QUIZ ON SECTIONS 11.1-5
SOLUTIONS

MATH 151 - SPRING 2003 - KUNIYUKI
102 POINTS TOTAL, BUT 100 POINTS = 100%

1) Find the limits. Write oo or —eo when appropriate. If a limit does not exist, and
o and —oo are inappropriate, write “DNE” (Does Not Exist). You do not have
to show work. (9 points total; 3 points each)
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3) The series 2 (—l)n % is approximated by §;. According to our discussion in
n=l1 n

class, what is an upper bound on ‘error‘ for this approximation? (4 points)
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4) For each of the following series, box in “Absolutely Convergent,”
“Conditionally Convergent,” or “Divergent,” as appropriate. You do not have to
show work. (12 points total; 4 points each)
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Absolutely Convergent  Conditionally Convergent Divergent

You could use the AST to show that this alternating series converges, because

1
i decreases (for n > 1) and approaches 0 as n — oo.
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However, the series Z —75 diverges, because it is a p-series with p= 3 <lI.
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The series — | converges, because it is a geometric series with |r|=—<1.
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Therefore, the given series is absolutely convergent by the ACT.
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Z —, which is the harmonic series (p-series with p = 1), diverges.
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Therefore, the original series diverges.



5) True or False: There exists a rearrangement of the terms of the series

n—11 ) . .
2 (—l) 7 SO that the resulting series converges with sum 7.
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Box in one: (3 points)

True False

The given series, which is the alternating harmonic series, is conditionally convergent, so
for any real number (including 7), there exists a rearrangement of terms that yields a
series whose sum is that number.

6) For each of the following series:
* Determine whether it converges (write “C”) or diverges (write “D”).
» State which test you are using (you may abbreviate as in class).
» Show work (as suggested in class).
* Whenever you use the Integral Test, state and verify the assumptions
(hypotheses) for the test (as we have done in class). (66 points total)
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We have a positive-term series.
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5 is an algebraic expression; the Ratio and Root Tests fail and give L = 1.
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Either the BCT or the LCT will do.
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By using dominant terms in the numerator and denominator, we observe:
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We know that the “little brother” series ZT diverges, since it is a
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p-series with p = 5 < 1. (The fact that the given series starts with

n =2 is irrelevant, since that does not affect convergence vs. divergence.)
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Then, the “big brother” series Z T3 must also diverge (D).
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We know that the p-series ZT diverges, so the original series must also
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diverge (D).
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The terms alternate between 0 and 2, so they cannot approach 0.
By the n"-Term Test for Divergence, the series diverges (D).
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We have a positive-term series.
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n7 g is a rational (in general, algebraic) expression. The Ratio and Root Tests
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fail; they yield L =1.

Try the LCT. (The BCT does not work immediately.)
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(continued...)
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We know 2—3 converges, so 2 n7 must also converge (C).
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We have a positive-term series. The n! hints at the Ratio Test.

7n+1
hm n+l __ h (n + 1)‘
n—ee n—soo 7"

n!

Therefore, the given series converges (C).
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We have a positive-term series.

Method 1: Ratio Test
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Therefore, the given series converges (C).

Method 2: Root Test
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Therefore, the given series converges (C).

2 11 (20 points)

1
The In n and the — hint at the Integral Test.
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Let f(x)=



Check the hypotheses of the test:
* f is positive-valued on [2,00).
e f is continuous on [2,00).

* f decreases on [2,00). Verify:
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Indefinite integral:
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This integral diverges, so the series diverges (D).



