QUIZ ON SECTIONS 11.1-5
 SOLUTIONS
 MATH 151 - SPRING 2003 - KUNIYUKI 102 POINTS TOTAL, BUT 100 POINTS = 100\%

1) Find the limits. Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist). You do not have to show work. (9 points total; 3 points each)
a) $\lim _{n \rightarrow \infty} a_{n}$, where $a_{n}=\left(\frac{n+1}{n}\right)^{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& =\boldsymbol{e}
\end{aligned}
$$

b) $\lim _{n \rightarrow \infty} a_{n}$, where $a_{n}=6\left(-\frac{2}{5}\right)^{n}$

$$
\lim _{n \rightarrow \infty} 6\left(-\frac{2}{5}\right)^{n}=\mathbf{0} \text {; we have a geometric sequence for which }|r|=\frac{2}{5}<1 \text {. }
$$

c) $\lim _{n \rightarrow \infty} a_{n}$, where $a_{n}=\frac{\sin ^{2} n}{\sqrt{n}}$

$$
\lim _{n \rightarrow \infty} \frac{\sin ^{2} n}{\sqrt{n}}=\mathbf{0} \text {, by the Squeeze/Sandwich Theorem: }
$$

$$
\begin{gathered}
0 \leq \sin ^{2} n \leq 1 \\
\underbrace{\frac{0}{\sqrt{n}}}_{\rightarrow 0} \leq \underbrace{\frac{\sin ^{2} n}{\sqrt{n}}}_{\substack{\text { So, } \\
\rightarrow 0}} \leq \underbrace{\frac{1}{\sqrt{n}}}_{\rightarrow 0}
\end{gathered}
$$

2) Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}$. (8 points)

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}} & =\sum_{n=1}^{\infty} 3\left(\frac{3^{n}}{4^{n}}\right) \\
& =\sum_{n=1}^{\infty} 3\left(\frac{3}{4}\right)^{n}
\end{aligned}
$$

Method 1

The first term, a, is $a_{1}=3\left(\frac{3}{4}\right)^{1}=\frac{9}{4}$.
The common ratio is $r=\frac{3}{4}$.

$$
\text { Sum }=S=\frac{a}{1-r}=\frac{\frac{9}{4}}{1-\frac{3}{4}}=\frac{\frac{9}{4}}{\frac{1}{4}}=\mathbf{9}
$$

Method 2

$$
\begin{aligned}
& \begin{aligned}
\sum_{n=1}^{\infty} 3\left(\frac{3}{4}\right)^{n} & =\sum_{n=1}^{\infty} 3\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)^{n-1} \\
& =\sum_{n=1}^{\infty} \frac{9}{4}\left(\frac{3}{4}\right)^{n-1} \\
& =\sum_{n=1}^{\infty} a r^{n-1}, \text { where } a=\frac{9}{4}, \text { and } r=\frac{3}{4} \\
\text { Again, Sum } & =S=\frac{a}{1-r}=\frac{\frac{9}{4}}{1-\frac{3}{4}}=\frac{\frac{9}{4}}{\frac{1}{4}}=\mathbf{9}
\end{aligned} \text { }
\end{aligned}
$$

3) The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{3}}$ is approximated by S_{3}. According to our discussion in class, what is an upper bound on \mid error \mid for this approximation? (4 points)

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n-1} \underbrace{\frac{1}{n^{3}}}_{=a_{n}}=\underbrace{1-\frac{1}{8}+\frac{1}{27}}_{=S_{3}}-\underbrace{\frac{1}{64}}_{=a_{4}}+\ldots \\
& \mid \text { error }|\leq| \text { 1st } \text { neglected term } \left\lvert\,=a_{4}=\frac{\mathbf{1}}{\mathbf{6 4}}\right.
\end{aligned}
$$

Note:

$$
\begin{aligned}
S & \approx 0.9015 \\
S_{3} & \approx 0.9120 \\
\mid \text { error } \mid & \approx 0.0105, \text { which is less than [or equal to] } \frac{1}{64} \approx 0.0156
\end{aligned}
$$

