QUIZ ON CHAPTER 5

INTEGRALS; MATH 150 - SPRING 2017 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS $=100 \%$
Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
Final answers must not consist of any negative exponents or compound fractions.

1) Evaluate the following integrals. Simplify as appropriate. (47 points total)
a) $\int \frac{\left(w^{2}+4\right)^{2}}{w^{2}} d w$
(9 points)
b) $\int \frac{\left[1+\tan ^{2}(\theta)\right] \tan (\theta)}{\sec (\theta)} d \theta$
(6 points)
c) $\int 3 \sec ^{2}(x) \tan ^{7}(x) d x$
(7 points)
d) $\int \frac{(2+\sqrt{x})^{6}}{\sqrt{x}} d x$
(8 points)
e) $\int_{0}^{3} \sqrt{9-x^{2}} d x$
(5 points)
(Hint: Do not use the Fundamental Theorem of Calculus.)
f) $\int_{0}^{2} \frac{x^{2}}{\sqrt{2 x^{3}+9}} d x$
(12 points)
Give an exact, simplified fraction as your answer.
2) An astronaut crawls to the edge of a cliff on planet Dork. The edge lies 33 feet above a lake. The astronaut throws down a rock at 30 feet per second.
The acceleration function for the rock is given by $a(t)=-6 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}$, which is the [signed] gravitational constant for Dork. The variable t represents time in seconds after the rock was thrown. Find the height function [rule] $s(t)$ for the height of the rock above the lake. $s(t)$ is measured in feet. [Note: Your $s(t)$ rule will only be relevant between the time the rock is thrown and the time the rock hits the lake.] Show all work, as in class. (9 points)
3) Assume that f is an everywhere continuous function on \mathbb{R} such that $\int_{10}^{20} f(x) d x=100$. Evaluate: $\int_{20}^{10}[3 f(x)-1] d x$. (5 points)
4) Evaluate: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan (x) d x$. Answer only is fine. (2 points)
5) Simplify: $D_{x}\left(\int_{\pi}^{x} \sin \left(t^{2}\right) d t\right) \cdot(2$ points $)$
6) For parts a), b), c), and d), let $f(x)=x^{4}$. (30 points total)
a) Approximate $\int_{2}^{4} x^{4} d x$ by using a Right-hand Riemann Approximation (RRA) based on the partition $\{2.0,2.7,3.0,3.6,4.0\}$. Round off calculations to at least five significant digits. (10 points)
b) Approximate $\int_{2}^{4} x^{4} d x$ by using the Trapezoidal Rule. Use a regular partition with $n=4$ subintervals. Round off calculations to at least five significant digits. (12 points)
Hint: The Trapezoidal Rule is given by:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right], \text { or } \\
& \approx \frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

c) Find the exact value of $\int_{2}^{4} x^{4} d x$ by applying the Fundamental Theorem of Calculus. (5 points)
d) Use part c) to find $f_{a v}$, the average value of f on the x-interval $[2,4]$, where $f(x)=x^{4}$. (3 points)
7) Evaluate $\int x(x+5)^{200} d x$. Hint: Remember a trick discussed in class. (10 points)

