QUIZ ON CHAPTER 13 SOLUTIONS
 MATH 151 - SPRING 2003 - KUNIYUKI 100 POINTS TOTAL

When graphing, be reasonably accurate, and clearly indicate orientation. Use as many arrowheads as appropriate. Clearly indicate x - and y-intercepts, endpoints, and extreme points when feasible.

1) Find a rectangular equation for the curve described by:

$$
\begin{aligned}
& x=t^{2}+3 \\
& y=4-t \\
& t \text { in } \mathbf{R}
\end{aligned}
$$

(4 points)

$$
y=4-t \Rightarrow t=4-y
$$

Together with $x=t^{2}+3 \Rightarrow x=(4-y)^{2}+\mathbf{3}$

$$
\text { or } x=y^{2}-8 y+19
$$

2) Find a rectangular equation in x and y that has the same graph as the polar equation $r^{2}=6 \sec \theta \csc \theta$. (6 points)

$$
\begin{aligned}
& r^{2}=6 \sec \theta \csc \theta \\
& r^{2}=6 \cdot \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta}
\end{aligned}
$$

$$
r^{2} \cos \theta \sin \theta=6
$$

$$
(r \cos \theta)(r \sin \theta)=6
$$

$$
x y=6 \quad \text { or } \quad y=\frac{6}{x}
$$

Note: The graph of this is a hyperbola.
3) Sketch the graph of C using the grid below, where C is described by:

$$
\begin{aligned}
& x=\cos t \\
& y=\sec ^{2} t \\
& \frac{\pi}{2}<t<\pi
\end{aligned}
$$

(10 points)

Clues:
Because $\sec ^{2} x=\frac{1}{\cos ^{2} x}$, the rectangular equation is $y=\frac{1}{x^{2}}$ (note that we have an even function of x here). Its unrestricted graph is:

As t increases from $\frac{\pi}{2}$ to π (excluding the endpoints themselves),
$\cos t$ stays negative; in particular, it decreases from 0 to -1 (excluding 0 and -1 , themselves).
4) Consider the curve described by:

$$
\begin{aligned}
& x=e^{2 t} \\
& y=\sqrt{t} \\
& t \geq 0
\end{aligned}
$$

(16 points total)
a) Find the slope of the tangent line at the point on the curve that corresponds to $t=4$. Give an exact answer; don't approximate. (10 points)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t} \\
& =\frac{\frac{1}{2} t^{-1 / 2}}{2 e^{2 t}} \\
& =\frac{\frac{1}{2 \sqrt{t}}}{2 e^{2 t}} \\
& =\frac{1}{4 e^{2 t} \sqrt{t}} \\
{\left[\frac{d y}{d x}\right]_{t=4} } & =\frac{1}{4 e^{2(4)} \sqrt{4}} \\
& =\frac{\mathbf{1}}{\mathbf{8} e^{8}}
\end{aligned}
$$

b) Set up, but do not evaluate, an integral that represents the length of the curve from the point corresponding to $t=1$ to the point corresponding to $t=4$. (6 points)

$$
\int_{1}^{4} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{1}^{4} \sqrt{\left(2 e^{2 t}\right)^{2}+\left(\frac{\mathbf{1}}{\mathbf{2} \sqrt{t}}\right)^{2}} d t
$$

5) Consider the curve described by:

$$
\begin{aligned}
& x=t^{3}+1 \\
& y=\sin t \\
& t \text { in } \mathbf{R}
\end{aligned}
$$

Find $\frac{d^{2} y}{d x^{2}}$ in terms of t. (10 points)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{D_{t}\left(\frac{\cos t}{3 t^{2}}\right)}{d x / d t} \\
&=\frac{\frac{\left(3 t^{2}\right)(-\sin t)-(\cos t)(6 t)}{\left(3 t^{2}\right)^{2}}}{3 t^{2}} \\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
&=\frac{\cos t}{3 t^{2}}=\frac{\frac{-3 t^{2} \sin t-6 t \cos t}{9 t^{4}}}{3 t^{2}} \\
&=\frac{-3 t^{2} \sin t-6 t \cos t}{27 t^{6}} \\
&=\frac{-3 t(t \sin t+2 \cos t)}{27 t^{6}} \\
&=-\frac{t \sin t+\mathbf{2} \cos t}{\mathbf{9 t}}
\end{aligned}
$$

