QUIZ ON CHAPTER 7 - SOLUTIONS

LOG AND EXPONENTIAL FUNCTIONS; MATH 150 – FALL 2016 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

- 1) Find the following derivatives. Simplify completely unless you are told not to. Do <u>not</u> use logarithmic differentiation unless you are told to. (60 points total)
 - a) $D_{w} \left(\ln \left[\sin(4w) \right] \right)$ (6 points) $= \frac{1}{\sin(4w)} \cdot D_{w} \left[\sin(4w) \right] = \frac{1}{\sin(4w)} \cdot \left[\cos(4w) \right] \cdot \left[4 \right] = \boxed{4\cot(4w)}$
 - b) $D_{\theta} \left(\log \left[\sec(\theta) \right] \right)$ (6 points) $= D_{\theta} \left(\log_{10} \left[\sec(\theta) \right] \right) = D_{\theta} \left[\frac{\ln \left[\sec(\theta) \right]}{\ln(10)} \right]$ (by Change-of-Base Property of Logs) $= \frac{1}{\ln(10)} \cdot D_{\theta} \left(\ln \left[\sec(\theta) \right] \right) = \frac{1}{\ln(10)} \cdot \frac{1}{\sec(\theta)} \cdot D_{\theta} \left[\sec(\theta) \right]$ $= \frac{1}{\ln(10)} \cdot \frac{1}{\sec(\theta)} \cdot \left(\frac{1}{\sec(\theta)} \cdot \tan(\theta) \right) = \left[\frac{\tan(\theta)}{\ln(10)} \right]$
 - c) $D_x \left[\left(2x + 1 \right)^9 \cdot e^{7x} \right]$ (7 points)

You do not have to factor your answer.

$$= \left(D_x \left[(2x+1)^9 \right] \cdot \left[e^{7x} \right] + \left[(2x+1)^9 \right] \cdot \left[D_x (e^{7x}) \right]$$
(by the Product Rule for Derivatives)
$$= \left(\left[9(2x+1)^8 \right] \left[D_x (2x+1) \right] \right) \cdot \left[e^{7x} \right] + \left[(2x+1)^9 \right] \cdot \left[7e^{7x} \right]$$

$$= \left(\left[9(2x+1)^8 \right] \left[2 \right] \right) \cdot \left[e^{7x} \right] + \left[(2x+1)^9 \right] \cdot \left[7e^{7x} \right]$$

$$= \left[18(2x+1)^8 e^{7x} + 7(2x+1)^9 e^{7x}, \text{ or } (2x+1)^8 e^{7x} \left[18 + 7(2x+1) \right], \text{ or } (2x+1)^8 e^{7x} \left[18 + 14x + 7 \right], \text{ or } (2x+1)^8 (14x+25) e^{7x} \right]$$

d)
$$D_r \left[7^{\csc(r)} \right]$$
 (6 points)

Answer only is fine, though logarithmic differentiation may help.

$$= \left[7^{\csc(r)}\ln(7)\right] \cdot \left(D_r\left[\csc(r)\right]\right) = \left[7^{\csc(r)}\ln(7)\right] \cdot \left[-\csc(r)\cot(r)\right]$$
$$= \left[-7^{\csc(r)}\ln(7)\csc(r)\cot(r)\right]$$

e)
$$D_x \left[\frac{(5x-7)^4 (e^x)}{\sqrt[3]{x-1}} \right]$$
 (18 points)

You <u>must</u> use logarithmic differentiation and apply appropriate laws of logarithms whenever they apply, as in class. You do <u>not</u> have to write your final answer as a single fraction.

Let
$$y = \frac{\left(5x - 7\right)^4 \left(e^x\right)}{\sqrt[3]{x - 1}} \implies$$

$$\ln(y) = \ln\left[\frac{(5x-7)^4(e^x)}{\sqrt[3]{x-1}}\right]$$
 (We will expand the right side using Log Laws.)

$$\ln(y) = \ln\left[\left(5x - 7\right)^4\right] + \ln(e^x) - \ln\left(\sqrt[3]{x - 1}\right)$$
 (by Product, Quotient Rules of Logs)

$$\ln(y) = \ln\left[\left(5x - 7\right)^4\right] + x - \ln\left[\left(x - 1\right)^{1/3}\right]$$
 (by Inverse Properties of Logs)

$$\ln(y) = 4 \ln(5x-7) + x - \frac{1}{3} \ln(x-1)$$
 (by Power Rule of Logs) \Rightarrow

(Note: Technically, we should write ln|y|, etc., but don't worry.)

