SOLUTIONS TO THE FINAL - PART 1

MATH 150 - FALL 2016 - KUNIYUKI
PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS
No notes, books, or calculators allowed.
135 points: 45 problems, 3 pts. each. You do not have to algebraically simplify or box in your answers, unless you are instructed to. Fill in all blanks after " $="$ signs.

DERIVATIVES (66 POINTS TOTAL)

$$
\begin{aligned}
& D_{x}\left(x^{\sqrt{2}}\right)=\sqrt{2} x^{\sqrt{2}-1} \\
& D_{x}\left[x^{3} \cos (x)\right]=\left[D_{x}\left(x^{3}\right)\right] \cdot[\cos (x)]+\left[x^{3}\right] \cdot\left(D_{x}[\cos (x)]\right) \text { (by Product Rule) } \\
& =\left[3 x^{2}\right][\cos (x)]+\left[x^{3}\right][-\sin (x)] \\
& =3 x^{2} \cos (x)-x^{3} \sin (x) \text {, or } x^{2}[3 \cos (x)-x \sin (x)] \\
& D_{x}\left(\frac{x^{7}}{2 x-5}\right)=\frac{[2 x-5] \cdot\left[D_{x}\left(x^{7}\right)\right]-\left[x^{7}\right] \cdot\left[D_{x}(2 x-5)\right]}{(2 x-5)^{2}}(\text { by Quotient Rule }) \\
& =\frac{[2 x-5] \cdot\left[7 x^{6}\right]-\left[x^{7}\right] \cdot[2]}{(2 x-5)^{2}}, \text { or } \frac{12 x^{7}-35 x^{6}}{(2 x-5)^{2}}, \text { or } \frac{x^{6}(12 x-35)}{(2 x-5)^{2}} \\
& D_{x}\left[\left(e^{x}+4\right)^{6}\right]=\left[6\left(e^{x}+4\right)^{5}\right] \cdot\left[D_{x}\left(e^{x}+4\right)\right]=\left[6\left(e^{x}+4\right)^{5}\right] \cdot\left[e^{x}\right] \\
& =6 e^{x}\left(e^{x}+4\right)^{5} \quad(\text { by Gen. Power Rule }) \\
& D_{x}[\tan (x)]=\sec ^{2}(x) \\
& D_{x}[\cot (x)]=-\csc ^{2}(x) \\
& D_{x}[\sec (x)]=\sec (x) \tan (x) \\
& D_{x}[\csc (x)]=-\csc (x) \cot (x) \\
& D_{x}[\sin (4 x+7)]=[\cos (4 x+7)] \cdot\left[D_{x}(4 x+7)\right]=[\cos (4 x+7)] \cdot[4] \\
& =4 \cos (4 x+7)(\text { by Gen. Trig Rule }) \\
& D_{x}\left(e^{\frac{1}{3} x}\right)=\left[e^{\frac{1}{3} x}\right] \cdot\left[D_{x}\left(\frac{1}{3} x\right)\right]=\left[e^{\frac{1}{3} x}\right] \cdot\left[\frac{1}{3}\right]=\frac{1}{3} e^{\frac{1}{3} x}
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}\left(5^{x}\right)=5^{x} \ln (5) \\
& D_{x}\left(10^{x^{3}}\right)=\left[10^{x^{3}} \ln (10)\right] \cdot\left[D_{x}\left(x^{3}\right)\right]=\left[10^{x^{3}} \ln (10)\right] \cdot\left[3 x^{2}\right]=3 x^{2} \cdot 10^{x^{3}} \ln (10) \\
& D_{x}\left[\ln \left(7 x^{2}+1\right)\right]=\left[\frac{1}{7 x^{2}+1}\right] \cdot\left[D_{x}\left(7 x^{2}+1\right)\right]=\left[\frac{1}{7 x^{2}+1}\right] \cdot[14 x]=\frac{14 x}{7 x^{2}+1} \\
& D_{x}\left[\log _{9}(x)\right]=D_{x}\left[\frac{\ln (x)}{\ln (9)}\right]=\left[\frac{1}{\ln (9)}\right] \cdot\left(D_{x}[\ln (x)]\right)=\left[\frac{1}{\ln (9)}\right] \cdot\left[\frac{1}{x}\right]=\frac{1}{x \ln (9)} \\
& D_{x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} \\
& D_{x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
& D_{x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
D_{x}\left[\sec ^{-1}(x)\right]=\frac{1}{x \sqrt{x^{2}-1}} \quad \text { (Assume the usual range for } \sec ^{-1}(x) \text { in our class.) }
$$

