QUIZ ON SECTIONS 11.1-5 SOLUTIONS

MATH 151 – SPRING 2003 – KUNIYUKI 102 POINTS TOTAL, BUT 100 POINTS = 100%

1) Find the limits. Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist). You do <u>not</u> have to show work. (9 points total; 3 points each)

a)
$$\lim_{n \to \infty} a_n$$
, where $a_n = \left(\frac{n+1}{n}\right)^n$

$$\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
$$= e$$

b)
$$\lim_{n \to \infty} a_n$$
, where $a_n = 6\left(-\frac{2}{5}\right)^n$

$$\lim_{n\to\infty} 6\left(-\frac{2}{5}\right)^n = \mathbf{0}$$
; we have a geometric sequence for which $|r| = \frac{2}{5} < 1$.

c)
$$\lim_{n \to \infty} a_n$$
, where $a_n = \frac{\sin^2 n}{\sqrt{n}}$

$$\lim_{n\to\infty} \frac{\sin^2 n}{\sqrt{n}} = \mathbf{0}$$
, by the Squeeze/Sandwich Theorem:

$$0 \leq \sin^2 n \leq 1$$

$$\frac{0}{\sqrt{n}} \leq \frac{\sin^2 n}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}$$

$$0 \leq \sin^2 n \leq 1$$

$$0 \leq \sin^2 n \leq 1$$

2) Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n}$. (8 points)

$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n} = \sum_{n=1}^{\infty} 3 \left(\frac{3^n}{4^n} \right)$$
$$= \sum_{n=1}^{\infty} 3 \left(\frac{3}{4} \right)^n$$

Method 1

The first term, *a*, is $a_1 = 3\left(\frac{3}{4}\right)^1 = \frac{9}{4}$.

The common ratio is $r = \frac{3}{4}$.

Sum =
$$S = \frac{a}{1-r} = \frac{\frac{9}{4}}{1-\frac{3}{4}} = \frac{\frac{9}{4}}{\frac{1}{4}} = 9.$$

Method 2

$$\sum_{n=1}^{\infty} 3 \left(\frac{3}{4} \right)^n = \sum_{n=1}^{\infty} 3 \left(\frac{3}{4} \right) \left(\frac{3}{4} \right)^{n-1}$$

$$= \sum_{n=1}^{\infty} \frac{9}{4} \left(\frac{3}{4} \right)^{n-1}$$

$$= \sum_{n=1}^{\infty} a r^{n-1}, \text{ where } a = \frac{9}{4}, \text{ and } r = \frac{3}{4}$$

Again, Sum =
$$S = \frac{a}{1-r} = \frac{\frac{9}{4}}{1-\frac{3}{4}} = \frac{\frac{9}{4}}{\frac{1}{4}} = 9$$

3) The series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^3}$ is approximated by S_3 . According to our discussion in class, what is an upper bound on |error| for this approximation? (4 points)

$$\sum_{n=1}^{\infty} (-1)^{n-1} \underbrace{\frac{1}{n^3}}_{=a_n} = \underbrace{1 - \frac{1}{8} + \frac{1}{27}}_{=S_3} - \underbrace{\frac{1}{64}}_{=a_4} + \dots$$

$$|\operatorname{error}| \le |1^{\operatorname{st}}| \operatorname{neglected}| = a_4 = \frac{1}{64}$$

Note:

$$S \approx 0.9015$$
$$S_3 \approx 0.9120$$

error ≈ 0.0105 , which is less than [or equal to] $\frac{1}{64} \approx 0.0156$.

4) For each of the following series, box in "Absolutely Convergent," "Conditionally Convergent," or "Divergent," as appropriate. You do <u>not</u> have to show work. (12 points total; 4 points each)

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{1/3}}$$

Absolutely Convergent Conditionally Convergent Divergent

You could use the AST to show that this alternating series converges, because $\frac{1}{n^{1/3}}$ decreases (for $n \ge 1$) and approaches 0 as $n \to \infty$.

