QUIZ ON CHAPTER 10

MATH 151 – SPRING 2003 – KUNIYUKI 100 POINTS TOTAL

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!

No notes, books, or calculators allowed.

- 1) Find the limits. Write ∞ or −∞ when appropriate. If a limit does not exist, and ∞ and −∞ are inappropriate, write "DNE" (Does Not Exist). Indicate indeterminate forms whenever appropriate, though you don't have to indicate signs for them. (46 points total)
 - a) $\lim_{x \to 2} \frac{x 2\cos(\pi x)}{x^2 4}$ (6 points)

b) $\lim_{x \to 0} \frac{2^x - 1}{3^x - 1}$ (4 points)

c) $\lim_{x \to 3} \frac{e^{2x}}{\ln(x+1)}$ (2 points)

d)
$$\lim_{x \to \infty} \frac{x^2 + 1}{x \ln x}$$

(10 points)

e)
$$\lim_{x \to 0^+} x \cot x$$

(8 points)

$$f) \quad \lim_{x \to 0} \left(\cos x \right)^{1/x^2}$$

(16 points)

2) Indicate whether the integral converges or diverges. If it converges, find its value. Either way, show all work, as in class! (51 points total)

a)
$$\int_{-\infty}^{1} \frac{1}{1+x^2} dx$$
 (9 points)

Does the above integral converge or diverge?

b)
$$\int_{-\infty}^{\infty} \frac{x}{\left(x^2 + 4\right)^{2/3}} dx$$
 (12 points)

c)
$$\int_0^9 \frac{1}{\sqrt[3]{x-1}} dx$$
 (18 points)

$$d) \int_1^\infty \frac{1}{x(\ln x)^2} \, dx$$

(12 points)

Does the above integral converge or diverge?

3) True or False: If the function f is continuous and positive-valued on $[0, \infty)$, and if $\int_0^\infty \frac{1}{f(x)} dx$ converges, then $\int_0^\infty \frac{1}{f(x) + x} dx$ converges. (3 points)