QUIZ ON CHAPTER 3 - SOLUTIONS

DERIVATIVES; MATH 150 - FALL 2016 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0 \%}$

1) Use the limit definition of the derivative to prove that $D_{x}[\sin (x)]=\cos (x)$, as in class. Show all steps! (12 points)

$$
\begin{aligned}
& \text { Let } f(x)=\sin (x) \text {. } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\overbrace{\sin (x) \cos (h)+\cos (x) \sin (h)}^{\text {from Sum Identit for sine }}-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\overbrace{[\sin (x) \cos (h)-\sin (x)]}^{\text {Group terns with } \sin (x) .}+\cos (x) \sin (h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[\sin (x)][\cos (h)-1]+\cos (x) \sin (h)}{h} \\
& \left.=\lim _{h \rightarrow 0}\left[[\sin (x)]\left[\frac{\cos (h)-1}{h}\right]\right]+[\cos (x)]\left[\frac{\sin (h)}{h}\right]\right] \quad \text { (Form fractions in } h \text {.) } \\
& =\cos (x) \\
& \text { Q.E.D. }
\end{aligned}
$$

2) A particle moving along a coordinate line has as its position function s, where $s(t)=3 t+\frac{2}{\sqrt[3]{t^{2}}}$, for $t \geq 1$. Position $s(t)$ is measured in meters, and time t is measured in seconds. Find the velocity of the particle at time $t=8$ (seconds). Write an exact answer with correct units. (8 points)

$$
\begin{aligned}
s(t) & =3 t+\frac{2}{\sqrt[3]{t^{2}}}=3 t+2 t^{-2 / 3} \Rightarrow \\
v(t) & =s^{\prime}(t)=3+2\left(-\frac{2}{3} t^{-5 / 3}\right)=3-\frac{4}{3} t^{-5 / 3}=3-\frac{4}{3 t^{5 / 3}} \Rightarrow \\
v(8) & =3-\frac{4}{3(8)^{5 / 3}}=3-\frac{4}{3(\sqrt[3]{8})^{5}}=3-\frac{4}{3(2)^{5}}=3-\frac{4}{96}=3-\frac{1}{24} \\
& =2 \frac{23}{24} \text { or } \frac{71}{24} \frac{\text { meters }}{\text { second }}
\end{aligned}
$$

3) If $f(x)=\sqrt{9-x^{2}}$, is f differentiable on the interval $[-3,3]$? Box in one: (1 point). Yes No

The graph of $y=f(x)$ has (one-sided) vertical tangent lines at $x= \pm 3$:
Also, $f^{\prime}(x)$ is undefined at $x= \pm 3$:

$$
f(x)=\sqrt{9-x^{2}}=\left(9-x^{2}\right)^{1 / 2} \Rightarrow f^{\prime}(x)=\frac{1}{12}\left(9-x^{2}\right)^{-1 / 2}(-\not 2 x)=-\frac{x}{\sqrt{9-x^{2}}}
$$

4) Let $f(x)=x^{2}+x$. These are linearization problems. (11 points total)
a) Find an equation of the tangent line to the graph of $y=f(x)$ at the point on the graph (in the usual $x y$-plane) where $x=3$. Use any form. (8 points)

Find the y-coordinate of the point of tangency on the graph.

$$
x_{1}=3 \Rightarrow y_{1}=f(3)=(3)^{2}+3=12
$$

Find the slope, m, of the tangent line there.

$$
f^{\prime}(x)=2 x+1 \Rightarrow m=f^{\prime}(3)=2(3)+1=7
$$

Point-slope form of the tangent line:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-12=7(x-3)
\end{aligned} \Rightarrow
$$

Slope-intercept form:

$$
\begin{aligned}
& y=m x+b \quad \Rightarrow \\
& y-12=7 x-21 \quad \text { or } \quad(12)=(7)(3)+b \\
& y=7 x-9 \quad \text { or } \quad b=-9 \quad \Rightarrow \\
& y=7 x-9
\end{aligned}
$$

b) Use your tangent line from a) to give a linear approximation for the value of $f(2.85)$. Give your answer as a decimal written out to two decimal places. (3 points)

Using Point-slope form:

$$
\begin{aligned}
y-12 & =7(2.85-3) \\
y-12 & =7(-0.15) \\
y-12 & =-1.05 \\
y & =12-1.05 \\
y & =10.95
\end{aligned}
$$

