
QUIZ ON SECTIONS 11.1-5
SOLUTIONS

MATH 151 – SPRING 2003 – KUNIYUKI
102 POINTS TOTAL, BUT 100 POINTS = 100%

1) Find the limits. Write • or - •  when appropriate. If a limit does not exist, and
• and - •  are inappropriate, write “DNE” (Does Not Exist). You do not have
to show work. (9 points total; 3 points each)
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Method 1
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class, what is an upper bound on error  for this approximation? (4 points)
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4) For each of the following series, box in “Absolutely Convergent,”
“Conditionally Convergent,” or “Divergent,” as appropriate. You do not have to
show work. (12 points total; 4 points each)
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Therefore, the given series is absolutely convergent by the ACT.

c) 
1 1 11

1 n n
n

n
+ -( )È

Î
Í
Í

˘

˚
˙
˙

-

=

•

Â

Absolutely Convergent   Conditionally Convergent Divergent

-( ) -

=

•

Â 1
11

1

n

n n
, which is the alternating harmonic series, converges by the AST, but

1

1 nn =

•

Â , which is the harmonic series (p-series with p = 1), diverges.

Therefore, the original series diverges.



5) True or False: There exists a rearrangement of the terms of the series
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Box in one: (3 points)

True False

The given series, which is the alternating harmonic series, is conditionally convergent, so
for any real number (including p ), there exists a rearrangement of terms that yields a
series whose sum is that number.

6) For each of the following series:
• Determine whether it converges (write “C”) or diverges (write “D”).
• State which test you are using (you may abbreviate as in class).
• Show work (as suggested in class).
• Whenever you use the Integral Test, state and verify the assumptions

(hypotheses) for the test (as we have done in class). (66 points total)
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LCT

Again, use 
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1 2n /Â  as the comparison series.
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,  which is a nonzero real number.
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The terms alternate between 0 and 2, so they cannot approach 0.
By the nth-Term Test for Divergence, the series diverges (D).
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fail; they yield L = 1.
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(continued…)
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We have a positive-term series. The n! hints at the Ratio Test.
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Therefore, the given series converges (C).
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We have a positive-term series.
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Therefore, the given series converges (C).

Method 2: Root Test
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Therefore, the given series converges (C).
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Check the hypotheses of the test:

•  f  is positive-valued on 2,•[ ).

•  f  is continuous on 2,•[ ).
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This integral diverges, so the series diverges (D).


