
QUIZ ON CHAPTER 4 - SOLUTIONS 
APPLICATIONS OF DERIVATIVES; MATH 150 – FALL 2016 – KUNIYUKI 

105 POINTS TOTAL, BUT 100 POINTS = 100% 
 

1) Consider 
  
f x( ) = x +5

16− x2  and the graph of 
 
y = f x( )  in the usual xy-plane in 

parts a) through f). If the answer to a part is none, write “NONE.” (25 points) 
 

a) Find and box in all critical numbers of   

� 

f . Show all work. (9 points) 
 

   
Dom f( ) = x ∈ x ≠ ±4{ } , since those are the real values for which   16 − x2 ≠ 0 . 

 

  

′f x( ) =
Lo ⋅D Hi( ) − Hi ⋅D Lo( )

Lo( )2 =
16− x2⎡⎣ ⎤⎦ ⋅ Dx x +5( )⎡⎣ ⎤⎦ − x +5⎡⎣ ⎤⎦ ⋅ Dx 16− x2( )⎡

⎣
⎤
⎦

16− x2( )2

=
16− x2⎡⎣ ⎤⎦ ⋅ 1⎡⎣ ⎤⎦ − x +5⎡⎣ ⎤⎦ ⋅ −2x⎡⎣ ⎤⎦

16− x2( )2 =
16− x2( ) − −2x2 −10x( )

16− x2( )2 = 16− x2 + 2x2 +10x

16− x2( )2

= x2 +10x +16

16− x2( )2 =
x +8( ) x + 2( )

16− x2( )2

 

 

The real values of x that make   

� 

′ f  DNE (namely, 

� 

±  4) are not in   Dom f( ) , so they 
cannot be critical numbers (CNs) of   

� 

f . 
 

Now, solve   ′f x( ) = 0  for real x in   Dom f( ) . 
  

  

′f x( ) = 0

x +8( ) x + 2( )
16− x2( )2 = 0

x +8( ) x + 2( ) = 0, 16− x2 ≠ 0; that is, x ≠ ±4( )

 

 

  x = −8  or  x = −2  
 

Our two real solutions are in   Dom f( ) , so they are critical numbers (CNs) of   f . 
 

The critical numbers (CNs) of   

� 

f  are:  
−8  and −2 . 

 

b) Find the x-intercept(s) on the graph of 
 
y = f x( ) . (2 points) 

 

Find the real zeros of   

� 

f . (We set   y = 0 , or   f x( ) = 0 , and solve for x.) 
 

  

x +5
16− x2 = 0

x +5= 0 and 16− x2 ≠ 0( )
x = −5

 

 

The x-intercept is at 
 
−5, 0( ) . 



c) Find the y-intercept on the graph of 
 
y = f x( ) . (2 points) 

(We set   x = 0  and solve for y. We evaluate:) 
 

  

f 0( ) =
0( ) +5

16− 0( )2 = 5
16

, so the y-intercept is at 
 

0, 5
16

⎛
⎝⎜

⎞
⎠⎟

. 

 

d) Find the equation(s) of any horizontal asymptote(s) for the graph of 

 
y = f x( ) . (3 points) 

  

x +5
16− x2  is rational and “bottom-heavy”; the degree of the denominator (2) is greater 

than that of the numerator (1). The horizontal asymptote is at 
  
y = 0 , the x-axis. 

 

e) Find the equation(s) of any vertical asymptote(s) for the graph of 

 
y = f x( ) . (4 points) 

The denominator,   16− x2 , has only 4 and  −4  as its real zeros. 
  

x +5
16− x2  is simplified; 

the numerator and denominator have no common real zeros and no nontrivial factors 
in common. The vertical asymptotes are at 

  
x = 4  and  x = −4 . 

 

f) Find the absolute maximum point   x, y( )  
and the absolute minimum point 

  x, y( )  
on the graph of  y = f x( ) , if x is restricted to the interval  −3, 0⎡⎣ ⎤⎦ . 

