MATH 151 POP QUIZ: SOLUTIONS

DERIVATIVES (CHAPTERS 3, 7, and 8)

$D_{x}(\sin x)=\frac{\cos x}{}$	$D_{x}(\cos x)=\frac{-\sin x}{\sec ^{2} x}$
$D_{x}(\tan x)=\frac{\csc ^{2} x}{\sec x \tan x}$	$D_{x}(\cot x)=\frac{-\csc x \cot x}{}$
$D_{x}(\sec x)=\square$	

Take a look at each row: we are taking the derivatives of a pair of cofunctions. To get from the first column to the second column, you flip the sign of the result and take the cofunction of each factor.

Evaluate the following:
$D_{x}\left(4 x^{3}-\sqrt[3]{x}+\frac{1}{x^{5}}+7\right)$
D_{x} is a linear operator: we can differentiate term-by-term, and constant factors "pop out."

$$
\begin{aligned}
& D_{x}\left(4 x^{3}-x^{1 / 3}+x^{-5}+7\right) \\
& =4\left(3 x^{2}\right)-\frac{1}{3} x^{-2 / 3}-5 x^{-6}+0 \quad\left(\text { Power Rule: } D_{x}\left(x^{n}\right)=n x^{n-1}\right) \\
& =12 x^{2}-\frac{1}{3} x^{-2 / 3}-5 x^{-6}
\end{aligned}
$$

$$
\begin{aligned}
D_{x}\left(7 x^{2}+3\right)^{10} & =10\left(7 x^{2}+3\right)^{9} \cdot \underbrace{D_{x}\left(7 x^{2}+3\right)}_{\begin{array}{c}
\text { "Tail' from the } \\
\text { Chain Rule }
\end{array}} \\
& =10\left(7 x^{2}+3\right)^{9} \cdot 14 x \\
& =140 x\left(7 x^{2}+3\right)^{9}
\end{aligned}
$$

$$
D_{x}[\sec (4 x)]=\sec (4 x) \tan (4 x) \cdot \underbrace{D_{x}(4 x)}_{\text {Tail }=4}
$$

$$
=4 \sec (4 x) \tan (4 x)
$$

$$
\begin{aligned}
D_{x}\left[\sin ^{4}(3 x)\right] & =D_{x}[\sin (3 x)]^{4} \\
& =4[\sin (3 x)]^{3} \cdot \underbrace{D_{x}[\sin (3 x)]}_{\text {Tail }} \\
& =4 \sin ^{3}(3 x) \cdot \cos (3 x) \cdot \underbrace{D_{x}(3 x)}_{=3} \\
& =12 \sin ^{3}(3 x) \cos (3 x)
\end{aligned}
$$

$$
D_{x}\left(x^{3} \tan x\right)=\left[D_{x}\left(x^{3}\right)\right][\tan x]+\left[x^{3}\right]\left[D_{x}(\tan x)\right] \quad(\text { by the Product Rule })
$$

$$
=3 x^{2} \tan x+x^{3} \sec ^{2} x
$$

$$
D_{x}\left(\frac{\sin x}{3 x+1}\right)=\frac{\mathrm{Lo} \cdot \mathrm{D}(\mathrm{Hi})-\mathrm{Hi} \cdot \mathrm{D}(\mathrm{Lo})}{\text { the square of what's below }} \quad \text { (by the Quotient Rule) }
$$

$$
\begin{aligned}
& =\frac{(3 x+1) \cdot D_{x}(\sin x)-(\sin x) \cdot \overbrace{D_{x}(3 x+1)}^{=3}}{(3 x+1)^{2}} \\
& =\frac{(3 x+1) \cos x-3 \sin x}{(3 x+1)^{2}}
\end{aligned}
$$

$D_{x}\left(e^{x}\right)=e^{x}$

$$
\begin{aligned}
D_{x}\left(e^{4 x}\right) & =e^{4 x} \cdot \underbrace{D_{x}(4 x)}_{\text {Tail }=4} \quad\left(\text { Think: } D_{x}\left[e^{\text {blah }}\right]=e^{b l a h} \cdot D_{x}(\text { blah }) .\right) \\
& =4 e^{4 x}
\end{aligned}
$$

$D_{x}\left(e^{\sin x}\right)=e^{\sin x} \underbrace{\cos x}_{\text {Tail }}$
$D_{x}\left(2^{x}\right)=2^{x} \ln 2$

$$
D_{x}(\ln x)=\frac{1}{x}
$$

$$
\begin{aligned}
D_{x}\left[\ln \left(x^{3}+4 x\right)\right] & =\frac{1}{x^{3}+4 x} \cdot \overbrace{D_{x}\left(x^{3}+4 x\right)}^{\text {Tail }=3 x^{2}+4} \\
& =\frac{3 x^{2}+4}{x^{3}+4 x}
\end{aligned}
$$

$D_{x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$D_{x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$D_{x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$D_{x}(\sinh x)=\cosh x$
$D_{x}(\cosh x)=\sinh x$
Let $f(x)=x^{2}$. Give a geometric interpretation of $f^{\prime}(3)$.

$$
\begin{aligned}
& f^{\prime}(3) \text { is the slope of the tangent line to the graph of } f \text { at the point }(3,9) \text {. } \\
& f^{\prime}(x)=2 x \text {, so } f^{\prime}(3)=2(3)=6 \text {. }
\end{aligned}
$$

INTEGRALS (CHAPTERS 5, 7, and 8)

You can often check to see if the derivative of your answer is the original integrand.
\int is a linear operator: we can integrate term-by-term, and constant factors "pop out."