Note: In fact, $f(2.85)=10.9725$. Our approximation is correct to one decimal place.
5) Find the indicated derivatives. (21 points total; 7 points each)
a) Find $\frac{d}{d r}\left(\sqrt[7]{r^{6}}-\frac{5}{r^{3}}+6\right)$. Simplify. Do not leave negative exponents in your final answer. Your final answer does not need to be a single fraction.

$$
\begin{aligned}
& \frac{d}{d r}\left(\sqrt[7]{r^{6}}-\frac{5}{r^{3}}+6\right)=D_{r}\left(r^{6 / 7}-5 r^{-3}+6\right)=\frac{6}{7} r^{\left(\frac{6}{7}-1\right)}-5(-3) r^{(-3-1)} \\
& =\frac{6}{7} r^{-\frac{1}{7}}+15 r^{-4}=\frac{6}{7 r^{1 / 7}}+\frac{15}{r^{4}}, \text { or } \frac{6 r^{27 / 7}+105}{7 r^{4}}, \text { or } \frac{3\left(2 r^{27 / 7}+35\right)}{7 r^{4}}
\end{aligned}
$$

b) Let $f(x)=3 x^{7} \sin \left(x^{2}\right)$. Find $f^{\prime}(x)$. Simplify. You do not have to factor your final answer.

Apply the Product Rule. Then, use the Generalized Trigonometric Rules for the second term.

$$
\begin{aligned}
f^{\prime}(x) & =\left[D_{x}\left(3 x^{7}\right)\right] \cdot\left[\sin \left(x^{2}\right)\right]+\left[3 x^{7}\right] \cdot\left[D_{x}\left(\sin \left(x^{2}\right)\right)\right] \\
& =\left[21 x^{6}\right] \cdot\left[\sin \left(x^{2}\right)\right]+\left[3 x^{7}\right] \cdot\left[\cos \left(x^{2}\right)\right] \cdot \underbrace{\left[D_{x}\left(x^{2}\right)\right]}_{=(2 x)} \\
& =21 x^{6} \sin \left(x^{2}\right)+6 x^{8} \cos \left(x^{2}\right), \text { or } 3 x^{6}\left[7 \sin \left(x^{2}\right)+2 x^{2} \cos \left(x^{2}\right)\right]
\end{aligned}
$$

c) Find $D_{\alpha}\left[\csc ^{3}\left(7 \alpha+\frac{\pi}{4}\right)\right]$. Simplify.

Rewrite, and then apply the Generalized Power Rule.

$$
\begin{aligned}
D_{\alpha}\left[\csc ^{3}\left(7 \alpha+\frac{\pi}{4}\right)\right] & =D_{\alpha}\left[\csc \left(7 \alpha+\frac{\pi}{4}\right)\right]^{3} \\
& =3\left[\csc \left(7 \alpha+\frac{\pi}{4}\right)\right]^{2} \cdot\left(D_{\alpha}\left[\csc \left(7 \alpha+\frac{\pi}{4}\right)\right]\right) \\
& =3\left[\csc \left(7 \alpha+\frac{\pi}{4}\right)\right]^{2} \cdot\left[-\csc \left(7 \alpha+\frac{\pi}{4}\right) \cot \left(7 \alpha+\frac{\pi}{4}\right)\right] \cdot[\underbrace{\left[D_{\alpha}\left(7 \alpha+\frac{\pi}{4}\right)\right]}_{=(7)} \\
& =-21 \csc ^{3}\left(7 \alpha+\frac{\pi}{4}\right) \cot \left(7 \alpha+\frac{\pi}{4}\right)
\end{aligned}
$$

