QUIZ ON CHAPTER 12 SOLUTIONS
 MATH 151 - SPRING 2003 - KUNIYUKI 100 POINTS TOTAL

You may use mixed numbers instead of improper fractions in your answers. Don't approximate.

1) Consider the equation $x+6 y^{2}-48 y+93=0$. Its graph is a parabola in the standard $x y$-plane. (Show your work at the bottom of the page.) (13 points total)
a) Which way does the parabola open (down, left, right, or up)?

$$
\begin{aligned}
x+6 y^{2}-48 y+93 & =0 \\
x & =\underbrace{-6 y^{2}+48 y-93}_{f(y)}
\end{aligned}
$$

The equation expresses x as a function of y, so the parabola either opens right or left. The leading coefficient of $f(y)$ is negative ($a=-6<0$), so the parabola opens left.
b) What are the coordinates of the vertex of the parabola?

$$
\begin{aligned}
k & =y-\text { coordinate of vertex } \\
& =-\frac{b}{2 a} \\
& =-\frac{48}{2(-6)} \\
& =4 \\
h & =x-\text { coordinate of vertex } \\
& =f(4) \\
& =-6(4)^{2}+48(4)-93 \\
& =3
\end{aligned}
$$

Vertex: (3,4)
c) What are the coordinates of the focus of the parabola?

Find p, the signed distance from the vertex to the focus.

$$
\begin{aligned}
p & =\frac{1}{4 a} \\
& =\frac{1}{4(-6)} \\
& =-\frac{1}{24}
\end{aligned}
$$

The parabola opens left, so the focus lies to the left of the vertex. (Also, $p<0$.)
The vertex is at $(3,4)$, so the focus lies at:

$$
\begin{aligned}
& \left(3-\frac{1}{24}, 4\right) \\
& \left(2 \frac{23}{24}, 4\right)
\end{aligned}
$$

2) Consider the equation $3 x^{2}+2 y^{2}+18 x-4 y+17=0$. Its graph is an ellipse in the standard $x y$-plane. (Show your work at the bottom of the page.) (24 points total)

$$
\begin{aligned}
& 3 x^{2}+2 y^{2}+18 x-4 y+17= 0 \\
& \quad \text { Group terms. } \\
&\left(3 x^{2}+18 x\right)+\left(2 y^{2}-4 y\right)=-17 \\
& \quad \text { Factor out the le } \\
& 3\left(x^{2}+6 x\right)+2\left(y^{2}-2 y\right)=-17 \\
& \quad \text { Complete the sq } \\
& 3\left(x^{2}+6 x+9\right)+2\left(y^{2}-2 y+1\right)=-17+3(9)+2(1) \\
& \quad \text { Factor the Perfe } \\
& 3(x+3)^{2}+2(y-1)^{2}= 12 \\
& \frac{3(x+3)^{2}}{12}+\frac{2(y-1)^{2}}{12}= \frac{12}{12} \\
& \frac{(x+3)^{2}}{4}+\frac{(y-1)^{2}}{6}= 1
\end{aligned}
$$

Factor out the leading coefficients.

Complete the square in the two groups.

Factor the Perfect Square Trinomials.

The center is $(-3,1)$, which makes the left side equal to 0 .

Since $6>4$, we have a y-long ellipse, and

$$
\begin{aligned}
a^{2} & =6 & b^{2} & =4 \\
a & =\sqrt{6} & b & =2
\end{aligned} \text { (Not needed in this problem.) }
$$

Find c :

$$
\begin{aligned}
c^{2} & =a^{2}-b^{2} \\
& =6-4 \\
& =2 \\
c & =\sqrt{2}
\end{aligned}
$$

a) What are the coordinates of the vertices of the ellipse?

Move up and down $a=\sqrt{6}$ units from the center to get the vertices.
The center is $(-3,1)$. The vertices are:

$$
(-3,1 \pm \sqrt{6})
$$

b) What are the coordinates of the foci of the ellipse?