Evaluate the following:

$$
\begin{aligned}
\int\left(5 x^{2}+\frac{1}{x^{4}}-\sqrt{x}\right) d x & =\int\left(5 x^{2}+x^{-4}-x^{1 / 2}\right) d x\left(\text { Power Rule: } \int x^{n} d x=\frac{x^{n+1}}{n+1}, n \neq-1\right) \\
& =5\left(\frac{x^{3}}{3}\right)+\frac{x^{-3}}{-3}-\frac{x^{3 / 2}}{3 / 2}+C \\
& =\frac{5}{3} x^{3}-\frac{1}{3} x^{-3}-\frac{2}{3} x^{3 / 2}+C
\end{aligned}
$$

Remember that you need a constant of integration $(+C)$ when you are evaluating an indefinite integral.

$$
\int \frac{x^{2}}{x^{3}+7} d x=\frac{1}{3} \int \frac{3 x^{2}}{x^{3}+7} d x
$$

$$
\text { Let } u=x^{3}+7 \text {. (We often let } u \text { be an "inside guy" or a denominator.) }
$$

$$
d u=3 x^{2} d x . \text { (The derivative of } u \text { is a factor of the integrand.) }
$$

We can insert a factor of " 3 " in the integrand if we compensate for it using $\frac{1}{3}$.

$$
\begin{aligned}
& =\frac{1}{3} \int \frac{d u}{u}\left(\text { Also, } d u=3 x^{2} d x \Rightarrow x^{2} d x=\frac{1}{3} d u\right) \\
& =\frac{1}{3} \ln |u|+C \\
& =\frac{1}{3} \ln \left|x^{3}+7\right|+C
\end{aligned}
$$

$\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C \quad$ (Remember the inverse trig derivative formulas!)
$\int \sin (6 x) d x=-\frac{1}{6} \cos (6 x)+C$
You could use "Trial-and-Error," or "Guess-and-Check."
Take a guess at the correct answer and differentiate your guess. If you're off by a constant factor, throw in an appropriate "fudge factor."
$\int \sec ^{2} x d x=\tan x+C \quad$ (Remember the trig derivative formulas!)
$\int_{4}^{9} \underbrace{\frac{e^{\sqrt{x}}}{\sqrt{x}}}_{\substack{\text { Continuous } \\ \text { on }[4,9]}} d x=2 \int_{4}^{9} \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x$
Let $u=\sqrt{x}=x^{\frac{1}{2}}$.

$$
d u=\frac{1}{2} x^{-\frac{1}{2}} d x=\frac{1}{2 \sqrt{x}} d x
$$

Change the limits of integration! (Otherwise, go back to x at the end.)

$$
\begin{aligned}
& x=4 \rightarrow u=\sqrt{4}=2 \\
& x=9 \rightarrow u=\sqrt{9}=3 \\
&=2 \int_{u=2}^{u=3} e^{u} d u \\
&= 2\left[e^{u}\right]_{2}^{3} \\
&= 2\left(e^{3}-e^{2}\right)
\end{aligned}
$$

The value of a definite integral (such as the one given here) is typically a number.

$$
\begin{aligned}
& \int e^{5 x} d x=\frac{1}{5} e^{5 x}+C \quad \text { (You could use "Guess-and-Check.") } \\
& \int 2^{x} d x=\frac{2^{x}}{\ln 2}+C \\
& \int \sin x d x=-\cos x+C \\
& \int \tan x d x=\begin{array}{r}
-\ln |\cos x|+C, \\
\text { or } \ln |\sec x|+C
\end{array} \\
& \int \cos x d x=\sin x+C \\
& \int \tan x d x=\int \frac{\sin x}{\cos x} d x \\
& \text { Let } u=\cos x \text {. } \\
& d u=-\sin x d x \text {. } \\
& =-\int \frac{d u}{u} \\
& =-\ln |u|+C \\
& =-\ln |\cos x|+C \text {, or } \\
& \ln |\cos x|^{-1}+C \text {, or } \\
& \ln |\sec x|+C
\end{aligned}
$$

$$
\int \sec x d x=\underline{\ln |\sec x+\tan x|+C} \quad \int \csc x d x=\underline{\ln |\csc x-\cot x|+C}
$$

$$
\begin{aligned}
\int \sec x d x & =\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x \\
& =\int \frac{\overbrace{\left.\sec ^{2} x+\sec x \tan x\right) d x}^{d u}}{\underbrace{\sec x+\tan x}_{\text {Let this be } u .}} \\
& =\int \frac{d u}{u} \\
& =\ln |u|+C \\
& =\ln |\sec x+\tan x|+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \csc x d x=\int \csc x \cdot \frac{\csc x-\cot x}{\csc x-\cot x} d x \\
&=\int \frac{\overbrace{\left(\csc ^{2} x-\csc x \cot x\right) d x}^{d u}}{\csc x-\cot x} \\
& \text { Let this be } u . \\
&=\int \frac{d u}{u} \\
&=\ln |u|+C \\
&=\ln |\csc x-\cot x|+C
\end{aligned}
$$

Give a geometric interpretation of $\int_{-1}^{1} \sqrt{1-x^{2}} d x$.
$f(x)=\sqrt{1-x^{2}}$ represents the upper half of the unit circle [centered at the origin].
We can interpret definite integrals in terms of signed areas (areas above the x-axis yield positive contributions; areas below the x-axis yield negative contributions).

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\text { Area of semicircle }=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi(1)^{2}=\frac{\pi}{2} .
$$

True or False: If $x>0$ and $y>0, \sqrt{x+y}=\sqrt{x}+\sqrt{y}$.
True or False: If $x>0, \ln x^{3}=3 \ln x$.
True or False: If $x>0,(\ln x)^{3}=3 \ln x$.
The front endpaper of your textbook has a nice list of key formulas. You should have learned all of these in Math 150, except for \#1, \#19, and \#20 under FORMULAS FOR INTEGRALS.

