QUIZ ON CHAPTER 5

INTEGRALS; MATH 150 - FALL 2016 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0 \%}$
Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
Final answers must not consist of any negative exponents or compound fractions.

1) Evaluate the following integrals. Simplify as appropriate. (42 points total)

$$
\text { a) } \int \frac{5 r^{2}-7 r+\sqrt{r}}{r} d r
$$

(9 points)
b) $\int \cot (\theta) \sec (\theta) \csc (\theta) d \theta$
(7 points)
c) $\int_{0}^{8}|x-3| d x$ (7 points)
(You may use the Fundamental Theorem of Calculus or a geometric argument.)
d) $\int \frac{\csc (x) \cot (x)}{[1+\csc (x)]^{3}} d x$
(7 points)
e) $\int_{1}^{4} \frac{x}{\sqrt{3 x^{2}+1}} d x$
(12 points)
Give an exact, simplified fraction as your answer.
2) Solve the second-order differential equation $\frac{d^{2} y}{d x^{2}}=\cos (2 x)$ subject to the following initial conditions: $\frac{d y}{d x}=\frac{5}{4}$ when $x=\frac{\pi}{12}$, and $y=1$ when $x=0$. (14 points)
3) Assume that f is an everywhere continuous function on \mathbb{R} such that $\int_{2}^{5} f(x) d x=20$. Simplify and evaluate: $\int_{5}^{8} f(x) d x+\int_{8}^{2} f(x) d x$. (5 points)
4) Assume that f is an everywhere continuous even function on \mathbb{R} such that $\int_{0}^{10} f(x) d x=30$. Evaluate $\int_{-10}^{10} 7 f(x) d x .(4$ points $)$
5) Let $f(x)=x^{4}+3 .(12$ points total $)$
a) Find $f_{a v}$, the average value of f on the interval $[-1,2]$. Write your answer as an exact, simplified fraction. (10 points)
b) True or False: There exists a real number z in the interval $(-1,2)$ such that $f(z)=f_{a v}$, where $f_{a v}$ is the [correct] answer to part a). Box in one: (Don't worry about the issue of open vs. closed intervals.) (2 points) True

False
6) Simplify $D_{x}\left(\int_{5}^{x} \frac{1}{t^{2}+1} d t\right)$.(3 points)
7) We will approximate $\int_{0}^{1} \tan (x) d x$ using two different methods.

For part a) and part b), use a regular partition with $n=4$ subintervals.
Round off intermediate calculations to at least five significant digits, and round off your final answers to four significant digits. Show all work! Remember that x is to be measured in radians, as opposed to degrees. (15 points total)
a) Approximate $\int_{0}^{1} \tan (x) d x$ by using a Left-hand Riemann Approximation (LRA).
b) Approximate $\int_{0}^{1} \tan (x) d x$ by using the Trapezoidal Rule.

Hint: The Trapezoidal Rule is given by:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right], \text { or } \\
& \approx \frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

8) Evaluate $\int \frac{x}{(x-10)^{50}} d x$. Do not leave negative exponents in your final answer.

Hint: Remember a trick discussed in class. (10 points)