Use the Quotient Rule to get the numerator.
6) Find the slope of the tangent line to the graph of the polar equation $r=2-3 \sin \theta$ at the point corresponding to $\theta=\frac{\pi}{6}$. Give an exact answer, but you do not have to rationalize the denominator. (18 points)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\
&=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)} \leftarrow \text { Use Product Rule } \\
& \leftarrow \text { Use Product Rule } \\
&=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
r & =2-3 \sin \theta \\
\frac{d r}{d \theta} & =-3 \cos \theta \\
{\left[\frac{d r}{d \theta}\right]_{\theta=\frac{\pi}{6}} } & =-3 \cos \frac{\pi}{6} \\
& =-3 \cdot \frac{\sqrt{3}}{2} \\
& =-\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

We will plug in $\left[\frac{d r}{d \theta}\right]_{\theta=\frac{\pi}{6}}=-\frac{3 \sqrt{3}}{2}$.
We will also plug in:

$$
\begin{aligned}
\left(\theta=\frac{\pi}{6}\right) \Rightarrow & \sin \theta
\end{aligned}=\sin \frac{\pi}{6}=\frac{1}{2}, ~ \begin{aligned}
\cos \theta & =\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \\
r=2-3 \sin \theta & =2-3 \sin \frac{\pi}{6}=2-3\left(\frac{1}{2}\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta} \\
& =\frac{\left(-\frac{3 \sqrt{3}}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)}{\left(-\frac{3 \sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} \\
& =\frac{-\frac{3 \sqrt{3}}{4}+\frac{\sqrt{3}}{4}}{-\frac{9}{4}-\frac{1}{4}} \\
& =\frac{-\frac{2 \sqrt{3}}{4}}{-\frac{10}{4}} \\
& =\frac{2 \sqrt{3}}{10} \\
& =\frac{\sqrt{3}}{5}
\end{aligned}
$$

7) Sketch the graph of $r=3+4 \cos \theta$ using the grid below. You do not have to determine the exact value(s) of θ for which $r=0$. (20 points)

It helped to graph r against θ in Cartesian coordinates:

8) Find the area of the region bounded by one loop of the graph of the polar equation $r=3 \sin (2 \theta)$. You may use the grid below as a guide. (16 points)

It turns out we just need to graph r against θ in Cartesian coordinates from $\theta=0$ to $\theta=\frac{\pi}{2}$.

One loop [of this four-leafed rose] is traced out from $\theta=0$ to $\theta=\frac{\pi}{2}$, but we can exploit symmetry.

$$
\begin{aligned}
A & =2 \int_{0}^{\pi / 4} \frac{1}{2} r^{2} d \theta \\
& =\int_{0}^{\pi / 4} r^{2} d \theta \\
& =\int_{0}^{\pi / 4}[3 \sin (2 \theta)]^{2} d \theta \\
& =\int_{0}^{\pi / 4} 9 \sin ^{2}(2 \theta) d \theta \\
& =9 \int_{0}^{\pi / 4} \frac{1-\cos (4 \theta)}{2} d \theta \\
& =\frac{9}{2}\left[\theta-\frac{1}{4} \sin (4 \theta)\right]_{0}^{\pi / 4} \\
& =\frac{9}{2}\left(\left[\frac{\pi}{4}-\frac{1}{4} \sin (\pi)\right]-\left[0-\frac{1}{4} \sin (0)\right]\right) \\
& =\frac{9}{2}\left(\left[\frac{\pi}{4}-0\right]-[0]\right) \\
& =\frac{\mathbf{9} \pi}{\mathbf{8}}
\end{aligned}
$$