$$
D_{x}\left[\tan ^{-1}(7 x)\right]=\left[\frac{1}{1+(7 x)^{2}}\right] \cdot\left[D_{x}(7 x)\right]=\left[\frac{1}{1+(7 x)^{2}}\right] \cdot[7]=\frac{7}{1+49 x^{2}}
$$

$$
D_{x}[\sinh (x)]=\cosh (x)
$$

$$
D_{x}[\cosh (x)]=\sinh (x)
$$

$$
D_{x}[\operatorname{sech}(x)]=-\operatorname{sech}(x) \tanh (x)
$$

$$
\begin{aligned}
& \int x^{9} d x=\frac{x^{10}}{10}+C \\
& \int \frac{1}{x} d x=\ln |x|+C \\
& \int e^{-7 x} d x=\frac{e^{-7 x}}{-7}+C=-\frac{e^{-7 x}}{7}+C, \text { or } C-\frac{1}{7 e^{7 x}} \\
& \int 6^{x} d x=\frac{6^{x}}{\ln (6)}+C \\
& \int \sin (x) d x=-\cos (x)+C \\
& \int \tan (x) d x=-\ln |\cos (x)|+C, \text { or } \ln |\sec (x)|+C \\
& \int \cot (x) d x=\ln |\sin (x)|+C \\
& \int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C \\
& \int \csc (x) d x=\ln |\csc (x)-\cot (x)|+C, \text { or }-\ln |\csc (x)+\cot (x)|+C \\
& \int \cos (3 x) d x=\frac{1}{3} \sin (3 x)+C \\
& \int \sec ^{2}(x) d x=\tan (x)+C \\
& \int \frac{1}{36+x^{2}} d x=\frac{1}{6} \tan ^{-1}\left(\frac{x}{6}\right)+C \\
& \int \frac{1}{\sqrt{36-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{6}\right)+C \\
& \int \cosh (x) d x=\sinh (x)+C
\end{aligned}
$$

INVERSE TRIGONOMETRIC FUNCTIONS (6 POINTS TOTAL)

- $\lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}$
(Drawing a graph may help.)
- If $f(x)=\sin ^{-1}(x)$, what is the range of f in interval form (the form with parentheses and/or brackets)? Range $(f)=\left[\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right.$.

HYPERBOLIC FUNCTIONS (6 POINTS TOTAL)

- The definition of $\sinh (x)$ (as given in class) is: $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$
- Complete the following identity: $\cosh ^{2}(x)-\sinh ^{2}(x)=1$
(We mentioned this identity in class.)

TRIGONOMETRIC IDENTITIES (15 POINTS TOTAL)

Complete each of the following identities, based on the type of identity given.

$$
\begin{array}{ll}
\text { • } \tan ^{2}(x)+1=\sec ^{2}(x) & \text { (Pythagorean Identity) } \\
\text { • } \cos (-x)=\cos (x) & \text { (Even/Odd Identity) } \\
\text { • } \sin (2 x)=2 \sin (x) \cos (x) & \text { (Double-Angle Identity) } \\
\cdot \cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x), \text { or } 1-2 \sin ^{2}(x), \text { or } 2 \cos ^{2}(x)-1
\end{array}
$$

(Double-Angle Identity)
(For $\cos (2 x)$, I gave you three versions; you may pick any one.)

