\end{bmatrix}
\]; b) Undefined; c) \[
\begin{bmatrix}
-3 & 20 & 10 \\
-6 & -4 & -5 \\
4 & 9 & 7
\end{bmatrix}
\]

5) a) \(8 \times 7\)
b) Multiply the fifth row of \(A\) and the sixth column of \(B\), in that order.

6) \(n = p\) and \(m = q\)

7) \[
\begin{bmatrix}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 16
\end{bmatrix}
\]
a) \[
\begin{bmatrix}
1024 & 0 & 0 \\
0 & 59,049 & 0 \\
0 & 0 & 1,048,576
\end{bmatrix}
\]

8) a) \(3 \times 4\); b) Undefined; c) Undefined; d) \(3 \times 7\); e) \(3 \times 7\); f) \(3 \times 7\); in fact, the expressions in e) and f) are equivalent.

9) \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

10) Additional Problem:

a) \(A = \begin{bmatrix} 4 & 4 & -3 \\ 5 & 7 & -13 \\ 1 & 2 & -5 \end{bmatrix}\); b) \(X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\); c) \(B = \begin{bmatrix} 7 \\ -9 \\ -6 \end{bmatrix}\);

d) The coefficient matrix was \(I_3\). The RHS was \[
\begin{bmatrix}
-1 \\
5 \\
3
\end{bmatrix}
\], which is the solution for \(X\).
SECTION 8.3: THE INVERSE OF A SQUARE MATRIX

Additional Problems:

1) I_2, which is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

2)
 a) $\begin{bmatrix} \frac{2}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} \end{bmatrix}$
 b) A is noninvertible

3) $\{ (4, -3) \}$. Hint: Use $X = A^{-1} B$.

4) $\{ (1, 0, -1) \}$. Hint: Use $X = A^{-1} B$.

5) a) 7; b) $\begin{bmatrix} \frac{2}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{3}{7} \end{bmatrix}$, just as in Exercise 2a

6) a) 0; b) A^{-1} is undefined, just as in Exercise 2b

7) Hint: Show that $(AB)(B^{-1} A^{-1}) = I_n$, or $(B^{-1} A^{-1})(AB) = I_n$.

8) Hint: Show that $AA^{-1} = I_2$.
SECTION 8.4: THE DETERMINANT OF A SQUARE MATRIX

1)
 a) -4
 b) 2
 c) -2. C is obtained by switching the two rows of B, and $\det(C) = -\det(B)$.
 d) 20. D is obtained by multiplying the first row of B by 10, and $\det(C) = 10 \det(B)$.
 e) 2. E is obtained by taking the transpose of B, and $\det(E) = \det(B^T) = \det(B)$.
 f) -26
 g) 0
 h) 0
 i) 0. (This is exemplified by g) and h), in which the second row is a multiple of the first row. For both, $a = 4$ and $b = 5$. In g), $c = 0$. In h), $c = 10$.)
 j) $e^{2x} - xe^x$, or $e^x(e^x - x)$
 k) 1

2)
 a) 92. Hint: $+(-12) + (60) + (-3) - (-45) - (6) - (-8) = 92$.
 b) 92. Hint: $+2(-9) - (4)(-17) + 3(14) = 92$.
 c) 92. Hint: $-(4)(-17) + (-3)(-11) - (1)(9) = 92$.

3)
 a) -17. Hint: $+12 + 0 + 24 - 8 - 0 - 45 = -17$.
 b) -17. Hint: $-3(7) + 4(1) + 0 = -17$.
 c) -17. Hint: $-2(-8) - 0 + 3(-11) = -17$.

4) 0. If one row of a square matrix is a multiple of another row of that matrix, then the determinant of the matrix is 0.

5) 6000. The determinant of an upper (or lower) triangular matrix is equal to the product of the entries along the main diagonal.

6) -66. Hint: Expand by cofactors along the third column. $-(2)(33) = -66$.

7) 0. Hint: Expand by cofactors along the fourth row.