Indicate which point is the absolute maximum point and which is the 
absolute minimum point. (5 points) 

 

  

� 

f  is continuous on    except at − 4  and 4. In particular,   

� 

f  is continuous on the 
closed, bounded interval  

−3, 0⎡⎣ ⎤⎦ , so the Extreme Value Theorem (EVT) applies, and 

there exist absolute maxima and minima on  
−3, 0⎡⎣ ⎤⎦ . Our candidates for x are  −2  

[the critical number (CN) of   

� 

f  in  
−3, 0( ) ] and the interval endpoints,  −3  and 0. 

x  
f x( )  Answers 

  a = −3 
  
f −3( ) = 2

7
≈ 0.286   

 −2  
  
f −2( ) = 1

4
= 0.25   

−2, 0.25( )  is the A.Min.Pt. on  
−3, 0⎡⎣ ⎤⎦ . 

  b = 0  
  
f 0( ) = 5

16
= 0.3125   

0, 0.3125( )  is the A.Max.Pt. on  
−3, 0⎡⎣ ⎤⎦ . 

 

 



2) State Rolle’s Theorem, including the hypotheses and the conclusion. Write the 
conclusion using the algebraic notation we used in class; don’t just refer to 
tangent lines or secant lines. (8 points) 

 

If a function   

� 

f  is continuous on a closed, bounded interval     

� 

a, b[ ]  and is differentiable on 

the open interval     

� 

a,b( ) , and if  
f a( ) = f b( ) , then   ∃c ∈ a,b( )  such that   ′f c( ) = 0  (that 

is, the tangent line is horizontal there). (We assume  a < b .) 
 

 

3) Sketch the graph of  y = f x( ) , where 
  
f x( ) = x3 − 3x2 − 24x +13 , in the usual  

xy-plane. (27 points) 
 
• Find all critical numbers of   f   and label them CNs. 
 

• Find all points at critical numbers.  
Indicate these points on your graph. 

 

• Find all inflection points (if any) and label them IPs.  
Indicate these points on your graph. 

 

• Classify all points at critical numbers as local maximum points,  
local minimum points, or neither. 

 

• Find the y-intercept. You do not have to find x-intercepts. 
 

• Have your graph show where   f   is increasing / decreasing and where the 
graph is concave up / concave down. Justify with work, as in class. 

 

• You may round off any non-integers to five significant digits. 
 

• Show all steps, as we have done in class. 
 
Step 1:   f   is a polynomial function. Therefore, 
 

•    Dom f( ) =  . 
 

•   f   is continuous on   . 
 

•   The graph has no vertical asymptotes (VAs) and no holes. 
Furthermore, since   f   is nonconstant and nonlinear, the graph has no 
horizontal asymptotes (HAs) and no slant asymptotes (SAs). 

 

For this   f : 
 

• The y-intercept is at the point  0,13( ) . This is because   
f 0( ) = 13, the constant 

term from the given polynomial. 
 

•   f   is neither even nor odd. 
 

Step 2: Find   

� 

′ f x( )  and critical numbers (CNs) of   f . 
 

  ′f x( ) = 3x2 − 6x − 24 = 3 x2 − 2x −8( ) = 3 x + 2( ) x − 4( )  
 

 ′f  is continuous on   . In particular, it is never undefined (“DNE”). The real 
solutions of   ′f x( ) = 0  are given by   x = −2  and   x = 4 , which are in Dom f( ) . 
 

The CNs are  − 2  and 4. 
 
 
 
 



Step 3: Do a sign diagram for 

� 

′ f  and classify the points at the CNs. 
 

f   is continuous on   , so the First Derivative Test (1st DT) should apply wherever 
we have CNs. Both   

� 

f  and 

� 

′ f  are continuous on   , so we use just the CNs as 
“fenceposts” on the real number line where  ′f  could change sign. 

 

x Test x = 

� 

−3  − 2  Test x = 0 4 Test x = 5 

� 

′ f  sign 
(see below) + 0 

� 

−  0 + 

f      
Classify Points at 
CNs (Use 1st DT)  L.Max. 

Pt.  L.Min. 
Pt.  

Sub into   

� 

f x( ) 
to get y 

   
−2, f −2( )( )  

 
− 2, 41( )  

   
4, f 4( )( )  

 
4, − 67( )  

 

 

  

′f x( ) = 3( ) x + 2( ) x − 4( ) ⇒

′f −3( ) = +( ) −( ) −( ) = +

′f 0( ) = +( ) +( ) −( ) = −

′f 5( ) = +( ) +( ) +( ) = +

 

 

The multiplicities of the zeros of  ′f  are both odd (1), so signs alternate in our 
“windows.” Furthermore, the graph of  y = ′f x( )  is an upward-opening parabola. 