- $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$
(Power-Reducing Identity)

SOLUTIONS TO THE FINAL - PART 2

MATH 150 - FALL 2016 - KUNIYUKI
PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS
A scientific calculator and an appropriate sheet of notes are allowed on this final part.

1) Find the following limits. Each answer will be a real number, $\infty,-\infty$, or DNE (Does Not Exist). Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE." Box in your final answers. (14 points total)
a) $\lim _{x \rightarrow \infty} \frac{\cos \left(x^{3}\right)}{x^{4}} \quad$ Show all work, as in class. (6 points) $\lim _{x \rightarrow \infty} \frac{\cos \left(x^{3}\right)}{x^{4}}=0$. Prove this using the Sandwich / Squeeze Theorem:

$$
-1 \leq \cos \left(x^{3}\right) \leq 1 \quad(\forall x \in \mathbb{R})
$$

Observe that $x^{4}>0, \forall x>0$ (we may assume this, since we let $x \rightarrow \infty$). Divide all three parts by x^{4}.

$$
\text { As } x \rightarrow \infty, \underbrace{-\frac{1}{x^{4}}}_{\rightarrow 0} \leq \underbrace{\frac{\cos \left(x^{3}\right)}{x^{4}}}_{\substack{\text { So, } \rightarrow 0 \\ \text { by the Sandwich/ } \\ \text { Squeeze Theorem }}} \leq \underbrace{\frac{1}{x^{4}}}_{\rightarrow 0} \quad(\forall x>0)
$$

More precisely: $\lim _{x \rightarrow \infty}\left(-\frac{1}{x^{4}}\right)=0$, and $\lim _{x \rightarrow \infty} \frac{1}{x^{4}}=0$.
Therefore, by the Sandwich / Squeeze Theorem, $\lim _{x \rightarrow \infty} \frac{\cos \left(x^{3}\right)}{x^{4}}=0$.
b) $\lim _{x \rightarrow-2^{+}} \frac{x}{x^{2}-3 x-10}$

Show all work, as in class. (6 points)

$$
\lim _{x \rightarrow-2^{+}} \frac{x}{x^{2}-3 x-10}=\lim _{x \rightarrow-2^{+}} \underbrace{\frac{x}{(x+2)} \underbrace{(x-5)}_{\rightarrow-7}}_{\rightarrow 0^{+}}\left(\text {Limit Form } \frac{-2}{0^{-}}\right)=\infty
$$

c) $\lim _{r \rightarrow \infty} \frac{r^{3}+1}{\left(r^{5}+r\right)^{2}}$

Answer only is fine. (2 points)
$\lim _{r \rightarrow \infty} \frac{r^{3}+1}{\left(r^{5}+r\right)^{2}}=0$, because we are taking a "long-run" limit of a proper
("bottom-heavy") rational expression as $r \rightarrow \infty$. The degree of the denominator (10, since the leading term would be r^{10} after expanding the square) is greater than the degree of the numerator (3).
2) Let $f(x)=\left\{\begin{array}{ll}x+4, & x \neq 3 \\ 9, & x=3\end{array}\right.$. Classify the discontinuity at $x=3$. Box in one:
(2 points)
Infinite discontinuity Jump discontinuity Removable discontinuity $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}(x+4)=3+4=7 \neq 9$, which is $f(3)$. (The limit value and the function value exist but are unequal.) If $f(3)$ were 7 , then f would be continuous at 3 .
3) Use the limit definition of the derivative to prove that $D_{x}\left(5 x^{2}-x+7\right)=10 x-1$, $\forall x \in \mathbb{R}$. Do not use derivative short cuts we have used in class. (10 points)

Let $f(x)=5 x^{2}-x+7$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[5(x+h)^{2}-(x+h)+7\right]-\left[5 x^{2}-x+7\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[5\left(x^{2}+2 x h+h^{2}\right)-x-h+7\right]-\left[5 x^{2}-x+7\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-x-h+7-5 x^{2}+x-7}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}-h}{h}=\lim _{h \rightarrow 0} \frac{\not h^{(1)}(10 x+5 h-1)}{h}=\lim _{h \rightarrow 0}(10 x+5 h-1) \\
& =10 x+5(0)-1=10 x-1 . \text { (Q.E.D.) }
\end{aligned}
$$

4) Let $f(x)=\log _{4}(x)$. Consider the graph of $y=f(x)$ in the usual $x y$-plane.

