QUIZ ON CHAPTER 13

MATH 151 - SPRING 2003 - KUNIYUKI 100 POINTS TOTAL

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
When graphing, be reasonably accurate, and clearly indicate orientation. Use as many arrowheads as appropriate. Clearly indicate x - and y-intercepts, endpoints, and extreme points when feasible.

1) Find a rectangular equation for the curve described by:

$$
\begin{aligned}
& x=t^{2}+3 \\
& y=4-t \\
& t \text { in } \mathbf{R}
\end{aligned}
$$

(4 points)
2) Find a rectangular equation in x and y that has the same graph as the polar equation $r^{2}=6 \sec \theta \csc \theta$. (6 points)
3) Sketch the graph of C using the grid below, where C is described by:

$$
\begin{aligned}
& x=\cos t \\
& y=\sec ^{2} t \\
& \frac{\pi}{2}<t<\pi
\end{aligned}
$$

(10 points)

4) Consider the curve described by:

$$
\begin{aligned}
& x=e^{2 t} \\
& y=\sqrt{t} \\
& t \geq 0
\end{aligned}
$$

(16 points total)
a) Find the slope of the tangent line at the point on the curve that corresponds to $t=4$. Give an exact answer; don't approximate. (10 points)
b) Set up, but do not evaluate, an integral that represents the length of the curve from the point corresponding to $t=1$ to the point corresponding to $t=4$. (6 points)
5) Consider the curve described by:

$$
\begin{aligned}
& x=t^{3}+1 \\
& y=\sin t \\
& t \text { in } \mathbf{R}
\end{aligned}
$$

Find $\frac{d^{2} y}{d x^{2}}$ in terms of t. (10 points)
6) Find the slope of the tangent line to the graph of the polar equation $r=2-3 \sin \theta$ at the point corresponding to $\theta=\frac{\pi}{6}$. Give an exact answer, but you do not have to rationalize the denominator. (18 points)
7) Sketch the graph of $r=3+4 \cos \theta$ using the grid below. You do not have to determine the exact value(s) of θ for which $r=0$. (20 points)

8) Find the area of the region bounded by one loop of the graph of the polar equation $r=3 \sin (2 \theta)$. You may use the grid below as a guide. (16 points)