Use Implicit Differentiation to D_x both sides.

$$D_{x} \Big[\ln(y) \Big] = 4 \cdot D_{x} \Big[\ln(5x - 7) \Big] + D_{x} \Big[x \Big] - \frac{1}{3} \cdot D_{x} \Big[\ln(x - 1) \Big]$$

$$\frac{1}{y} \cdot y' = 4 \Big(\frac{1}{5x - 7} \cdot 5 \Big) + 1 - \frac{1}{3} \Big(\frac{1}{x - 1} \cdot 1 \Big)$$

$$\frac{y'}{y} = \frac{20}{5x - 7} + 1 - \frac{1}{3(x - 1)}$$

Multiply both sides by y, and expand y in terms of x.

$$y' = \left(\frac{20}{5x - 7} + 1 - \frac{1}{3(x - 1)}\right)y$$

$$y' = \left[\frac{20}{5x - 7} + 1 - \frac{1}{3(x - 1)} \right] \left[\frac{\left(5x - 7\right)^4 \left(e^x\right)}{\sqrt[3]{x - 1}} \right], \text{ or } \frac{e^x \left(5x - 7\right)^3 \left(15x^2 + 19x - 32\right)}{3(x - 1)^{4/3}}$$

f)
$$D_x \left[x^{(\sqrt{x})} \right]$$
 (11 points)

You must use logarithmic differentiation.

You do not have to write your final answer as a single fraction.

We want to differentiate something of the form $[f(x)]^{g(x)}$, so let's use Logarithmic Differentiation to help bring that exponent down to earth!

Let
$$y = x^{(\sqrt{x})} \implies$$

$$\ln(y) = \ln\left[x^{(\sqrt{x})}\right]$$

$$\ln(y) = (\sqrt{x})\ln(x) \quad \text{(by Power Rule of Logs)} \implies$$

Now, use Implicit Differentiation to D_x both sides.

$$D_{x} \Big[\ln(y) \Big] = D_{x} \Big[\Big(\sqrt{x} \Big) \ln(x) \Big]$$

Now, use the Product Rule for Derivatives.

$$\frac{1}{y} \cdot y' = \left[D_x \left(\sqrt{x} \right) \right] \cdot \left[\ln(x) \right] + \left[\sqrt{x} \right] \cdot \left(D_x \left[\ln(x) \right] \right)$$

$$\frac{y'}{y} = \left[D_x \left(x^{1/2} \right) \right] \cdot \left[\ln(x) \right] + \left[\sqrt{x} \right] \cdot \left(D_x \left[\ln(x) \right] \right)$$

$$\frac{y'}{y} = \left[\frac{1}{2} x^{-1/2} \right] \cdot \left[\ln(x) \right] + \left[\sqrt{x} \right] \cdot \left[\frac{1}{x} \right]$$

$$\frac{y'}{y} = \frac{\ln(x)}{2\sqrt{x}} + \frac{1}{\sqrt{x}}$$

Multiply both sides by y, and expand y in terms of x.

$$y' = \left[\frac{\ln(x)}{2\sqrt{x}} + \frac{1}{\sqrt{x}}\right]y$$

$$y' = \left[\frac{\ln(x) + 2}{2\sqrt{x}}\right] \left[x^{(\sqrt{x})}\right], \text{ or } \frac{x^{\left(\sqrt{x} - \frac{1}{2}\right)} \left[\ln(x) + 2\right]}{2}$$

g)
$$D_x \left[\tan^4 \left(e^x \right) \right]$$
 (6 points)

$$= D_x \left[\left[\tan \left(e^x \right) \right]^4 \right)$$

$$= 4 \left[\tan \left(e^x \right) \right]^3 \cdot D_x \left[\tan \left(e^x \right) \right]$$
 (by the Generalized Power Rule of Diff'n.)

$$= 4 \left[\tan \left(e^x \right) \right]^3 \cdot \left[\sec^2 \left(e^x \right) \right] \cdot D_x \left[e^x \right] = 4 \left[\tan \left(e^x \right) \right]^3 \cdot \left[\sec^2 \left(e^x \right) \right] \cdot \left[e^x \right]$$

$$= 4 \left[4 e^x \tan^3 \left(e^x \right) \sec^2 \left(e^x \right) \right]$$

2) Evaluate the following integrals. Simplify completely. (45 points total)

a)
$$\int_{-4}^{-2} \frac{1}{4x+5} dx$$
 (10 points)

Give an exact answer; do not approximate.