6) Find $D_{x}\left(\frac{7 x+1}{\sqrt{3 x^{2}+5}}\right)$. Simplify. Your final answer must have the form: an x term and a constant term

$$
\begin{aligned}
& \text { term and a constant term } \cdot\left(3 x^{2}+5\right)^{\text {some exponent }} \cdot(12 \text { points }) \\
& D_{x}\left(\frac{7 x+1}{\sqrt{3 x^{2}+5}}\right)=\frac{\mathrm{Lo} \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{(\mathrm{Lo})^{2}}(\text { Quotient Rule }) \\
& =\frac{\left[\sqrt{3 x^{2}+5}\right] \cdot\left[D_{x}(7 x+1)\right]-[7 x+1] \cdot\left[D_{x}\left(\sqrt{3 x^{2}+5}\right)\right]}{\left(\sqrt{3 x^{2}+5}\right)^{2}} \\
& =\frac{\left[\sqrt{3 x^{2}+5}\right] \cdot[7]-[7 x+1] \cdot\left(D_{x}\left[\left(3 x^{2}+5\right)^{1 / 2}\right]\right)}{3 x^{2}+5} \\
& =\frac{\left[\sqrt{3 x^{2}+5}\right] \cdot[7]-[7 x+1] \cdot\left[\frac{1}{2}\left(3 x^{2}+5\right)^{-1 / 2}\right]\left[D_{x}\left(3 x^{2}+5\right)\right]}{3 x^{2}+5}(\text { Gen. Power Rule }) \\
& =\frac{\left[\sqrt{3 x^{2}+5}\right] \cdot[7]-[7 x+1] \cdot\left[\frac{1}{2}\left(3 x^{2}+5\right)^{-1 / 2}\right][6 x]}{3 x^{2}+5} \\
& =\frac{7 \sqrt{3 x^{2}+5}-3 x[7 x+1] \cdot\left[\left(3 x^{2}+5\right)^{-1 / 2}\right]}{3 x^{2}+5} \\
& =\frac{7 u^{1 / 2}-3 x[7 x+1] \cdot\left[u^{-1 / 2}\right]}{u} \\
& =\frac{\operatorname{Let} u=\left(3 x^{2}+5\right)}{} \\
& =
\end{aligned}
$$

Method 1: Factor the numerator before dividing powers of u.

$$
\begin{aligned}
& =\frac{u^{-1 / 2}[7 u-3 x(7 x+1)]}{u}\left(\text { Now, } \frac{u^{-1 / 2}}{u^{1}}=u^{-\frac{1}{2}-1}=u^{-\frac{3}{2}}=\frac{1}{u^{3 / 2}} .\right) \\
& =\frac{7 u-3 x(7 x+1)}{u^{3 / 2}}\left[\text { Do not divide powers of } u \text { here. Sub back } u=\left(3 x^{2}+5\right) \cdot\right] \\
& =\frac{7\left(3 x^{2}+5\right)-21 x^{2}-3 x}{\left(3 x^{2}+5\right)^{3 / 2}}=\frac{21 x^{2}+35-21 x^{2}-3 x}{\left(3 x^{2}+5\right)^{3 / 2}}=\frac{35-3 x}{\left(3 x^{2}+5\right)^{3 / 2}}
\end{aligned}
$$

Method 2: Rewrite as a compound (or complex) fraction.

$$
\begin{aligned}
& =\frac{7 \sqrt{u}-\frac{3 x[7 x+1]}{\sqrt{u}}}{u} \\
& =\frac{\left(7 \sqrt{u}-\frac{3 x[7 x+1]}{\sqrt{u}}\right)}{u} \cdot \frac{\sqrt{u}}{\sqrt{u}}(\text { Distribute } \sqrt{u} \text { to both terms in red. }) \\
& =\frac{7 u-3 x[7 x+1]}{u^{3 / 2}}\left[\text { Do not divide powers of } u \text { here. Sub back } u=\left(3 x^{2}+5\right) .\right] \\
& =\frac{7\left(3 x^{2}+5\right)-3 x[7 x+1]}{\left(3 x^{2}+5\right)^{3 / 2}}=\frac{21 x^{2}+35-21 x^{2}-3 x}{\left(3 x^{2}+5\right)^{3 / 2}}=\frac{35-3 x}{\left(3 x^{2}+5\right)^{3 / 2}}
\end{aligned}
$$

