QUIZ ON SECTIONS 11.6-8

SOLUTIONS

MATH 151 - SPRING 2003 - KUNIYUKI

PART 1: GRADED OUT OF 80 POINTS; SCORE CUT IN HALF (80 -> 40)
PART 2: 60 POINTS
TOTAL ON PARTS 1 AND 2: 100 POINTS

(PART 1)

Fill in the table below. You may use the back for [ungraded] scratch work.
Simplify where appropriate, but you do not have to compute factorials.
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(PART 2)

) ) = 2" (x—4)" :
1) Find the interval of convergence for Z # (24 points)
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We know the series converges when L <1.
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Solve the absolute value inequality:
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We know that the series converges for these values of x.
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This series converges by the AST, because it is an alternating series, and

1
— decreases and approaches 0 as n — oo.
n

Check x = 2:
2

This series converges, because it is a p-series withp =2 > 1.

Answer: [ = [Z,g}, or [3.5, 4.5].
2°2
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2) Evaluate sze‘”‘ dx . Hint: The Maclaurin series for e* is Y .
n=0 """

Just use series; don’t use integration by parts. (10 points)
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3) Find the first four terms of the Taylor series for f(x)=+x at c=4.
(20 points)
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Taylor series at ¢ = 4:
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Note: If you plug in x =35, you get \/5 accurate to three decimal places: 2.236.



TRUE/FALSE

Circle “True” or “False” as appropriate. (6 points total; 3 points each)

a) If f,f’,f”,... all exist everywhere (i.e., for all values of x, say), then the Taylor
series at any real number c is a valid representation for f everywhere.

True False
See Example 6 on pp.586-7. f, f’, f”,... all exist everywhere, but the series is
only valid for x = 0. (We say that there is “no Taylor series representation for f.”)

In order for the Taylor series to be valid everywhere, we also require that the
remainder term R, (x) — O for all real x.

b) The Maclaurin series for f(x)=cosx is a valid representation for f everywhere.

True False

See Example 2 on p.584. The analysis for f(x)=cosx is similar to the analysis
for f(x)=sinx.