4) For each of the following series, box in "Absolutely Convergent," "Conditionally Convergent," or "Divergent," as appropriate. You do not have to show work. (12 points total; 4 points each)
a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{1 / 3}}$

Absolutely Convergent Conditionally Convergent Divergent

You could use the AST to show that this alternating series converges, because $\frac{1}{n^{1 / 3}}$ decreases (for $n \geq 1$) and approaches 0 as $n \rightarrow \infty$. However, the series $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}}$ diverges, because it is a p-series with $p=\frac{1}{3} \leq 1$.
b) $\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{2}{5}\right)^{n}$

Absolutely Convergent Conditionally Convergent Divergent

The series $\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^{n}$ converges, because it is a geometric series with $|r|=\frac{2}{5}<1$. Therefore, the given series is absolutely convergent by the ACT.
c) $\sum_{n=1}^{\infty}\left[\frac{1}{n}+(-1)^{n-1} \frac{1}{n}\right]$

Absolutely Convergent Conditionally Convergent Divergent

$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$, which is the alternating harmonic series, converges by the AST, but $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the harmonic series (p-series with $p=1$), diverges.

Therefore, the original series diverges.
5) True or False: There exists a rearrangement of the terms of the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ so that the resulting series converges with sum π.
Box in one: (3 points)

True

False
The given series, which is the alternating harmonic series, is conditionally convergent, so for any real number (including π), there exists a rearrangement of terms that yields a series whose sum is that number.
6) For each of the following series:

- Determine whether it converges (write "C") or diverges (write "D").
- State which test you are using (you may abbreviate as in class).
- Show work (as suggested in class).
- Whenever you use the Integral Test, state and verify the assumptions
(hypotheses) for the test (as we have done in class). (66 points total)
a) $\sum_{n=2}^{\infty} \frac{n^{3 / 2}}{n^{2}-3}$
(8 points)

We have a positive-term series.
$\frac{n^{3 / 2}}{n^{2}-3}$ is an algebraic expression; the Ratio and Root Tests fail and give $L=1$.
Either the BCT or the LCT will do.
BCT
By using dominant terms in the numerator and denominator, we observe:

$$
\begin{array}{ll}
\frac{n^{3 / 2}}{n^{2}} \leq \frac{n^{3 / 2}}{n^{2}-3} & (\text { for all } n \geq 2) \\
\frac{1}{n^{1 / 2}} \leq \frac{n^{3 / 2}}{n^{2}-3} & (\text { for all } n \geq 2)
\end{array}
$$

We know that the "little brother" series $\sum \frac{1}{n^{1 / 2}}$ diverges, since it is a p-series with $p=\frac{1}{2} \leq 1$. (The fact that the given series starts with $n=2$ is irrelevant, since that does not affect convergence vs. divergence.) Then, the "big brother" series $\sum_{n=2}^{\infty} \frac{n^{3 / 2}}{n^{2}-3}$ must also diverge (D).

LCT
Again, use $\sum \frac{1}{n^{1 / 2}}$ as the comparison series.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n^{3 / 2}}{n^{2}-3}}{\frac{1}{n^{1 / 2}}} & =\lim _{n \rightarrow \infty}\left(\frac{n^{3 / 2}}{n^{2}-3} \cdot n^{1 / 2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-3} \quad \text { (You may consider dominant terms in num. and den.) } \\
& =1, \text { which is a nonzero real number. }
\end{aligned}
$$

We know that the p-series $\sum \frac{1}{n^{1 / 2}}$ diverges, so the original series must also diverge (D).
b) $\sum_{n=1}^{\infty}\left[1+(-1)^{n}\right]$
(4 points)

The terms alternate between 0 and 2 , so they cannot approach 0 .
By the $n^{\text {th }}$-Term Test for Divergence, the series diverges (D).
c) $\sum_{n=2}^{\infty} \frac{2 n^{4}+3}{n^{7}-8}$

We have a positive-term series.
$\frac{2 n^{4}+3}{n^{7}-8}$ is a rational (in general, algebraic) expression. The Ratio and Root Tests fail; they yield $L=1$.

