FINAL

MATH 151 – FALL 2003 – KUNIYUKI 45 POINTS TOTAL; 3 POINTS FOR EACH PROBLEM An appropriate sheet of notes is allowed.

Give the best answers based on the notes and our discussions in class.

- 1) We would use a *u*-substitution to evaluate $\int \tan^5 x \sec^5 x \, dx$. What would be our choice for *u*?
- 2) We would use a trig substitution to evaluate $\int \frac{1}{x^3 \sqrt{9x^2 25}} dx$. What would we use as our trig substitution?
- 3) We want to integrate $\int \frac{1}{x^2(x-3)(x^2+16)} dx$ using partial fractions. Write the form of the partial fraction decomposition for the integrand, $\frac{1}{x^2(x-3)(x^2+16)}$.
- 4) Find $\lim_{x\to 0} \frac{4x}{\tan x}$. Write ∞ or $-\infty$ if appropriate. If the limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist).
- 5) True or False: Both 0^0 and 1^∞ are indeterminate limit forms. Circle one:

True False

6) Fill in the boxes:

$$\int_{-s}^{s} \frac{1}{(x+1)^{5}} dx = \int_{-\infty}^{\infty} \frac{1}{(x+1)^{5}} dx + \int_{-\infty}^{\infty} \frac{1}{(x+1)^{5}} dx$$
$$= \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{1}{(x+1)^{5}} dx + \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{1}{(x+1)^{5}} dx$$

7) Find the sum of the geometric series $\sum_{n=1}^{\infty} 3 \left(\frac{1}{4} \right)^{n-1}$.

- 8) When using the Integral Test, we use an interpolating function f(x) to analyze the series $\sum a_n$. For example, we use $f(x) = \frac{1}{x^2}$ to analyze $\sum \frac{1}{n^2}$. State the assumptions (hypotheses) that we require of f if we are going to apply the Integral Test.
- 9) The series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{3/4}}$ is ... (circle one)

Absolutely Convergent Conditionally Convergent Divergent

- 10) Write the first four nonzero terms of the Maclaurin series for $f(x) = \cos x$.
- 11) True or False: A Maclaurin series $\sum_{n=0}^{\infty} a_n x^n$ can have [-2,5) as its interval of convergence. Circle one:

True False

- Write the form for the Taylor series representation of f(x) centered at c, assuming it exists.
- 13) $x = \cos^2 t$, $y = \sec^4 t$. Eliminate the parameter to get an equation in x and y.
- 14) The graph of the polar equation $\theta = 4$ is a ... (circle one).

Circle Line Neither

15) Write the rectangular equation $x^2 + y^2 = 4y$ as a polar equation in r and θ .