 

Step 4: Sketch a “skeleton graph” for  y = f x( )  (optional). 
 

Horizontal tangent lines are indicated in brown. 
 

 
 

Step 5: Find 
 
′′f x( )  and possible inflection numbers (PINs). 

  

′f x( ) = 3x2 − 6x − 24 ⇒

′′f x( ) = 6x − 6 = 6 x −1( )  

 

  

� 

′ ′ f  is continuous on   . In particular, it is never undefined (“DNE”).  
The real solution of   ′′f x( ) = 0  is given by   x = 1 , which is in Dom f( ) . 

 

The PIN is 1. 
 



Step 6: Do a sign diagram for   

� 

′ ′ f  and find inflection points (IPs). 
 

  

� 

f , 

� 

′ f , and  ′′f  are continuous on   , so we use just the PINs as “fenceposts” on 
the real number line where  ′′f  could change sign. 

 

x Test x = 0 1 Test x = 2 
  

� 

′ ′ f  sign 
(see below) 

� 

−   

� 

+  

f   graph CD ∩( )   CU 

� 

∪( )  

Inflection 
Points (IPs)?  

Yes, IP 
(  f   cont. here, 

concavity changes) 
 

Sub into   

� 

f x( ) 
to get y 

   
1, f 1( )( )  

 
1, −13( )  

 

 
 

  

′′f x( ) = 6( ) x −1( ) ⇒

′′f 0( ) = +( ) −( ) = −

′′f 2( ) = +( ) +( ) = +  
 

The multiplicity of   x = 1  as a zero of  ′′f  is 1 (odd), so  ′′f  changes signs. 

Also, the graph of  y = ′′f x( )  is a rising line with x-intercept at  1, 0( ) . 
 

Step 7: Sketch the graph of  y = f x( ) . (Remember our skeleton graph!) 
 

 
 

 
 

“Zooming out (in the long run),” the graph will resemble a “rising snake.” The leading 
term of   x3 − 3x2 − 24x +13  is   x3 , which has odd degree and a positive leading 
coefficient. 
 
 



4) You do not have to show work for these problems. (9 points total) 
 

a) The following is true of the polynomial function   f :

  
f 3( ) = 4, ′f 3( ) = 0, ′′f 3( ) = 5. True or False: The point 

 
3, 4( )  must be a local 

maximum point for the graph of   y = f x( ) . Box in one: 
 

  True     False 
 

The point  
3, 4( )  is a local minimum point by the Second Derivative Test.   ′f 3( ) = 0.   

The graph of  y = f x( )  is concave up “at” [actually, “on a neighborhood of”]   x = 3. 
 

b) The following is true of the polynomial function g : 

  
g 6( ) = −2, ′g 6( ) = 3, ′′g 6( ) = −2.  True or False: The point 

 
6, − 2( )  must be a 

local maximum point for the graph of  y = g x( ). Box in one: 
 

  True     False 
 

6 is not a critical number (CN) of g, since   ′g 6( )  is neither 0 nor undefined (“DNE”). 
Local maxima must be at critical numbers.  

 

c) The function h has the interval 
 
6, 10⎡⎣ ⎤⎦  as its domain, and h is continuous on 

that interval. True or False: On the interval 
 
6, 10⎡⎣ ⎤⎦ , there is an absolute 

minimum point for the graph of  y = h x( )  in the usual xy-plane. Box in one: 
 

  True     False 
 

This is true by the Extreme Value Theorem (EVT), because h is continuous on the 
closed, bounded interval  

6, 10⎡⎣ ⎤⎦ . 
 

5) Let  s t( )  be the height in feet (at time t in seconds) of a particle that is moving 

along a vertical line. If 
  
′s 4( ) = 3 ft

sec
, and 

  
′′s 4( ) = −5 ft

sec2 , what is the particle 

doing “at” (really, on a neighborhood of)   t = 4  seconds? Box in one: (3 points) 
 

a) The particle is rising and is speeding up. 
 

b) The particle is rising and is slowing down. 
 

c) The particle is falling and is speeding up. 
 

d) The particle is falling and is slowing down. 
 