Try the LCT. (The BCT does not work immediately.)
Compare $a_{n}=\frac{2 n^{4}+3}{n^{7}-8}$ with $b_{n}=\frac{n^{4}}{n^{7}}=\frac{1}{n^{3}}$. (Consider dominant terms and ignore non- 1 constant coefficients.)
(continued...)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{2 n^{4}+3}{n^{7}-8}}{\frac{1}{n^{3}}} & =\lim _{n \rightarrow \infty}\left[\frac{2 n^{4}+3}{n^{7}-8} \cdot n^{3}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{7}+3 n^{3}}{n^{7}-8} \quad \text { (You may consider dominant terms in num. and den.) } \\
& =2, \text { which is a nonzero real number }
\end{aligned}
$$

We know $\sum \frac{1}{n^{3}}$ converges, so $\sum_{n=2}^{\infty} \frac{2 n^{4}+3}{n^{7}-8}$ must also converge (C).
d) $\sum_{n=0}^{\infty} \frac{7^{n}}{n!}$

(12 points)

We have a positive-term series. The $n!$ hints at the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{7^{n+1}}{(n+1)!}}{\frac{7^{n}}{n!}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{7^{n+1}}{(n+1)!} \cdot \frac{n!}{7^{n}}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{7^{n+1}}{7^{n}} \cdot \frac{n!}{(n+1)!}\right] \\
& =\lim _{n \rightarrow \infty} 7 \cdot \frac{1}{n+1} \\
& =0 \\
& <1
\end{aligned}
$$

Therefore, the given series converges (C).
e) $\sum_{n=1}^{\infty} n\left(\frac{3}{4}\right)^{n}$
(12 points)

We have a positive-term series.
Method 1: Ratio Test

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)\left(\frac{3}{4}\right)^{n+1}}{n\left(\frac{3}{4}\right)^{n}} \\
& =\lim _{n \rightarrow \infty}[\underbrace{\frac{n+1}{n}}_{\rightarrow 1} \cdot \frac{3}{4}] \\
& =\frac{3}{4} \\
& <1
\end{aligned}
$$

Therefore, the given series converges (C).
Method 2: Root Test

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty} \sqrt[n]{n\left(\frac{3}{4}\right)^{n}} \\
& =\lim _{n \rightarrow \infty}[\underbrace{\sqrt[n]{n}}_{\rightarrow 1} \cdot \underbrace{\sqrt[n]{\left(\frac{3}{4}\right)^{n}}}_{=\frac{3}{4}}] \\
& =\frac{3}{4} \\
& <1
\end{aligned}
$$

Therefore, the given series converges (C).
f) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(20 points)

The $\ln n$ and the $\frac{1}{n}$ hint at the Integral Test.
Let $f(x)=\frac{1}{x \ln x}$.

Check the hypotheses of the test:

- f is positive-valued on $[2, \infty)$.
- f is continuous on $[2, \infty)$.
- f decreases on $[2, \infty)$. Verify:

$$
\begin{aligned}
f(x) & =\frac{1}{x \ln x} \\
f^{\prime}(x) & =-\frac{\overbrace{\text { Use Product Rule }}^{D_{x}(x \ln x)}}{(x \ln x)^{2}} \\
& =-\frac{(1)(\ln x)+(x)\left(\frac{1}{x}\right)}{(x \ln x)^{2}} \\
& =-\frac{\ln x+1}{(x \ln x)^{2}} \quad(\text { Note that } \ln x>0 \text { and den. }>0 \text { on }[2, \infty) .) \\
& <0 \quad \text { on }[2, \infty)
\end{aligned}
$$

Indefinite integral:

$$
\begin{aligned}
& \int \frac{1}{x(\ln x)} d x \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+C \\
& =\ln |\ln x|+C
\end{aligned}
$$

Now:

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)} d x & =\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x(\ln x)} d x \quad \text { (if the limit exists) } \\
& =\lim _{t \rightarrow \infty}[\ln |\ln x|]_{2}^{t} \\
& =\lim _{t \rightarrow \infty}(\underbrace{[\ln |\ln t|]}_{\rightarrow \infty}-[\ln |\ln 2|]) \\
& =\infty
\end{aligned}
$$

This integral diverges, so the series diverges (D).