However, the series $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ diverges, because it is a *p*-series with $p = \frac{1}{3} \le 1$.

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{2}{5}\right)^n$$

Absolutely Convergent Conditionally Convergent Divergent

The series $\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$ converges, because it is a geometric series with $|r| = \frac{2}{5} < 1$.

Therefore, the given series is absolutely convergent by the ACT.

c)
$$\sum_{n=1}^{\infty} \left[\frac{1}{n} + (-1)^{n-1} \frac{1}{n} \right]$$

Absolutely Convergent Conditionally Convergent Divergent

 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$, which is the alternating harmonic series, converges by the AST, but $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the harmonic series (*p*-series with p=1), diverges.

Therefore, the original series diverges.

5) True or False: There exists a rearrangement of the terms of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ so that the resulting series converges with sum π .

Box in one: (3 points)

True False

The given series, which is the alternating harmonic series, is conditionally convergent, so for any real number (including π), there exists a rearrangement of terms that yields a series whose sum is that number.

- 6) For each of the following series:
 - Determine whether it converges (write "C") or diverges (write "D").
 - State which test you are using (you may abbreviate as in class).
 - Show work (as suggested in class).
 - Whenever you use the Integral Test, state and verify the assumptions (hypotheses) for the test (as we have done in class). (66 points total)

a)
$$\sum_{n=2}^{\infty} \frac{n^{3/2}}{n^2 - 3}$$
 (8 points)

We have a positive-term series.

 $\frac{n^{3/2}}{n^2-3}$ is an algebraic expression; the Ratio and Root Tests fail and give L=1.

Either the BCT or the LCT will do.

BCT

By using dominant terms in the numerator and denominator, we observe:

$$\frac{n^{3/2}}{n^2} \le \frac{n^{3/2}}{n^2 - 3} \qquad \text{(for all } n \ge 2\text{)}$$

$$\frac{1}{n^{1/2}} \le \frac{n^{3/2}}{n^2 - 3} \qquad \text{(for all } n \ge 2\text{)}$$

We know that the "little brother" series $\sum \frac{1}{n^{1/2}}$ diverges, since it is a p-series with $p = \frac{1}{2} \le 1$. (The fact that the given series starts with n = 2 is irrelevant, since that does not affect convergence vs. divergence.) Then, the "big brother" series $\sum_{n=2}^{\infty} \frac{n^{3/2}}{n^2 - 3}$ must also **diverge** (**D**).

Again, use $\sum \frac{1}{n^{1/2}}$ as the comparison series.

$$\lim_{n \to \infty} \frac{\frac{n^{3/2}}{n^2 - 3}}{\frac{1}{n^{1/2}}} = \lim_{n \to \infty} \left(\frac{n^{3/2}}{n^2 - 3} \cdot n^{1/2} \right)$$

$$= \lim_{n \to \infty} \frac{n^2}{n^2 - 3} \quad \text{(You may consider dominant terms in num. and den.)}$$

= 1, which is a nonzero real number.

We know that the *p*-series $\sum \frac{1}{n^{1/2}}$ diverges, so the original series must also **diverge (D)**.

b)
$$\sum_{n=1}^{\infty} \left[1 + \left(-1 \right)^n \right]$$
 (4 points)

The terms alternate between 0 and 2, so they cannot approach 0. By the n^{th} -Term Test for Divergence, the series **diverges** (**D**).

c)
$$\sum_{n=2}^{\infty} \frac{2n^4 + 3}{n^7 - 8}$$
 (10 points)

We have a positive-term series.

 $\frac{2n^4+3}{n^7-8}$ is a rational (in general, algebraic) expression. The Ratio and Root Tests fail; they yield L=1.

Try the LCT. (The BCT does not work immediately.)

Compare $a_n = \frac{2n^4 + 3}{n^7 - 8}$ with $b_n = \frac{n^4}{n^7} = \frac{1}{n^3}$. (Consider dominant terms and ignore non-1 constant coefficients.)