Move up and down $c=\sqrt{2}$ units from the center to get the foci.
The center is $(-3,1)$. The foci are:

$$
(-3,1 \pm \sqrt{2})
$$

c) What is the eccentricity of the ellipse?

$$
e=\frac{c}{a}=\frac{\sqrt{2}}{\sqrt{6}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}=\frac{\sqrt{3}}{\mathbf{3}}
$$

3) Consider the equation $\frac{(y-3)^{2}}{9}-\frac{(x+2)^{2}}{25}=1$. Its graph is a hyperbola in the standard $x y$-plane. (17 points total)

Preliminaries:

The center is $(h, k)=(-2,3)$. (This makes the left side equal to 0 .)

$$
\begin{array}{rlcl}
a^{2}=9 & \text { ("on the left") } & b^{2}=25 \\
a=3 & \text { (Take the positive root.) } & b=5 & \text { (Take the positive root.) }
\end{array}
$$

Since the " y stuff" is on the left of the "-" in the equation, the hyperbola opens up and down.
a) What are the coordinates of the foci of the hyperbola?

Find c :

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =9+25 \\
& =34 \\
c & =\sqrt{34}
\end{aligned}
$$

Therefore, the foci must lie directly above and below the center.
The foci are $(-\mathbf{2 , 3} \pm \sqrt{\mathbf{3 4}})$.
b) What are the equations of the asymptotes of the hyperbola?

The hyperbola opens up and down.

$$
\begin{aligned}
& y-k= \pm \frac{a}{b}(x-h) \\
& y-3= \pm \frac{3}{5}(x-(-2)) \\
& \boldsymbol{y}-\mathbf{3}= \pm \frac{\mathbf{3}}{\mathbf{5}}(\boldsymbol{x}+\mathbf{2})
\end{aligned}
$$

c) Sketch the graph of the hyperbola using the coordinate grid below. Make sure you accurately plot/graph the center, the vertices, and the asymptotes of the hyperbola.

4) Find an equation of the parabola that has vertex $(7,-2)$ and focus $(7,1)$. (8 points)

Since the focus is directly above the vertex, the parabola opens up, and x is the variable that is ultimately squared.

Form of equation:

$$
\begin{aligned}
y-k & =a(x-h)^{2} \\
y-(-2) & =a(x-7)^{2} \\
y+2 & =a(x-7)^{2}
\end{aligned}
$$

Find a :
The focus is 3 units directly above the vertex, so $p=3$.

$$
\begin{aligned}
a & =\frac{1}{4 p} \\
& =\frac{1}{4(3)} \\
& =\frac{1}{12}
\end{aligned}
$$

Equation:

$$
y+2=\frac{1}{12}(x-7)^{2}
$$

5) Find an equation of the hyperbola that has vertices $(\pm 4,0)$ and foci $(\pm 7,0)$. (10 points)

The center must be $(0,0)$, since it is the midpoint of the line segment connecting the two vertices.

The center, vertices, and foci all lie along the x-axis, so the hyperbola opens left and right.

Form of equation:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Each vertex is 4 units away from the center, so $a=4 \Rightarrow a^{2}=16$.
Each focus is 7 units away from the center, so $c=7 \Rightarrow c^{2}=49$.

Find $\underline{b}^{2}:$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
49 & =16+b^{2} \\
b^{2} & =33
\end{aligned}
$$

Equation:

$$
\frac{x^{2}}{16}-\frac{y^{2}}{33}=1
$$

6) A particular rotated conic section has equation $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, for particular values of $A, B, \ldots F$. If $B^{2}-4 A C=-6$, what type of conic do we have - an ellipse, a hyperbola, or a parabola? (3 points)

Since the discriminant is negative, the conic is an ellipse.
7) The graph of $5 x^{2}-2 \sqrt{3} x y+7 y^{2}-24=0$ is a rotated ellipse. Use a suitable rotation of axes to find an equation for the graph in an $x^{\prime} y^{\prime}$-plane such that the equation has no cross-term. Your final equation must be in standard form for an ellipse. Also give the angle of rotation. You do not have to graph anything. (25 points total)