Find a Point-Slope Form of the equation of the tangent line to the graph at the point where $x=16$. Give exact values; you do not have to approximate. (8 points)

$$
f(16)=\log _{4}(16)=2 \text {, so the point of interest is }(16,2) .
$$

Find $f^{\prime}(16)$, the slope m of the tangent line to the graph at that point.

$$
\begin{aligned}
f^{\prime}(x) & =D_{x}\left[\log _{4}(x)\right]=D_{x}\left[\frac{\ln (x)}{\ln (4)}\right] \text { (Change-of-Base Property of Logarithms) } \\
& =\left[\frac{1}{\ln (4)}\right] \cdot\left(D_{x}[\ln (x)]\right)=\left[\frac{1}{\ln (4)}\right] \cdot\left[\frac{1}{x}\right]=\frac{1}{x \ln (4)} \Rightarrow \\
f^{\prime}(16) & \left.=\frac{1}{16 \ln (4)}, \text { or } \frac{1}{\ln \left(4^{16}\right)} \text { (This is our desired slope, } m .\right)
\end{aligned}
$$

Find a Point-Slope Form of the equation of the tangent line.

$$
y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-2=\frac{1}{16 \ln (4)}(x-16)
$$

5) Assume that x and y are differentiable functions of t. Evaluate $D_{t}\left(e^{x y}\right)$ when

$$
\begin{aligned}
x=3, y= & 5, \frac{d x}{d t}=2 \text {, and } \frac{d y}{d t}=-4 . \text { (8 points) } \\
& D_{t}\left(e^{x y}\right)=\left[e^{x y}\right] \cdot\left[D_{t}(x y)\right]=\left[e^{x y}\right] \cdot\left[\frac{d x}{d t} \cdot y+x \cdot \frac{d y}{d t}\right](\text { by the Product Rule }) \\
& =\left[e^{(3)(5)}\right] \cdot[(2)(5)+(3)(-4)]=\left[e^{15}\right] \cdot[10-12]=\left[e^{15}\right] \cdot[-2]=-2 e^{15}
\end{aligned}
$$

6) Let $f(x)=x^{3}-2 x^{2}-4 x+1$. (14 points total)
a) Find the two critical numbers of f.
$f^{\prime}(x)=3 x^{2}-4 x-4=(3 x+2)(x-2)$, which is never undefined ("DNE") but is 0 at $x=-\frac{2}{3}$ and $x=2$. These numbers are in $\operatorname{Dom}(f)$, which is \mathbb{R}, so the critical numbers are: $-\frac{2}{3}$ and 2 .
Note: We could use the Quadratic Formula (QF) with $a=3, b=-4$, and $c=-4$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(3)(-4)}}{2(3)}=\frac{4 \pm \sqrt{16+48}}{2(3)}=\frac{4 \pm \sqrt{64}}{6}=\frac{4 \pm 8}{6}=\frac{2 \pm 4}{3} \Rightarrow \\
& x=\frac{2+4}{3}=\frac{6}{3}=2 \quad \text { or } \quad x=\frac{2-4}{3}=\frac{-2}{3}=-\frac{2}{3}
\end{aligned}
$$

b) Consider the graph of $y=f(x)$, although you do not have to draw it. Use the First Derivative Test to classify the point at $x=2$ as a local maximum point, a local minimum point, or neither.
f is continuous on \mathbb{R}, so the First Derivative Test ($1^{\text {st }} \mathrm{DT}$) should apply wherever we have critical numbers (CNs). Both f and f^{\prime} are continuous on \mathbb{R}, so use just the CNs as "fenceposts" on the real number line where f^{\prime} could change sign.

