SOLUTIONS TO THE FINAL

MATH 151 - FALL 2003 - KUNIYUKI
45 POINTS TOTAL; 3 POINTS FOR EACH PROBLEM
An appropriate sheet of notes is allowed.
Give the best answers based on the notes and our discussions in class.

1) We would use a u-substitution to evaluate $\int \tan ^{5} x \sec ^{5} x d x$. What would be our choice for u ?

We like the fact that the tan power is odd.
We will let u be the "other guy," namely sec \boldsymbol{x}.
2) We would use a trig substitution to evaluate $\int \frac{1}{x^{3} \sqrt{9 x^{2}-25}} d x$. What would we use as our trig substitution?

The radical is of the form $\sqrt{u^{2}-a^{2}}$, where $u=3 x$ and $a=5$.
Our substitution should be: $\mathbf{3 x}=\mathbf{5} \sec \theta$ or $\boldsymbol{x}=\frac{\mathbf{5}}{\mathbf{3}} \sec \theta$
3) We want to integrate $\int \frac{1}{x^{2}(x-3)\left(x^{2}+16\right)} d x$ using partial fractions. Write the form of the partial fraction decomposition for the integrand, $\frac{1}{x^{2}(x-3)\left(x^{2}+16\right)}$.

$$
\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-3}+\frac{D x+E}{x^{2}+16}
$$

4) Find $\lim _{x \rightarrow 0} \frac{4 x}{\tan x}$. Write ∞ or $-\infty$ if appropriate. If the limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist).

$$
\begin{aligned}
& \quad \lim _{x \rightarrow 0} \frac{4 x}{\tan x} \xrightarrow{\rightarrow \tan 0=0}\left(\frac{0}{0}\right) \\
& \stackrel{\text { LH }}{=} \\
& =\lim _{x \rightarrow 0} \frac{4}{\sec ^{2} x} \xrightarrow{\rightarrow \sec ^{2} 0=(1)^{2}=1} \\
& =4
\end{aligned}
$$

5) True or False: Both 0^{0} and 1^{∞} are indeterminate limit forms. Circle one:
True False
6) Fill in the boxes:

$$
\begin{aligned}
\int_{-3}^{5} \frac{1}{(x+1)^{5}} d x & =\int_{-3}^{-1} \frac{1}{(x+1)^{5}} d x+\int_{-1}^{5} \frac{1}{(x+1)^{5}} d x \\
& =\lim _{t \rightarrow-1^{-}} \int_{-3}^{t} \frac{1}{(x+1)^{5}} d x+\lim _{w \rightarrow-1^{+}} \int_{w}^{5} \frac{1}{(x+1)^{5}} d x
\end{aligned}
$$

7) Find the sum of the geometric series $\sum_{n=1}^{\infty} 3\left(\frac{1}{4}\right)^{n-1}$.

$$
S=\frac{a_{1}}{1-r}=\frac{3}{1-\frac{1}{4}}=\frac{3}{\frac{3}{4}}=3 \cdot \frac{4}{3}=4
$$

8) When using the Integral Test, we use an interpolating function $f(x)$ to analyze the series $\sum a_{n}$. For example, we use $f(x)=\frac{1}{x^{2}}$ to analyze $\sum \frac{1}{n^{2}}$. State the assumptions (hypotheses) that we require of f if we are going to apply the Integral Test.
f must be positive-valued, continuous, and decreasing on the relevant interval.
9) The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{3 / 4}}$ is \ldots (circle one)

Absolutely Convergent Conditionally Convergent Divergent

The series converges by the AST (Alternating Series Test), but the "absolute value" series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 4}}$ diverges by the p-series Test.
10) Write the first four nonzero terms of the Maclaurin series for $f(x)=\cos x$.

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

11) True or False: A Maclaurin series $\sum_{n=0}^{\infty} a_{n} x^{n}$ can have $[-2,5)$ as its interval of convergence. Circle one:

Since the Maclaurin series (which is a power series) is centered at 0, the interval of convergence must also be centered at 0 . How else could we talk about the "radius of convergence?"
12) Write the form for the Taylor series representation of $f(x)$ centered at c, assuming it exists.

$$
\sum_{n=0}^{\infty} \frac{f^{n}(c)}{n!}(x-c)^{n}
$$

13) $x=\cos ^{2} t, y=\sec ^{4} t$. Eliminate the parameter to get an equation in x and y.

$$
\sec ^{4} t=\frac{1}{\left(\cos ^{2} t\right)^{2}} \text {, so } \boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}^{2}} .
$$

14) The graph of the polar equation $\theta=4$ is a \ldots (circle one).
Circle
Line
Neither
15) Write the rectangular equation $x^{2}+y^{2}=4 y$ as a polar equation in r and θ.

$$
r^{2}=4 r \sin \theta
$$