The integrand is continuous on $\begin{bmatrix} -4, -2 \end{bmatrix}$. Using Guess-and-Check:

$$\int_{-4}^{-2} \frac{1}{4x+5} dx = \left[\frac{1}{4} \ln |4x+5| \right]_{-4}^{-2} = \left[\frac{1}{4} \ln |4(-2)+5| \right] - \left[\frac{1}{4} \ln |4(-4)+5| \right]$$

$$= \frac{1}{4} \ln |-3| - \frac{1}{4} \ln |-11| = \left[\frac{1}{4} \left[\ln(3) - \ln(11) \right], \text{ or } \frac{1}{4} \ln \left(\frac{3}{11} \right), \text{ or } \ln \left(\sqrt[4]{\frac{3}{11}} \right) \right]$$

Without using Guess-and-Check:
$$\begin{bmatrix} \text{Let } u = 4x + 5 \implies \\ du = 4 dx \implies \left(\text{Can use: } dx = \frac{1}{4} du \right) \end{bmatrix}$$

Change the limits of integration: $\begin{vmatrix} x = -4 & \Rightarrow & u = 4(-4) + 5 = -11 & \Rightarrow & u = -11 \\ x = -2 & \Rightarrow & u = 4(-2) + 5 = -3 & \Rightarrow & u = -3 \end{vmatrix}$

$$\int_{-4}^{-2} \frac{1}{4x+5} dx = \frac{1}{4} \int_{-4}^{-2} \left[\frac{1}{4x+5} \right] \cdot 4 dx \text{ (Compensation)} = \frac{1}{4} \int_{-11}^{-3} \frac{du}{u} = \frac{1}{4} \left[\ln |u| \right]_{-11}^{-3}$$

$$= \frac{1}{4} \left(\ln |-3| - \ln |-11| \right) = \frac{1}{4} \left[\ln (3) - \ln (11) \right], \text{ or } \frac{1}{4} \ln \left(\frac{3}{11} \right), \text{ or } \ln \left(\frac{4}{11} \right)$$

b)
$$\int e^{2x} \sec(e^{2x} + 1) dx$$
 (9 points)

Let
$$u = e^{2x} + 1 \implies$$

$$du = 2e^{2x} dx \implies \left(\text{Can use: } e^{2x} dx = \frac{1}{2} du \right)$$

$$\int e^{2x} \sec(e^{2x} + 1) dx = \frac{1}{2} \int 2e^{2x} \sec(e^{2x} + 1) dx \text{ (Compensation)}$$

$$= \frac{1}{2} \int \left[\sec(e^{2x} + 1) \right] \cdot 2e^{2x} dx = \frac{1}{2} \int \sec(u) du = \frac{1}{2} \ln \left| \sec(u) + \tan(u) \right| + C$$

$$= \frac{1}{2} \ln \left| \sec(e^{2x} + 1) + \tan(e^{2x} + 1) \right| + C, \text{ or } \ln \left(\sqrt{\left| \sec(e^{2x} + 1) + \tan(e^{2x} + 1) \right|} \right) + C$$

c)
$$\int 8e^{-6t} dt$$
 (4 points)

$$\int 8e^{-6t} dt = 8 \int e^{-6t} dt \text{ (You can let: } u = -6t.\text{)}$$

$$= 8 \left[\frac{e^{-6t}}{-6} \right] + C = \left[-\frac{4}{3}e^{-6t} + C, \text{ or } C - \frac{4}{3e^{6t}} \right]$$

(You can check that its derivative is the integrand.)

d)
$$\int \frac{2^{\ln(x)}}{x} dx$$
 (7 points)
$$u = \ln(x) \implies du = \frac{1}{x} dx$$

$$\int \frac{2^{\ln(x)}}{x} dx = \int \left[2^{\ln(x)}\right] \cdot \left[\frac{1}{x} dx\right] = \int 2^{u} du = \frac{2^{u}}{\ln(2)} + C = \frac{2^{\ln(x)}}{\ln(2)} + C$$

e)
$$\int \tan(x) dx$$
 (9 points)

You must show all work, as in class!

$$\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$$

$$= -\int \frac{-\sin(x)}{\cos(x)} dx \text{ (by Compensation)}$$

$$= -\int \frac{du}{u}$$

$$= -\ln|u| + C$$

$$= -\ln|\cos(x)| + C, \text{ or } \ln(|\cos(x)|^{-1}) + C,$$
or $\ln|\sec(x)| + C$

f)
$$\int \csc(5x) dx$$
 (6 points)

Answer only is fine.

$$\int \csc(5x) dx = \left[\frac{1}{5} \ln \left| \csc(5x) - \cot(5x) \right| + C \right]$$

Showing the *u*-sub (Optional):

$$u = 5x \implies du = 5 dx \implies \left(\text{Can use: } dx = \frac{1}{5} du \right)$$

$$\int \csc(5x) dx = \frac{1}{5} \int \left[5\csc(5x) \right] dx \text{ (Compensation)}$$

$$= \frac{1}{5} \int \left[\csc(5x) \right] \cdot \left[5 dx \right]$$

$$= \frac{1}{5} \int \csc(u) du$$

$$= \frac{1}{5} \ln \left| \csc(u) - \cot(u) \right| + C$$

$$= \left| \frac{1}{5} \ln \left| \csc(5x) - \cot(5x) \right| + C \right|$$