  ′
s 4( ) = v 4( ) > 0 , so the particle’s height is increasing, and the particle is rising.  

Because   ′
s 4( ) = v 4( ) > 0  and   ′′

s 4( ) = a 4( ) < 0 , the height is increasing at a 
decreasing rate, and the particle is slowing down. (v is velocity; a is acceleration.) 

 
 



6) We want to approximate a root (or zero) of   2x4 + x −1 using Newton’s Method 
with   x1 = −2  as our “seed” (our first approximation). (12 points total) 

 

a) Find 

� 

x2 , which is our second approximation using Newton’s Method. 
When rounding, use five significant digits; round off your answer to four 
decimal places. 

 

Let   
f x( ) = 2x4 + x −1. Then,   ′f x( ) = 8x3 +1. 

 

    x1 = −2 ⇒  
 

    

x2 = x1 −
f x1( )
′f x1( ) = −2 −

f −2( )
′f −2( ) = −2 −

2 −2( )4
+ −2( )−1

8 −2( )3
+1

= −2 − 29
−63

= − 97
63

≈ −1.5397

 

 

b) Find   x3 , which is our third approximation using Newton’s Method. 
When rounding, use five significant digits; round off your answer to four 
decimal places. 

 

  

x3 = x2 −
f x2( )
′f x2( ) = −1.5397 −

f −1.5397( )
′f −1.5397( )

= −1.5397 −
2 −1.5397( )4

+ −1.5397( )−1

8 −1.5397( )3
+1

≈ −1.2312

 

 

Note 1: The real roots (zeros) of   

� 

f  are  −1  and about 0.647799. The two other 
complex roots are imaginary. 
 

Note 2:   x4 ≈ −1.0615, x5 ≈ −1.0057, x6 ≈ −1.0001, x7 ≈ −1.0000, x8 ≈ −1.0000 . 
The last two iterates are equal to four decimal places, so we would take − 1.0000 
as our final approximation. 
 

Note 3: We could have simplified the iteration formula (for   n∈+ ): 
 

  
xn+1 = xn −

2xn
4 + xn −1
8xn

3 +1
=

xn 8xn
3 +1( )

8xn
3 +1

−
2xn

4 + xn −1
8xn

3 +1
=

6xn
4 +1

8xn
3 +1

 
 

 

7) Prove that, among all rectangles with fixed perimeter p, where   p > 0 , the 
largest in area is a square. (Keep p in your work; don’t just pick a numerical 
value for p.) 

 

• Show all work, and verify that a square is, in fact, the rectangle with the 
absolute maximum area, as in class. 
 

• Do not use any shortcut precalculus formulas or methods when methods from 
calculus can be used instead. 

 

(21 points) 
 
 

Step 1: Read the problem. 
 
 
 



Step 2: Set up a diagram, a table, etc. 
 

Let l and w be the dimensions of a rectangle with perimeter p. 
 

 
 

Step 3: Write the primary equation. 
 

Maximize A, the area of the rectangle. 
 

A = l w  
 

Step 4: Write any relevant secondary (constraint) equations. 
 

Perimeter p = 2l + 2w  
 

Step 5: Express A in terms of only one variable, say l. 
 

 

Solve the constraint equation p = 2l + 2w  for w in terms of l, say: 
 

        
2l + 2w = p

2w = p − 2l

w = p
2
− l Revised Secondary / Constraint equation( )

  

Express A in terms of l. Incorporate the constraint into the primary equation: 
 

A = l w

A = l p
2
− l⎛

⎝⎜
⎞
⎠⎟

A =
p
2
l − l2

 

 

Let f l( ) = p
2
l − l2 .   f   is our objective function. 

 

Step 6: Write the “feasible domain” of  f. 
 

We require l ≥ 0 . We also require w ≥ 0 , but we will rewrite this in terms of l : 
 

    

w ≥ 0
p
2
− l ≥ 0 From the Revised Constraint Equation( )
p
2
≥ l

l ≤ p
2

           Dom f( ) = 0, p
2

⎡
⎣⎢

⎤
⎦⎥

. 

 

Note: l = 0 and w = 0 may not make practical sense, but they are permissible, and 
it is convenient to have a closed interval as our feasible domain. 