	(not needed)	$\mathbf{- 2 / 3}$	Test $x=0$	$\mathbf{2}$	Test $x=3$
f^{\prime} sign (see below)		0	-	0	+
f			\searrow		\nearrow
Classify point at CN (1 st DT)				L.Min. Pt.	

$$
\begin{aligned}
& f^{\prime}(x)=(3 x+2)(x-2) \\
& f^{\prime}(0)=(+) \quad(-)=-\quad \text { or } \quad \text { Evaluate } f^{\prime} \text { at } 0 \text { and } 3 \text { directly. } \\
& f^{\prime}(3)=(+) \quad(+)=+
\end{aligned}
$$

Also, the graph of $y=f^{\prime}(x)$ is an upward-opening parabola with two distinct x-intercepts at $\left(-\frac{2}{3}, 0\right)$ and $(2,0)$. The multiplicities of the zeros of f^{\prime} are both odd (1), so signs alternate in our "windows." Answer: Local Minimum Point
c) Use the Second Derivative Test to classify the point at the other critical number as a local maximum point or a local minimum point.
$f^{\prime}\left(-\frac{2}{3}\right)=0$, so we may apply the Second Derivative Test for $x=-\frac{2}{3}$.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-4 x-4 \Rightarrow \\
f^{\prime \prime}(x) & =6 x-4 \Rightarrow \\
f^{\prime \prime}\left(-\frac{2}{3}\right) & =6\left(-\frac{2}{3}\right)-4=-8 \Rightarrow f^{\prime \prime}\left(-\frac{2}{3}\right)<0
\end{aligned}
$$

Therefore, the point at $x=-\frac{2}{3}$ is a Local Maximum Point.
Think: Concave down (\cap) "at" (actually, on a neighborhood of) $x=-\frac{2}{3}$.
7) Evaluate the following integrals. (20 points total)
a) $\int_{9}^{16} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$. Give an exact answer. (10 points)

$$
\begin{aligned}
& \text { Let } u=\sqrt{x} \text { or } x^{1 / 2} \Rightarrow \\
& d u=\frac{1}{2} x^{-1 / 2} d x \Rightarrow d u=\frac{1}{2 \sqrt{x}} d x \Rightarrow\left(\text { Can use: } \frac{1}{\sqrt{x}} d x=2 d u\right)
\end{aligned}
$$

Method 1 (Change the limits of integration.)

$$
\begin{aligned}
& x=9 \Rightarrow u=\sqrt{9}=3 \Rightarrow u=3 \\
& x=16 \Rightarrow u=\sqrt{16}=4 \Rightarrow u=4 \\
& \int_{9}^{16} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=2 \int_{9}^{16} \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x(\text { by Compensation })=2 \int_{9}^{16} e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} d x \\
& =2 \int_{3}^{4} e^{u} d u=2\left[e^{u}\right]_{3}^{4}=2\left(e^{4}-e^{3}\right), \text { or } 2 e^{3}(e-1)
\end{aligned}
$$

Method 2 (Work out the corresponding indefinite integral first.)

$$
\begin{aligned}
& \int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=2 \int \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x(\text { by Compensation })=2 \int e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} d x \\
& =2 \int e^{u} d u=2 e^{u}+C=2 e^{\sqrt{x}}+C
\end{aligned}
$$

Now, apply the FTC directly using our antiderivative (where $C=0$).

$$
\begin{aligned}
& \int_{9}^{16} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=\left[2 e^{\sqrt{x}}\right]_{9}^{16}=2\left[e^{\sqrt{x}}\right]_{9}^{16}=2\left(\left[e^{\sqrt{16}}\right]-\left[e^{\sqrt{9}}\right]\right) \\
& =2\left(e^{4}-e^{3}\right), \text { or } 2 e^{3}(e-1)
\end{aligned}
$$

b) $\int \frac{7 x}{x^{4}+81} d x$
(10 points)
Hint: Consider the Chapter 8 material on inverse trigonometric functions!
Use the template: $\int \frac{1}{u^{2}+81} d u$, or $\int \frac{d u}{81+u^{2}}=\frac{1}{9} \tan ^{-1}\left(\frac{u}{9}\right)+C$.

