QUIZ ON CHAPTER 7

LOG AND EXPONENTIAL FUNCTIONS; MATH 150 – SPRING 2017 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers!

No notes or books allowed. A scientific calculator is allowed.

1) Find the following derivatives. Simplify completely unless you are told not to. Do <u>not</u> use logarithmic differentiation unless you are told to. (59 points total)

a)
$$D_{\theta} \left(\ln \left[\cos \left(5\theta \right) \right] \right)$$
 (5 points)

b)
$$D_x \left[\log_2 \left(x^5 + 8 \right) \right]$$
 (6 points)

c)
$$D_x \left[\frac{\ln(6x^2 - x)}{5e^{9x} + 3} \right]$$
 (8 points)

You do not have to algebraically simplify, though perform all arithmetic.

d)
$$D_x \left(\left[\ln \left(2x + 1 \right) \right]^9 \right)$$
 (5 points)

e)
$$D_x \left[\frac{x^5 \sec(x)}{(4x+\pi)^9} \right]$$
 (17 points)

You <u>must</u> use logarithmic differentiation and apply appropriate laws of logarithms whenever they apply, as in class. You do <u>not</u> have to write your final answer as a single fraction.

f)
$$D_x \left[2^{\ln(x)} \right]$$
 (6 points)

Answer only is fine, though logarithmic differentiation may help.

g)
$$D_x(x^{2x})$$
 (12 points)

You <u>must</u> use logarithmic differentiation.

You do not have to write your final answer as a single fraction.

2) Evaluate the following integrals. Simplify completely. (46 points total)

a)
$$\int_{1}^{2} (x^{2})(3^{x^{3}+1}) dx$$
 (11 points)

Give an exact answer; do not approximate.

b)
$$\int \frac{9x}{x^2 - 4} \, dx$$

(8 points)

c)
$$\int \frac{1}{x \left[\ln(x)\right]^4} dx$$
 (7 points)

d)
$$\int \frac{\sec(\sqrt{\theta})}{\sqrt{\theta}} d\theta$$
 (10 points)

- e) $\int \csc(x) dx$ (4 points) Answer only is fine.
- f) $\int \cot(7x) dx$ (6 points) Answer only is fine.