Find the angle of rotation, ϕ :
We require that:

$$
\begin{aligned}
& 0^{\circ}<2 \phi<180^{\circ}, \text { and } \\
& 0^{\circ}<\phi<90^{\circ} . \\
& \cot (2 \phi)=\frac{A-C}{B} \\
& =\frac{5-7}{-2 \sqrt{3}} \\
& =\frac{-2}{-2 \sqrt{3}} \\
& =\frac{1}{\sqrt{3}} \text { or } \frac{\sqrt{3}}{3} \\
& \Leftrightarrow \tan (2 \phi)=\sqrt{3} \\
& \Leftrightarrow 2 \phi=60^{\circ} \quad\left(\text { Given that } 0<2 \phi<180^{\circ} .\right) \\
& \Leftrightarrow \phi=30^{\circ}
\end{aligned}
$$

The angle of rotation is $\mathbf{3 0}^{\circ}$.

Find $\sin \phi$ and $\cos \phi$:

$$
\begin{aligned}
& \sin \phi=\sin 30^{\circ}=\frac{1}{2} \\
& \cos \phi=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Use the rotation of axes formulas:

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
x & =\frac{\sqrt{3}}{2} x^{\prime}-\frac{1}{2} y^{\prime} \Rightarrow x=\frac{1}{2}\left(\sqrt{3} x^{\prime}-y^{\prime}\right) \\
y & =\frac{1}{2} x^{\prime}+\frac{\sqrt{3}}{2} y^{\prime} \Rightarrow y=\frac{1}{2}\left(x^{\prime}+\sqrt{3} y^{\prime}\right)
\end{aligned}
$$

Substitute into the given equation:

$$
\begin{aligned}
& 5 x^{2}-2 \sqrt{3} x y+7 y^{2}-24=0 \\
& 5\left[\frac{1}{2}\left(\sqrt{3} x^{\prime}-y^{\prime}\right)\right]^{2}-2 \sqrt{3}\left[\frac{1}{2}\left(\sqrt{3} x^{\prime}-y^{\prime}\right)\right]\left[\frac{1}{2}\left(x^{\prime}+\sqrt{3} y^{\prime}\right)\right]+7\left[\frac{1}{2}\left(x^{\prime}+\sqrt{3} y^{\prime}\right)\right]^{2}-24=0
\end{aligned}
$$

For convenience, let's omit the prime notation for now.

$$
5 \cdot \frac{1}{4}\left(3 x^{2}-2 \sqrt{3} x y+y^{2}\right)-2 \sqrt{3} \cdot \frac{1}{4} \cdot\left(\sqrt{3} x^{2}+3 x y-x y-\sqrt{3} y^{2}\right)+\frac{7}{4}\left(x^{2}+2 \sqrt{3} x y+3 y^{2}\right)-24=
$$

Let's multiply through by 4.

$$
\begin{aligned}
5\left(3 x^{2}-2 \sqrt{3} x y+y^{2}\right)-2 \sqrt{3}\left(\sqrt{3} x^{2}+2 x y-\sqrt{3} y^{2}\right)+7\left(x^{2}+2 \sqrt{3} x y+3 y^{2}\right)-96 & =0 \\
15 x^{2}-10 \sqrt{3} x y+5 y^{2}-6 x^{2}-4 \sqrt{3} x y+6 y^{2}+7 x^{2}+14 \sqrt{3} x y+21 y^{2}-96 & =0 \\
16 x^{2}+32 y^{2} & =96
\end{aligned}
$$

Divide through by 96.

$$
\frac{x^{2}}{6}+\frac{y^{2}}{3}=1
$$

Put in the prime notation.

$$
\frac{\left(x^{\prime}\right)^{2}}{6}+\frac{\left(y^{\prime}\right)^{2}}{3}=1
$$