7) Prove that $D_{x}[\cot (x)]=-\csc ^{2}(x) \underline{\text { without using the limit definition of the }}$ derivative. Among the trigonometric derivatives, you may use only the derivatives of $\sin (x)$ and $\cos (x)$ without proof. Show all work! (8 points)

$$
\begin{aligned}
& =D_{x}\left[\frac{\cot (x)]}{\sin (x)}\right] \quad \text { (by the Quotient Identities) } \\
& =\frac{\text { Lo } \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{(\mathrm{Lo})^{2}} \text { (by the Quotient Rule for Differentiation) } \\
& =\frac{[\sin (x)] \cdot\left(D_{x}[\cos (x)]\right)-[\cos (x)] \cdot\left(D_{x}[\sin (x)]\right)}{[\sin (x)]^{2}} \\
& =\frac{[\sin (x)] \cdot[-\sin (x)]-[\cos (x)] \cdot[\cos (x)]}{[\sin (x)]^{2}} \\
& =\frac{-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)} \\
& =-\frac{\sin ^{2}(x)+\cos ^{2}(x)}{\sin ^{2}(x)}\left[\text { Can: }=-\left[\frac{\sin ^{2}(x)}{\sin ^{2}(x)}+\frac{\cos ^{2}(x)}{\sin ^{2}(x)}\right]=-\left[1+\cot ^{2}(x)\right]=-\csc ^{2}(x)\right] \\
& =-\frac{1}{\sin ^{2}(x)}(\text { by the Pythagorean Identities)} \\
& =-\csc ^{2}(x) \quad(\text { by the Reciprocal Identities }) \\
& \text { Q.E.D. }
\end{aligned}
$$

8) Let $f(x)=\left(x^{2}-4\right)^{3} \cdot(10$ points total $)$
a) Find $f^{\prime}(x)$. (3 points)

$$
\begin{aligned}
& f^{\prime}(x)=\left[3\left(x^{2}-4\right)^{2}\right] \cdot\left[D_{x}\left(x^{2}-4\right)\right](\text { Generalized Power Rule }) \\
& =\left[3\left(x^{2}-4\right)^{2}\right] \cdot[2 x]=6 x\left(x^{2}-4\right)^{2}
\end{aligned}
$$

b) Find the points on the graph of $y=f(x)$ (in the usual $x y$-plane) at which the tangent line is horizontal. (7 points)

Solve $f^{\prime}(x)=0$ for x, since horizontal lines have slope 0 .

$$
\begin{aligned}
6 x\left(x^{2}-4\right)^{2}= & 0 \\
x^{2}-4 & =0 \\
x=0 \quad \text { or } \quad x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

Find the corresponding y-coordinates by evaluating f at those x-values:

$$
\begin{aligned}
f(0) & =\left[(0)^{2}-4\right]^{3}=[-4]^{3}=-64 \\
f(x)=\left(x^{2}-4\right)^{3} \Rightarrow \quad f(2) & =\left[(2)^{2}-4\right]^{3}=[0]^{3}=0 \\
f(-2) & =\left[(-2)^{2}-4\right]^{3}=[0]^{3}=0
\end{aligned}
$$

The points we want are: $(0,-64),(2,0)$, and $(-2,0)$.

Note: f is an even function. Here is the graph of $y=f(x)$:

9) Consider the given equation $6 y+4 x^{5} y^{2}-\cos (y)=12$. Assume that it "determines" an implicit differentiable function f such that $y=f(x)$.
Find $\frac{d y}{d x}$ (you may use the y^{\prime} notation, instead). Use implicit differentiation, as in class. (11 points)

$$
\begin{aligned}
6 y+4 x^{5} y^{2}-\cos (y) & =12 \Rightarrow \\
D_{x}[6 y+\underbrace{4 x^{5} y^{2}}_{\substack{\text { Use hhe } \\
\text { Product Rule! }}}-\cos (y)] & =D_{x}(12) \\
6 y^{\prime}+\left[D_{x}\left(4 x^{5}\right)\right] \cdot\left[y^{2}\right]+\left[4 x^{5}\right] \cdot\left[D_{x}\left(y^{2}\right)\right]+[\sin (y)]\left[y^{\prime}\right] & =0 \\
6 y^{\prime}+\left[20 x^{4}\right] \cdot\left[y^{2}\right]+\left[4 x^{5}\right] \cdot\left[2 y y^{\prime}\right]+y^{\prime} \sin (y) & =0 \\
6 y^{\prime}+20 x^{4} y^{2}+8 x^{5} y y^{\prime}+y^{\prime} \sin (y) & =0
\end{aligned}
$$

Now, isolate the terms with y^{\prime} on one side.