8) $\{2, 3\}$. That is, the eigenvalues are 2 and 3.
SECTION 8.5: APPLICATIONS OF DETERMINANTS

Additional Problems:

1) \[\begin{bmatrix} \frac{1}{2}, -\frac{5}{2} \end{bmatrix} \]

2) \[\{(4, -3)\} \]

3)
 a) 20 square meters (or m\(^2\))
 b) 29 square meters (or m\(^2\))
 c) 0. This implies that the vectors are parallel (i.e., the position vectors are collinear).

4) 12 square meters (or m\(^2\))
CHAPTER 9:

Discrete Mathematics

SECTION 9.1: SEQUENCES AND SERIES, and
SECTION 9.6: COUNTING PRINCIPLES

1) \(a_1 = 2, \ a_2 = 6, \ a_3 = 12 \)
2) \(a_1 = -2, \ a_2 = 4, \ a_3 = -6, \ a_4 = 8 \)
3) \(a_1 = 1, \ a_2 = -3, \ a_3 = 5, \ a_4 = -7 \)
4) 720
5) 120 ways
6) 21 ways
7) 252 ways
8)
 \[
 \begin{align*}
 &a) \ (n+1)!

b) \ (n+2)(n+1), \ or \ n^2 + 3n + 2 \\
 &c) \ \frac{1}{n(n+1)}, \ or \ \frac{1}{n^2 + n} \\
 &d) \ \frac{1}{(3n+3)(3n+2)(3n+1)(3n)(3n-1)}
 \end{align*}
 \]
9) \(a_1 = 4, \ a_2 = 14, \ a_3 = 24, \ a_4 = 34 \)
10) \(a_1 = 2, \ a_2 = 1, \ a_3 = \frac{1}{2}, \ a_4 = \frac{1}{4} \)
11) \(a_1 = -1, \ a_2 = -5, \ a_3 = -17, \ a_4 = -53 \)
12) \(a_1 = 2, \ a_2 = 3, \ a_3 = 6, \ a_4 = 18, \ a_5 = 108 \)
13) 10
14) 140
15) \(\frac{5}{12} \)
16) 120
17)
 a) \(a_n = n + 6 \)
 b) \(a_n = 5n \)
 c) \(a_n = 3n + 1 \)
 d) \(a_n = \frac{1}{n!} \)
 e) \(a_n = \frac{7}{n^2} \)
 f) \(a_n = (-1)^{n-1} \frac{2n}{2n+1}, \) or \(a_n = (-1)^{n+1} \frac{2n}{2n+1} \)
 g) \(a_n = (-1)^n 2^n, \) or \(a_n = (-2)^n \)

18)
 a) \(\sum_{k=1}^{6} 3k \)
 b) \(\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{4^k}, \) or \(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{4^k}, \) or \(\sum_{k=1}^{\infty} -\left(-\frac{1}{4} \right)^k \)

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS

1) a) \(-5\); b) \(6\)

2) a) \(\frac{3}{2}\); b) \(-\frac{1}{2}\)

3) a) 7, 10, 13, 16; b) 46; c) 184

4)
 a) \(a_n = 7 - 5n \), which is simplified from \(a_n = 2 + (n - 1)(-5) \)
 b) \(-1928\)

5) 860. (Hint: First find \(d \). \(d = 7 \).)
SECTION 9.3: GEOMETRIC SEQUENCES, PARTIAL SUMS, and SERIES

1) a) 4; b) 5

2) a) $\frac{6}{7}$; b) $-\frac{1}{3}$

3) a) 5, -20, 80, -320; b) -255; c) -20, 971, 520; d) No (What is r?)

4)
 a) $a_n = \left(\frac{2}{9}\right)\left(\frac{3}{2}\right)^{n-1}$, or $a_n = \frac{3^{n-3}}{2^{n-2}}$
 b) $\frac{2187}{256}$
 c) $a_6 = \frac{27}{16}$, $a_7 = \frac{81}{32}$, $a_8 = \frac{243}{64}$, $a_9 = \frac{729}{128}$, $a_{10} = \frac{2187}{256}$
 d) No (What is r?)