$$
\begin{aligned}
\text { Let } u=x^{2} \quad & \Rightarrow \quad u^{2}=x^{4} \\
d u & =2 x d x \quad \Rightarrow \quad\left(\text { Can use: } x d x=\frac{1}{2} d u\right) \\
\int \frac{7 x}{x^{4}+81} d x & =7 \int \frac{x}{81+x^{4}} d x=7 \cdot \frac{1}{2} \int \frac{2 x}{81+x^{4}} d x(\text { by Compensation) } \\
=\frac{7}{2} \int \frac{d u}{81+u^{2}} & =\frac{7}{2}\left[\frac{1}{9} \tan ^{-1}\left(\frac{u}{9}\right)\right]+C=\frac{7}{18} \tan ^{-1}\left(\frac{x^{2}}{9}\right)+C
\end{aligned}
$$

Alternative Method (using basic template $\int \frac{1}{u^{2}+1} d u$, or $\int \frac{d u}{1+u^{2}}=\tan ^{-1}(u)+C$):

$$
\begin{aligned}
& \int \frac{7 x}{x^{4}+81} d x=7 \int \frac{x}{81+x^{4}} d x=7 \int \frac{x}{81\left(1+\frac{x^{4}}{81}\right)} d x=\frac{7}{81} \int \frac{x}{1+\frac{x^{4}}{81}} d x \\
& =\frac{7}{81} \int \frac{x}{1+\left(\frac{x^{2}}{9}\right)^{2}} d x \\
& {\left[\begin{array}{cc}
\text { Let } u=\frac{x^{2}}{9}, \text { or } \frac{1}{9} x^{2} & \Rightarrow \quad u^{2}=\left(\frac{x^{2}}{9}\right)^{2}=\frac{x^{4}}{81} \\
d u & =\frac{2}{9} x d x \quad
\end{array} \quad \Rightarrow \quad \frac{9}{2} d u=x d x \quad \text { (or use Compensation) }\right]}
\end{aligned}
$$

$$
=\frac{7}{81} \cdot \frac{\not(9}{2} \int \frac{\frac{2}{9} x}{1+\left(\frac{x^{2}}{9}\right)^{2}} d x=\frac{7}{18} \int \frac{d u}{1+u^{2}}=\frac{7}{18} \tan ^{-1}(u)+C=\frac{7}{18} \tan ^{-1}\left(\frac{x^{2}}{9}\right)+C
$$

8) The velocity function for a particle moving along a coordinate line (for $t>0$) is given by $v(t)=\frac{1}{t^{4}}-\sqrt{t}$, where t is time measured in seconds and velocity is given in meters per second. The particle's position is measured in meters. Find $s(t)$, the corresponding position function [rule], if $s(1)=2$ (meters). (9 points)

$$
\begin{aligned}
\int v(t) d t & =\int\left(\frac{1}{t^{4}}-\sqrt{t}\right) d t=\int\left(t^{-4}-t^{1 / 2}\right) d t \Rightarrow \\
s(t) & =\frac{t^{-3}}{-3}-\frac{t^{3 / 2}}{3 / 2}+C=-\frac{1}{3 t^{3}}-\frac{2}{3} t^{3 / 2}+C
\end{aligned}
$$

Find C.
We know: $s(1)=2$ (meters).

$$
\begin{aligned}
s(1) & =-\frac{1}{3(1)^{3}}-\frac{2}{3}(1)^{3 / 2}+C \\
2 & =-\frac{1}{3}-\frac{2}{3}+C \\
2 & =-1+C \\
C & =3 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
s(t)= & -\frac{1}{3 t^{3}}-\frac{2}{3} t^{3 / 2}+3, \text { or } 3-\frac{1}{3 t^{3}}-\frac{2}{3} t \sqrt{t}, \text { or } \frac{9 t^{3}-1-2 t^{4}(\sqrt{t})}{3 t^{3}}, \\
& \text { or } \frac{9 t^{3}-1-2 t^{9 / 2}}{3 t^{3}} \text { (in meters) }
\end{aligned}
$$

