\qquad

MATH 151 - FALL 2003 - KUNIYUKI 45 POINTS TOTAL; 3 POINTS FOR EACH PROBLEM An appropriate sheet of notes is allowed.

Give the best answers based on the notes and our discussions in class.

1) We would use a u-substitution to evaluate $\int \tan ^{5} x \sec ^{5} x d x$. What would be our choice for u ?
2) We would use a trig substitution to evaluate $\int \frac{1}{x^{3} \sqrt{9 x^{2}-25}} d x$. What would we use as our trig substitution?
3) We want to integrate $\int \frac{1}{x^{2}(x-3)\left(x^{2}+16\right)} d x$ using partial fractions. Write the form of the partial fraction decomposition for the integrand, $\frac{1}{x^{2}(x-3)\left(x^{2}+16\right)}$.
4) Find $\lim _{x \rightarrow 0} \frac{4 x}{\tan x}$. Write ∞ or $-\infty$ if appropriate. If the limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist).
5) True or False: Both 0^{0} and 1^{∞} are indeterminate limit forms. Circle one:
True False
6) Fill in the boxes:

$$
\begin{aligned}
\int_{-3}^{5} \frac{1}{(x+1)^{5}} d x & =\int_{\square}^{\square} \frac{1}{(x+1)^{5}} d x+\int \frac{1}{\square} \frac{\square}{(x+1)^{5}} d x \\
& =\lim \int^{\square} \square \frac{1}{(x+1)^{5}} d x+\lim ^{\square} \square \frac{1}{(x+1)^{5}} d x
\end{aligned}
$$

7) Find the sum of the geometric series $\sum_{n=1}^{\infty} 3\left(\frac{1}{4}\right)^{n-1}$.
8) When using the Integral Test, we use an interpolating function $f(x)$ to analyze the series $\sum a_{n}$. For example, we use $f(x)=\frac{1}{x^{2}}$ to analyze $\sum \frac{1}{n^{2}}$. State the assumptions (hypotheses) that we require of f if we are going to apply the Integral Test.
9) The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{3 / 4}}$ is \ldots (circle one)
Absolutely Convergent Conditionally Convergent Divergent
10) Write the first four nonzero terms of the Maclaurin series for $f(x)=\cos x$.
11) True or False: A Maclaurin series $\sum_{n=0}^{\infty} a_{n} x^{n}$ can have $[-2,5)$ as its interval of convergence. Circle one:

True
False
12) Write the form for the Taylor series representation of $f(x)$ centered at c, assuming it exists.
13) $x=\cos ^{2} t, y=\sec ^{4} t$. Eliminate the parameter to get an equation in x and y.
14) The graph of the polar equation $\theta=4$ is a \ldots (circle one).
Circle
Line
Neither
15) Write the rectangular equation $x^{2}+y^{2}=4 y$ as a polar equation in r and θ.