5)
 a) $a_2 = -\frac{6}{5}$, $a_3 = \frac{12}{25}$. (Hint: First find r. $r = -\frac{2}{5}$.)
 b) Yes; 0 (What is r?)

6) The series diverges. (What is r?)

7) The series diverges. (What is r?)

8) The series converges. (What is r?) The sum is $\frac{15}{7}$.

9) $\left\{ x \in \mathbb{R} \mid -\frac{1}{3} < x < \frac{1}{3} \right\}$, or the interval $\left(-\frac{1}{3}, \frac{1}{3} \right)$

10) a) $\sum_{n=1}^{\infty} 2\left(3^{n-2}\right)$, which is simplified from $\sum_{n=1}^{\infty} \frac{2}{3}\left(3^{n-1}\right)$. It can be rewritten as $\sum_{i=1}^{\infty} 2\left(3^i\right)$.
 (The index of summation could be something other than n or i.)
 b) Divergent
 c) No sum
Answers for Chapter 9: Discrete Mathematics

A.9.4.

11) a) \[\sum_{n=1}^{\infty} 3(-1)^n, \] which is simplified from \[\sum_{n=1}^{\infty} -3(-1)^{n-1}. \]
 (The index of summation could be something other than \(n \) or \(i \).)

b) Divergent

c) No sum

12) a) \[\sum_{n=1}^{\infty} 5 \left(-\frac{1}{4} \right)^{n-1}, \] which can be rewritten as \[\sum_{i=0}^{\infty} 5 \left(-\frac{1}{4} \right)^{i}. \]
 (The index of summation could be something other than \(n \) or \(i \).)

b) Convergent

c) 4

13) \[\frac{13}{33} \]

14) Additional Problem: \[\frac{5167}{9990}. \] Hint: Rewrite 0.5172 as 0.5 + 0.0172.

SECTION 9.4: MATHEMATICAL INDUCTION

1) See the notes.

2) 500,500

SECTION 9.5: THE BINOMIAL THEOREM

1) \[x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5 \]

2) \[a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6 \]

3) \[8x^3 + 36x^2y + 54xy^2 + 27y^3 \]

4) \[a^4 - 8a^3b + 24a^2b^2 - 32ab^3 + 16b^4 \]

5) \[3x^2 + 3xh + h^2. \] Additional Problem: \(f''(x) = 3x^2. \)
CHAPTER 10:
Conics and Polar Coordinates

SECTION 10.3: ELLIPSES

1)

a) \(\frac{(x - 3)^2}{25} + \frac{(y + 4)^2}{4} = 1 \)

b) \((3, -4)\)

c) \((-2, -4)\) and \((8, -4)\)

d) \((3 - \sqrt{21}, -4)\) and \((3 + \sqrt{21}, -4)\); approximately, \((-1.58, -4)\) and \((7.58, -4)\)

e) \(\frac{\sqrt{21}}{5} \approx 0.917\)

2)

a) \(\frac{(x + 5)^2}{9} + \frac{(y + 1)^2}{16} = 1 \)

b) \((-5, -1)\)

c) \((-5, -5)\) and \((-5, 3)\)

d) \((-5, -1 - \sqrt{7})\) and \((-5, -1 + \sqrt{7})\); approximately, \((-5, -3.65)\) and \((-5, 1.65)\)

e) \(\frac{\sqrt{7}}{4} = 0.661\)
SECTION 10.4: HYPERBOLAS

1) Additional Problem:

2) Additional Problem:
SECTION 10.8: POLAR COORDINATES

1) Cartesian graph paper

 ![Cartesian Graph Paper](image1)

 Polar graph paper

 ![Polar Graph Paper](image2)

2) Cartesian graph paper

 ![Cartesian Graph Paper](image3)

 Polar graph paper

 ![Polar Graph Paper](image4)

Additional Problem: \(x^2 - 3x + y^2 = 0 \)