9) The region R is bounded by the x-axis, the y-axis, and the graphs of $y=\cos (x)$ and $x=\frac{\pi}{4}$ in the usual $x y$-plane. Sketch and shade in the region R. Find the volume of the solid generated by revolving R about the x-axis. Evaluate your integral completely. Give an exact answer in simplest form with appropriate units. Distances and lengths are measured in meters. Hint: Use a PowerReducing Identity. (18 points)

Let $f(x)=\cos (x)$. Then, f is nonnegative and continuous on the x-interval $\left[0, \frac{\pi}{4}\right]$.

The region R and the equation $y=\cos (x)$ suggest a " $d x$ scan" and the Disk Method.
V, the volume of the solid, is given by:

$$
\begin{aligned}
& V=\int_{0}^{\pi / 4} \pi(\text { radius })^{2} d x=\int_{0}^{\pi / 4} \pi[\cos (x)]^{2} d x=\pi \int_{0}^{\pi / 4} \cos ^{2}(x) d x \\
& =\pi \int_{0}^{\pi / 4} \frac{1+\cos (2 x)}{2}(\text { by a Power-Reducing Identity })=\frac{\pi}{2} \int_{0}^{\pi / 4}[1+\cos (2 x)] d x \\
& \left.=\frac{\pi}{2}\left[x+\frac{1}{2} \sin (2 x)\right]_{0}^{\pi / 4} \text { (by "Guess-and-check," or using } u=2 x\right) \\
& =\frac{\pi}{2}\left(\left[\frac{\pi}{4}+\frac{1}{2} \sin \left(2 \cdot \frac{\pi}{4}\right)\right]-\left[0+\frac{1}{2} \sin (2 \cdot 0)\right]\right) \\
& =\frac{\pi}{2}\left(\left[\frac{\pi}{4}+\frac{1}{2} \sin \left(\frac{\pi}{2}\right)\right]-\left[0+\frac{1}{2} \sin (0)\right]\right) \\
& =\frac{\pi}{2}\left(\left[\frac{\pi}{4}+\frac{1}{2}(1)\right]-[0]\right)=\frac{\pi}{2}\left(\frac{\pi}{4}+\frac{1}{2}\right)=\frac{\pi}{2}\left(\frac{\pi+2}{4}\right)=\frac{\pi(\pi+2)}{8} \mathrm{~m}^{3}
\end{aligned}
$$

10) Rewrite $\tan \left(\sin ^{-1}\left(\frac{x}{5}\right)\right)$ as an algebraic expression in x, where $0<x<5$.

(7 points)

Let $\theta=\sin ^{-1}\left(\frac{x}{5}\right) \quad(\theta$ acute $) \Rightarrow \sin (\theta)=\frac{x}{5}$

\leftarrow found by the Pythagorean Theorem
$\tan (\theta)=\frac{\text { opp. }}{\text { adj. }}=\frac{x}{\sqrt{25-x^{2}}}$
Note: Rationalizing the denominator is usually unnecessary if the radicand involved is variable.
11) Find $D_{r}\left[\sin ^{-1}(\sinh (r))\right]$. (5 points)

Use the template: $D_{r}\left[\sin ^{-1}(u)\right]=\frac{1}{\sqrt{1-u^{2}}} \cdot\left[D_{r}(u)\right]$.
$D_{r}\left[\sin ^{-1}(\sinh (r))\right]=\left[\frac{1}{\sqrt{1-\sinh ^{2}(r)}}\right] \cdot\left[D_{r}(\sinh (r))\right]=\left[\frac{1}{\sqrt{1-\sinh ^{2}(r)}}\right] \cdot[\cosh (r)]$

