QUIZ ON CHAPTER 3

DERIVATIVES; MATH 150 - FALL 2016 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100\%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

1) Use the limit definition of the derivative to prove that $D_{x}[\sin (x)]=\cos (x)$, as in class. Show all steps! (12 points)

THIS IS THE ONLY PROBLEM ON THIS TEST WHEN YOU WILL NEED TO USE THE LIMIT DEFINITION OF THE DERIVATIVE!

2) A particle moving along a coordinate line has as its position function s, where $s(t)=3 t+\frac{2}{\sqrt[3]{t^{2}}}$, for $t \geq 1$. Position $s(t)$ is measured in meters, and time t is measured in seconds. Find the velocity of the particle at time $t=8$ (seconds). Write an exact answer with correct units. (8 points)
3) If $f(x)=\sqrt{9-x^{2}}$, is f differentiable on the interval $[-3,3]$? Box in one: (1 point)
Yes No
4) Let $f(x)=x^{2}+x$. These are linearization problems. (11 points total)
a) Find an equation of the tangent line to the graph of $y=f(x)$ at the point on the graph (in the usual $x y$-plane) where $x=3$. Use any form. (8 points)
b) Use your tangent line from a) to give a linear approximation for the value of $f(2.85)$. Give your answer as a decimal written out to two decimal places. (3 points)
5) Find the indicated derivatives. (21 points total; 7 points each)
a) Find $\frac{d}{d r}\left(\sqrt[7]{r^{6}}-\frac{5}{r^{3}}+6\right)$. Simplify. Do not leave negative exponents in your final answer. Your final answer does not need to be a single fraction.
b) Let $f(x)=3 x^{7} \sin \left(x^{2}\right)$. Find $f^{\prime}(x)$. Simplify. You do not have to factor your final answer.
c) Find $D_{\alpha}\left[\csc ^{3}\left(7 \alpha+\frac{\pi}{4}\right)\right]$. Simplify.
6) Find $D_{x}\left(\frac{7 x+1}{\sqrt{3 x^{2}+5}}\right)$. Simplify. Your final answer must have the form: an x term and a constant term

$$
\frac{\text { term and a constant term }}{\left(3 x^{2}+5\right)^{\text {some exponent }}} \cdot(12 \text { points })
$$

7) Prove that $D_{x}[\cot (x)]=-\csc ^{2}(x)$ without using the limit definition of the derivative. Among the trigonometric derivatives, you may use only the derivatives of $\sin (x)$ and $\cos (x)$ without proof. Show all work! (8 points)
8) Let $f(x)=\left(x^{2}-4\right)^{3} \cdot(10$ points total $)$
a) Find $f^{\prime}(x)$.
b) Find the points on the graph of $y=f(x)$ (in the usual $x y$-plane) at which the tangent line is horizontal.
9) Consider the given equation $6 y+4 x^{5} y^{2}-\cos (y)=12$. Assume that it "determines" an implicit differentiable function f such that $y=f(x)$.
Find $\frac{d y}{d x}$ (you may use the y^{\prime} notation, instead). Use implicit differentiation, as in class. (11 points)
10) Air is being pumped into a spherical balloon at the rate of 2.3 cubic feet per minute. The balloon maintains a spherical shape throughout. At what rate is the radius of the balloon changing when the radius is 30 inches in length?

- In your final answer, give the appropriate units, and round off your answer as a decimal to four significant digits. (Round off intermediate results to at least four significant digits.)
- Hint 1: If you forgot the "key formula" here, you can buy it from me for 2 points. You can't get negative points for this problem.
- Hint 2: One foot is equivalent to 12 inches.
(11 points)