$$
6 y^{\prime}+8 x^{5} y y^{\prime}+y^{\prime} \sin (y)=-20 x^{4} y^{2}
$$

Factor out y^{\prime} on the left side.

$$
y^{\prime}\left[6+8 x^{5} y+\sin (y)\right]=-20 x^{4} y^{2}
$$

Divide to solve for y^{\prime}.

$$
\frac{d y}{d x} \text { or } y^{\prime}=-\frac{20 x^{4} y^{2}}{6+8 x^{5} y+\sin (y)}
$$

10) Air is being pumped into a spherical balloon at the rate of 2.3 cubic feet per minute. The balloon maintains a spherical shape throughout. At what rate is the radius of the balloon changing when the radius is 30 inches in length?

- In your final answer, give the appropriate units, and round off your answer as a decimal to four significant digits. (Round off intermediate results to at least four significant digits.)
- Hint 1: If you forgot the "key formula" here, you can buy it from me for 2 points. You can't get negative points for this problem.
- Hint 2: One foot is equivalent to 12 inches. (11 points)

Step 1: Read the problem!

Step 2: Define variables / General diagram (optional here)

Let $t=$ time in minutes.
Let $V=$ the volume of the balloon [at time t].
Let $r=$ the radius of the balloon [at time t].
Step 3: Given / Find (what?) at the instant of interest.
Given: $\frac{d V}{d t}=2.3\left(\frac{\mathrm{ft}^{3}}{\min }\right)$.
Find: $\frac{d r}{d t}$ when $r=30 \mathrm{in}$.
Convert units: $(30$ 化 $)\left(\frac{1 \mathrm{ft}}{12 \dot{\mathrm{gh}}}\right)=2.5 \mathrm{ft}$.
Step 4: Key formula. Volume $V=\frac{4}{3} \pi r^{3}$.

Step 5: Perform Implicit Differentiation on the formula in Step 4.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \Rightarrow \\
D_{t}(V) & =D_{t}\left(\frac{4}{3} \pi r^{3}\right) \\
\frac{d V}{d t} & =\frac{4}{3} \pi\left(3 r^{2} \cdot \frac{d r}{d t}\right) \quad(\text { by the Chain Rule }) \\
\frac{d V}{d t} & =4 \pi r^{2} \cdot \frac{d r}{d t}
\end{aligned}
$$

Step 6: Plug in values at the instant of interest.

Step 7 : Solve for $\frac{d r}{d t}$.

$$
\begin{aligned}
& 2.3=4 \pi(2.5)^{2} \cdot \frac{d r}{d t} \\
& 2.3=25 \pi \cdot \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{2.3}{25 \pi} \quad\left(=\frac{23}{250 \pi}\right) \quad(\text { Type: } 23 \div 250 \div \pi=) \\
& \frac{d r}{d t} \approx 0.02928 \frac{\mathrm{ft}}{\mathrm{~min}}
\end{aligned}
$$

Step 8: Conclusion.

The radius of the balloon is growing at the rate of about $0.02928 \frac{\mathrm{ft}}{\mathrm{min}}$ when its radius is 30 inches.

Note on Unit Conversions:
Given: $\frac{d V}{d t}=\left(\frac{2.3 \mathrm{ft}^{3}}{\min }\right)\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)^{3}=\left(\frac{2.3 \mathrm{ft}^{1 / 3}}{\min }\right)\left(\frac{1728 \mathrm{in}^{3}}{1 \mathrm{ft}^{\text {3 }}}\right)=3974.4 \frac{\mathrm{in}^{3}}{\min }$
Find: $\frac{d r}{d t}$ when $r=30 \mathrm{in}$.
Step 7:

$$
\begin{aligned}
3974.4 & =4 \pi(30)^{2} \cdot \frac{d r}{d t} \\
3974.4 & =3600 \pi \cdot \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{3974.4}{3600 \pi} \quad\left(=\frac{39744}{36,000 \pi}=\frac{138}{125 \pi}\right) \\
\frac{d r}{d t} & \approx 0.3514 \frac{\mathrm{in}}{\mathrm{~min}}
\end{aligned}
$$

Observe:

$$
\left(\frac{0.3514 \mathrm{in}}{\min }\right)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right) \approx 0.02928 \frac{\mathrm{ft}}{\mathrm{~min}} \text {, our original answer. }
$$