 
Maximize A; that is, Maximize f 

Find critical numbers (CNs) of  f  in 0,
p
2

⎛
⎝⎜

⎞
⎠⎟ . Remember that p is a constant! 

f l( ) = p
2
l − l2 ⇒

′f l( ) = p
2
− 2l never undefined ("DNE") on 0, p

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 



Solve   ′f l( ) = 0  for l in 0,
p
2

⎛
⎝⎜

⎞
⎠⎟ : 

 

        

p
2
− 2l = 0

p
2
= 2l

2l = p
2

l = p
4

 

 

Now,
 

p
4
∈ 0, p

2
⎛
⎝⎜

⎞
⎠⎟ , so it is a critical number (CN). 

 

If l =
p
4

, then, by the Revised Constraint Equation: 

w = p
2
− l = p

2
− p
4

= p
4

 and thus l = w. 

The corresponding rectangle is a square. 
 

Verify that this CN leads to the absolute maximum of   f   on the feasible domain. 
 

Method 1: Extreme Value Theorem (EVT) Method 

f   is continuous on the closed, bounded domain 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

, so the Extreme 

Value Theorem (EVT) applies. There exists an absolute maximum of   f   on 

0, p
2

⎡
⎣⎢

⎤
⎦⎥

. Our candidates for l are 
p
4

, which is the critical number (CN) of   

f   in 0,
p
2

⎛
⎝⎜

⎞
⎠⎟ , and the endpoints of the interval 0,

p
2

⎡
⎣⎢

⎤
⎦⎥

. 
 

 

l f l( )  Comments 

  a = 0    
f 0( ) = 0   

p
4

 
  
f p

4
⎛
⎝⎜

⎞
⎠⎟
=

p2

16
 

There is an absolute maximum 

of   f   on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

 at 
p
4

. 

b = p
2

 
  
f p

2
⎛
⎝⎜

⎞
⎠⎟
= 0   

 
Method 2a: General Second Derivative approach 

 

′f l( ) = p
2
− 2l ⇒

′′f l( ) = −2 ⇒ ′′f l( ) < 0, ∀l ∈ 0, p
2

⎛
⎝⎜

⎞
⎠⎟ , including l = p

4
.
 

 



The graph of  y = f l( )  is concave down on 0,
p
2

⎛
⎝⎜

⎞
⎠⎟ , and  f  is continuous 

on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

, so there must be an absolute maximum on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

 at l =
p
4

, 

the sole critical number (CN) of   f . 
 

 

Method 2b: Second Derivative Test approach 
 

• ′f
p
4

⎛
⎝⎜

⎞
⎠⎟
= 0 , so we may apply the Second Derivative Test at l = p

4
. 

 

• ′′f p
4

⎛
⎝⎜

⎞
⎠⎟ = −2 < 0 , so the graph of  y = f l( )  is concave down “at” 

(actually, “on a neighborhood of”) l =
p
4

, and there must be a local 

maximum there. 
 

• Also,   f   is continuous on the feasible domain, 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

, and  
 

• 
p
4

 is the only critical number (CN) of   f   in 0,
p
2

⎛
⎝⎜

⎞
⎠⎟ . 

 

Therefore, the local maximum of   f   at l =
p
4

 must also be an absolute 

maximum on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

. 
 

Method 3: First Derivative approach 
 

′f l( ) = p
2
− 2l  

 

•   ′f l( ) > 0  on the l-interval 0,
p
4

⎛
⎝⎜

⎞
⎠⎟ , 

 

•   ′f l( ) < 0  on the l-interval 
p
4
, p
2

⎛
⎝⎜

⎞
⎠⎟ , and 

 

•   

� 

f  is continuous on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

.  
 

Therefore, there must be an absolute maximum on 0,
p
2

⎡
⎣⎢

⎤
⎦⎥

 at l = p
4

. 
 

l 
  

0, p
4

⎛
⎝⎜

⎞
⎠⎟

 
  
p
4

  
  

p
4

, p
2

⎛
⎝⎜

⎞
⎠⎟

 

′f  sign + 0 

� 

−  
f      

f   is cont. on 

0, p
2

⎡
⎣⎢

⎤
⎦⎥

.  A.Max.  

 