(continued...)

$$\lim_{n \to \infty} \frac{\frac{2n^4 + 3}{n^7 - 8}}{\frac{1}{n^3}} = \lim_{n \to \infty} \left[\frac{2n^4 + 3}{n^7 - 8} \cdot n^3 \right]$$

$$= \lim_{n \to \infty} \frac{2n^7 + 3n^3}{n^7 - 8} \quad \text{(You may consider dominant terms in num. and den.)}$$

= 2, which is a nonzero real number

We know $\sum \frac{1}{n^3}$ converges, so $\sum_{n=2}^{\infty} \frac{2n^4 + 3}{n^7 - 8}$ must also **converge** (C).

d)
$$\sum_{n=0}^{\infty} \frac{7^n}{n!}$$
 (12 points)

We have a positive-term series. The n! hints at the Ratio Test.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{7^{n+1}}{(n+1)!}}{\frac{7^n}{n!}}$$

$$= \lim_{n \to \infty} \left[\frac{7^{n+1}}{(n+1)!} \cdot \frac{n!}{7^n} \right]$$

$$= \lim_{n \to \infty} \left[\frac{7^{n+1}}{7^n} \cdot \frac{n!}{(n+1)!} \right]$$

$$= \lim_{n \to \infty} 7 \cdot \frac{1}{n+1}$$

$$= 0$$

$$< 1$$

Therefore, the given series **converges** (C).

e)
$$\sum_{n=1}^{\infty} n \left(\frac{3}{4} \right)^n$$
 (12 points)

We have a positive-term series.

Method 1: Ratio Test

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)\left(\frac{3}{4}\right)^{n+1}}{n\left(\frac{3}{4}\right)^n}$$

$$= \lim_{n \to \infty} \left[\underbrace{\frac{n+1}{n} \cdot \frac{3}{4}}_{-1}\right]$$

$$= \frac{3}{4}$$
<1

Therefore, the given series **converges** (C).

Method 2: Root Test

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n \left(\frac{3}{4}\right)^n}$$

$$= \lim_{n \to \infty} \left[\underbrace{\sqrt[n]{n} \cdot \sqrt[n]{\left(\frac{3}{4}\right)^n}}_{=\frac{3}{4}} \right]$$

$$= \frac{3}{4}$$

Therefore, the given series converges (C).

f)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 (20 points)

The $\ln n$ and the $\frac{1}{n}$ hint at the Integral Test.

Let
$$f(x) = \frac{1}{x \ln x}$$
.

Check the hypotheses of the test:

- f is positive-valued on $[2,\infty)$.
- f is continuous on $[2,\infty)$.
- f decreases on $[2,\infty)$. Verify:

$$f(x) = \frac{1}{x \ln x}$$

$$f'(x) = -\frac{D_x(x \ln x)}{(x \ln x)^2}$$

$$= -\frac{(1)(\ln x) + (x)(\frac{1}{x})}{(x \ln x)^2}$$

$$= -\frac{\ln x + 1}{(x \ln x)^2} \quad \text{(Note that } \ln x > 0 \text{ and den.} > 0 \text{ on } [2, \infty).$$

$$< 0 \qquad \text{on } [2, \infty)$$

Indefinite integral:

Let
$$u = \ln x$$

$$du = \frac{1}{x} dx$$

$$= \int \frac{1}{u} du$$

$$= \ln |u| + C$$

$$= \ln |\ln x| + C$$

Now:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x(\ln x)} dx \quad \text{(if the limit exists)}$$

$$= \lim_{t \to \infty} \left[\ln \left| \ln x \right| \right]_{2}^{t}$$

$$= \lim_{t \to \infty} \left[\underbrace{\left[\ln \left| \ln t \right| \right]}_{t \to \infty} - \left[\ln \left| \ln 2 \right| \right] \right]$$

$$= \infty$$

This integral diverges, so the series **diverges** (**D**).